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Latent Block Model (LBM) is a model-based method to cluster simultaneously the d columns
and n rows of a data matrix. Parameter estimation in LBM is a difficult and multifaceted prob-
lem. Although various estimation strategies have been proposed and are now well understood
empirically, theoretical guarantees about their asymptotic behavior is rather sparse. We show
here that under some mild conditions on the parameter space, and in an asymptotic regime
where log(d)/n and log(n)/d tend to 0 when n and d tend to +∞, (1) the maximum-likelihood
estimate of the complete model (with known labels) is consistent and (2) the log-likelihood ratios
are equivalent under the complete and observed (with unknown labels) models. This equivalence
allows us to transfer the asymptotic consistency to the maximum likelihood estimate under the
observed model. Moreover, the variational estimator is also consistent.

Keywords: Latent Block Model, asymptotic normality, Maximum Likelihood Estimate, Concen-
tration Inequality.

1. Introduction

Coclustering is an unsupervised way to cluster simultaneously the rows and columns
of a data matrix, and can be used in numerous applications such as recommendation
systems, genomics or text mining. Among the coclustering methods, the Latent Block
Model (LBM) is based on the definition of a probabilistic model.

We observe a data matrix X = (xij) with n rows and d columns and we suppose that
there exists a row-partition with g row-classes and a column-partition with m column-
classes. The row (resp. column) class for each row (resp. column) is unknown and has
to be determined. Once determined, rows and columns can be re-ordered according to
this coclustering, to let appear blocks that are homogeneous and distinct. This leads to
a parsimonious data representation.
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2 V. BRAULT et al.

LBM can deal with binary ([6]), Gaussian ([10]), categorical ([9]) or count ([7]) data.
Due to the complex dependence structure, neither the likelihood, nor the computation
of the distribution of the assignments conditionally to the observations (E-step of the
EM algorithm), and therefore the maximum likelihood estimator (MLE) are numerically
tractable. Estimation can be however performed either with a variational approximation
(leading to an approximate value of the MLE), or with a Bayesian approach (VBayes
algorithm or Gibbs sampler). Notice that [9] recommend to perform a Gibbs sampler
combined with a VBayes algorithm.

Although these estimation methods give satisfactory results, the consistence and asymp-
totic normality of the MLE are still an open question. Some partial results exist for LBM,
and this question has been solved for SBM (Stochastic Block Model), a special case of
LBM where the data is a random graphe encoded by its adjacency matrix (rows and
columns represents the same units, so that there is only one partition, the same for rows
and columns). [4] proved in their Theorem 3 that under the true parameter value, the dis-
tribution of the assignments conditionally to the observations of a binary SBM converges
to a Dirac of the real assignments. Moreover, this convergence remains valid under the
estimated parameter value, assuming that this estimator converges at rate at least n−1,
where n is the number of nodes (Proposition 3.8). This assumption is not trivial, and it is
not established that such an estimator exists except in some particular cases ([1] for ex-
ample). [11] presented a unified frame for LBM and SBM in case of observations coming
from an exponential family, and showed the consistency of the assignment conditional
distribution under all parameter value in a neighborhood of the true value. [3] and [2]
proved the consistency and asymptotic normality of the MLE for the binary SBM. Burst-
ing with the preceding approaches, they first studied the asymptotic behavior of the MLE
in the complete model (observations and assignments) which is very simple to handle;
then, they showed that the complete likelihood and the marginal likelihood have similar
asymptotic behavior by the use of a Bernstein inequality for bounded observations.

We extend these results to the double asymptotic framework of LBM, following the way
of [2], and for observations coming from some exponential family. Moreover, we introduce
the concept of model symmetry which was not pointed out by these authors, but is
necessary to set the asymptotic behavior. The asymptotic normality of the variational
estimator is also settled, and an application to model selection criteria is presented.

The paper is organized as follows. The model, main assumptions and notations are
introduced in Section 2, where model symmetry is also discussed. Section 3 establishes
the asymptotic normality of the complete likelihood estimator, and section 4 settles three
different types of assignment behaviors. Our main result showing that the observed like-
lihood behaves like the complete likelihood takes place in section 5, and the consistency
of MLE and variational estimator is deduced. Technical proofs are gathered in the ap-
pendices.
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Consistency and asymptotic normality of LBM estimators 3

2. Model and assumptions

The LBM assumes a block clustering structure of a data matrix X = (xij) with n rows
and d columns, as the Cartesian product of a row partition z by a column partition w.
More precisely,

• row assignments (or labels) zi, i = 1, . . . , n, are independent from column assign-
ments (or labels) wj , j = 1, . . . , d : p(z,w) = p(z)p(w);

• row labels are independent, with a common multinomial distribution: zi ∼M(1,π =
(π1, . . . , πg)); in the same way, column labels are i.i.d. multinomial variables: wj ∼
M(1,ρ = (ρ1, . . . , ρm)).

• conditionally to row and column assignments (z1, . . . , zn) × (w1, . . . ,wd), the ob-
served dataXij are independent, and their (conditional) distribution ϕ(., α) belongs
to the same parametric family, which parameter α only depends on the given block:

Xij |{zikwj` = 1} ∼ ϕ(., αk`)

where zik is the indicator variable of whether row i belongs to row-group k and wj`
is the indicator variable of whether column j belongs to column-group `.

Hence, the complete parameter set is θ = (π,ρ,α) ∈ Θ, with α = (α11, . . . , αgm) and
Θ the parameter space. Figure 1 summarizes these notations.
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Figure 1. Notations. Left: Notations for the elements of observed data matrix are in black, notations
for the block clusters are in blue. Right: Notations for the model parameter.
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4 V. BRAULT et al.

When performing inference from data, we note θ? = (π?,ρ?,α?) the true parameter
set, i.e. the parameter values used to generate the data, and z? and w? the true (and
usually unobserved) assignment of rows and columns to their group. For given matrices
of indicator variables z and w, we also note:

• z+k =
∑
i zik and w+` =

∑
j wj`

• z?+k and w?+` their counterpart for z? and w?.

The confusion matrix allows to compare the partitions.

Definition 2.1 (confusion matrices). For given assignments z and z? (resp. w and
w?), we define the confusion matrix between z and z? (resp. w and w?), noted IRg(z)
(resp. IRm(w)), as follows:

IRg(z)kk′ =
1

n

∑
i

z?ikzik′ and IRm(w)``′ =
1

d

∑
j

w?j`wj`′ (2.1)

2.1. Likelihood

When the labels are known, the complete log-likelihood is given by:

Lc(z,w;θ) = log p(x, z,w;θ)

= log


∏
i,k

πzikk

∏
j,`

ρ
wj`
`

 ∏
i,j,k,`

ϕ (xij ;αk`)
zikwj`


= log


(∏

i

πzi

)∏
j

ρwj

∏
i,j

ϕ
(
xij ;αziwj

) .

(2.2)

But the labels are usually unobserved, and the observed log-likelihood is obtained by
marginalization over all the label configurations:

L(θ) = log p(x;θ) = log

 ∑
z∈Z,w∈W

p(x, z,w;θ)

 . (2.3)

As the LBM involves a double missing data structure z for rows and w for columns, the
observed likelihood is not tractable, nor the E-step of the EM algorithm, but estimation
can be performed either by numerical approximation, or by MCMC methods [9], [8].

2.2. Assumptions

We focus here on parametric models where ϕ belongs to a regular one-dimension expo-
nential family in canonical form:

ϕ(x, α) = b(x) exp(αx− ψ(α)), (2.4)
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Consistency and asymptotic normality of LBM estimators 5

where α belongs to the space A, so that ϕ(·, α) is well defined for all α ∈ A. Clas-
sical properties of exponential families insure that ψ is convex, infinitely differentiable
on Å, that (ψ′)−1 is well defined on ψ′(Å). When Xα ∼ ϕ(., α), E[Xα] = ψ′(α) and
V[Xα] = ψ′′(α).

Moreover, we make the following assumptions on the parameter space :

H1 : There exist a positive constant c, and a compact Cα such that

Θ ⊂ [c, 1− c]g × [c, 1− c]m × Cg×mα with Cα ⊂ Å.

H2 : The true parameter θ? = (π?,ρ?,α?) lies in the relative interior of Θ.
H3 : The map α 7→ ϕ(·, α) is injective.
H4 : Each row and each column of α? is unique.

The previous assumptions are standard. Assumption H1 ensure that the group pro-
portions are bounded away from 0 and 1 so that no group disappears when n and d go
to infinity. It also ensures that α is bounded away from the boundaries of the A and that
there exists a κ > 0, such that [αk` − κ, αk` + κ] ⊂ Å for all parameters αk` of θ ∈ Θ.
Assumptions H3 and H4 are necessary to ensure that the model is identifiable. If the
map α 7→ ϕ(., α) is not injective, the model is trivially not identifiable. Similarly, if rows
k and k′ are identical, we can build a more parsimonious model that induces the same
distribution of x by merging groups k and k′. In the following, we consider that g and
m, row- and column- classes (or groups) counts are known.

Moreover, we define the δ(α), that captures the differences between either row-groups
or column-groups: lower values means that there are two row-classes or two column-
classes that are very similar.

Definition 2.2 (class distinctness). For θ = (π,ρ,α) ∈ Θ. We define:

δ(α) = min

{
min
`,`′

max
k

KL(αk`, αk`′),min
k,k′

max
`

KL(αk`, αk′`)

}
with KL(α, α′) = Eα[log(ϕ(X,α)/ϕ(X,α′))] = ψ′(α)(α−α′)+ψ(α′)−ψ(α) the Kullback
divergence between ϕ(., α) and ϕ(., α′), when ϕ comes from an exponential family.

Remark 2.3. Since all α have distinct rows and columns, δ(α) > 0.

Remark 2.4. Since we restricted α in a bounded subset of Å, there exists two positive
values Mα and κ such that Cα + (−κ, κ) ⊂ [−Mα,Mα] ⊂ Å. Moreover, the variance of
Xα is bounded away from 0 and +∞. We note

sup
α∈[−Mα,Mα]

V(Xα) = σ̄2 < +∞ and inf
α∈[−Mα,Mα]

V(Xα) = σ2 > 0. (2.5)

Proposition 2.5. With the previous notations, if α ∈ Cα and Xα ∼ ϕ(., α), then Xα

is subexponential with parameters (σ̄2, κ−1).

imsart-bj ver. 2014/10/16 file: bj-BraultKeribinMariadassou.tex date: April 21, 2017



6 V. BRAULT et al.

Remark 2.6. These assumptions are satisfied for many distributions, including but
not limited to:

• Bernoulli, when the proportion p is bounded away from 0 and 1, or natural param-
eter α = log(p/(1− p)) bounded away from ±∞;

• Poisson, when the mean λ is bounded away from 0 and +∞, or natural parameter
α = log(λ) bounded away from ±∞;

• Gaussian with known variance when the mean µ, which is also the natural param-
eter, is bounded away from ±∞.

In particular, the conditions stating that ψ is twice differentiable and that (ψ′)−1 exists
are equivalent to assuming that Xα has positive and finite variance for all values of α in
the parameter space.

2.3. Symmetry

The LBM is a generalized mixture model, and it is well known that it subject to label
switching. [9] showed that the categorical LBM is generically identifiable, and this prop-
erty is easily extended to the case of observations of a one-dimension exponential family.
Hence, except on a manifold set of null Lebesgue measure in Θ, the parameter set is
identifiable up to a label permutation.

The study of the asymptotic properties of the MLE will lead to take into account
symmetry properties on the parameter set. We first recall the definition of a permuta-
tion, then define equivalence relationships for assignments and parameter, and precise
symmetry.

Definition 2.7 (permutation). Let s be a permutation on {1, . . . , g} and t a permuta-
tion on {1, . . . ,m}. If A is a matrix with g columns, we define As as the matrix obtained
by permuting the columns of A according to s, i.e. for any row i and column k of A,
Asik = Ais(k). If B is a matrix with m columns and C is a matrix with g rows and m

columns, Bt and Cs,t are defined similarly:

As =
(
Ais(k)

)
i,k

Bt =
(
Bjt(`)

)
j,`

Cs,t =
(
Cs(k)t(`)

)
k,`

Definition 2.8 (equivalence). We define the following equivalence relationships:

• Two assignments (z,w) and (z′,w′) are equivalent, noted ∼, if they are equal up
to label permutation, i.e. there exist two permutations s and t such that z′ = zs and
w′ = wt.

• Two parameters are θ and θ′ are equivalent, noted ∼, if they are equal up to label
permutation, i.e. there exist two permutations s and t such that (πs,ρt,αs,t) =
(π′,ρ′,α′). This is label-switching.

• (θ, z,w) and (θ′, z′,w′) are equivalent, noted ∼, if they are equal up to label per-
mutation on α, i.e. there exist two permutations, s and t such that (αs,t, zs,wt) =
(α′, z′,w′).
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Definition 2.9 (distance). We define the following distance, up to equivalence, between
configurations z and z?:

‖z− z?‖0,∼ = inf
z′∼z
‖z′ − z?‖0

and similarly for the distance between w and w? where, for all matrix z, we use the
Hamming norm ‖·‖0 defined by

‖z‖0 =
∑
i,k

1{zik 6= 0}.

The last equivalence relationship is not concerned with π and ρ. It is useful when
dealing with the conditional likelihood p(x|z,w;θ) which does not depend on π and ρ:
in fact, if (θ, z,w) ∼ (θ′, z′,w′), then for all x, we have p(x|z,w;θ) = p(x|z′,w′;θ′).
Note also that z ∼ z? (resp. w ∼ w?) if and only if the confusion matrix IRg(z) (resp.
IRm(w)) is equivalent to a diagonal matrix.

Definition 2.10 (symmetry). We say that the parameter θ exhibits symmetry for the
permutations s, t if

(πs,ρt,αs,t) = (π,ρ,α).

θ exhibits symmetry if it exhibits symmetry for any non trivial pair of permutations
(s, t). Finally the set of pairs (s, t) for which θ exhibits symmetry is noted Sym(θ).

Remark 2.11. The set of parameters that exhibit symmetry is a manifold of null
Lebesgue measure in Θ. The notion of symmetry allows us to deal with a notion of non-
identifiability of the class labels that is subtler than and different from label switching.
To emphasize the difference between equivalence and symmetry, consider the following

model: π = (1/2, 1/2), ρ = (1/3, 2/3) and α =

(
α1 α2

α2 α1

)
with α1 6= α2. The only

permutations of interest here are s = t = [1 2]. Choose any z and w. Because of label
switching, we know that p(x, zs,wt;θs,t) = p(x, z,w;θ). (zs,wt) and (z,w) have the
same likelihood but under different parameters θ and θs,t. If however, ρ = (1/2, 1/2),
then (s, t) ∈ Sym(θ) and θs,t = θ so that (z,w) and (zs,wt) have exactly the same
likelihood under the same parameter θ. In particular, if (z,w) is a maximum-likelihood
assignment under θ, so is (zs,wt). In other words, if θ exhibits symmetry, the maximum-
likelihood assignment is not unique under the true model and there are at least # Sym(θ)
of them.

3. Asymptotic properties in the complete data model

As stated in the introduction, we first study the asymptotic properties of the complete
data model. Let θ̂c = (π̂, ρ̂, α̂) be the MLE of θ in the complete data model, where the
real assignments z = z? and w = w? are known. We can derive the following general
estimates from Equation (2.2):
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π̂k = π̂k(z) =
z+k

n
ρ̂` = ρ̂`(w) =

w+`

d

x̂k`(z,w) =

∑
ij xijzikwj`

z+kw+`
α̂k` = α̂k`(z,w) = (ψ′)−1 (x̂k`(z,w))

(3.1)

Proposition 3.1. The matrices Σπ? = Diag(π?) − π? (π?) T , Σρ? = Diag(ρ?) −
ρ? (ρ?) T are semi-definite positive, of rank g− 1 and m− 1, and π̂ and ρ̂ are asymptot-
ically normal:

√
n (π̂ (z?)− π?) D−−−−→

n→∞
N (0,Σπ?) and

√
d (ρ̂ (w?)− ρ?) D−−−→

d→∞
N (0,Σρ?) (3.2)

Similarly, let V (α?) be the matrix defined by [V (α?)]k` = 1/ψ′′(α?k`) and
Σα? = Diag−1(π?)V (α?) Diag−1(ρ?). Then:

√
nd (α̂k` (z?,w?)− α?k`)

D−−−−−→
n,d→∞

N (0,Σα?,k`) for all k, ` (3.3)

where the components are independent.

Proof: Since π̂ (z?) = (π̂1 (z?) , . . . , π̂g (z?)) (resp. ρ̂ (w?)) is the sample mean of n
(resp. d) i.i.d. multinomial random variables with parameters 1 and π? (resp. ρ?), a
simple application of the central limit theorem (CLT) gives:

Σπ?,kk′ =

{
π?k(1− π?k) if k = k′

−π?kπ?k′ if k 6= k′
and Σρ?,``′ =

{
ρ?` (1− ρ?` ) if ` = `′

−ρ?`ρ?`′ if ` 6= `′

which proves Equation (3.2) where Σπ? and Σρ? are semi-definite positive of rank g − 1
and m− 1.

Similarly, ψ′ (α̂k` (z?,w?)) is the average of z?+kw
?
+` = ndπ̂k (z?) ρ̂` (w?) i.i.d. random

variables with mean ψ′ (α?k`) and variance ψ′′ (α?k`). ndπ̂k (z?) ρ̂` (w?) is itself random
but π̂k (z?) ρ̂` (w?) −−−−−−→

n,d→+∞
π?kρ

?
` almost surely. Therefore, by Slutsky’s lemma and the

CLT for random sums of random variables [13], we have:

√
ndπ?kρ

?
` (ψ′ (α̂k` (z?,w?))− ψ′(α?k`)) =

√
ndπ?kρ

?
`

( ∑
ij Xijz

?
ikw

?
j`

ndπ̂k (z?) ρ̂` (w?)
− ψ′(α?k`)

)
D−−−−−−→

n,d→+∞
N (0, ψ′′(α?k`))

The differentiability of (ψ′)−1 and the delta method then gives:

√
nd (α̂k` (z?,w?)− α?k`)

D−−−−−−→
n,d→+∞

N
(

0,
1

π?kρ
?
`ψ
′′(α?k`)

)
and the independence results from the independence of α̂k` (z?,w?) and α̂k′`′ (z

?,w?) as
soon as k 6= k′ or ` 6= `′, as they involve different sets of i.i.d. variables.

imsart-bj ver. 2014/10/16 file: bj-BraultKeribinMariadassou.tex date: April 21, 2017



Consistency and asymptotic normality of LBM estimators 9

�

Proposition 3.2 (Local asymptotic normality). Let L?c the function defined on Θ by
L?c (π,ρ,α) = log p (x, z?,w?;θ). For any s, t and u in a compact set, we have:

L?c
(
π? +

s√
n
,ρ? +

t√
d
,α? +

u√
nd

)
= L?c (θ?) + sTYπ? + tTYρ? + Tr(uTYα?)

−
(

1

2
sTΣπ?s+

1

2
tTΣρ?t+

1

2
Tr
(
(u� u)TΣα?

))
+ oP (1)

where � denote the Hadamard product of two matrices (element-wise product) and Σπ? ,
Σρ? and Σα? are defined in Proposition 3.1. Yπ? , Yρ? are asymptotically Gaussian with
zero mean and respective variance matrices Σπ? , Σρ? and Yα? is a matrix of asymptot-
ically independent Gaussian components with zero mean and variance matrix Σα? .

Proof.
By Taylor expansion,

L?c
(
π? +

s√
n
,ρ? +

t√
d
,α? +

u√
nd

)
= L?c (θ?) +

1√
n
sT∇L?cπ (θ?) +

1√
d
tT∇L?cρ (θ?) +

1√
nd

Tr
(
uT∇L?cα (θ?)

)
+

1

n
sTHπ (θ?) s+

1

d
tTHρ (θ?) t+

1

nd
Tr
(
(u� u)THα (θ?)

)
+ oP (1)

where ∇L?cπ (θ?), ∇L?cρ (θ?) and ∇L?cα (θ?) denote the respective components of the

gradient of L?c evaluated at θ? and Hπ, Hρ and Hα denote the conditional hessian
of L?c evaluated at θ?. By inspection, Hπ/n, Hρ/d and Hα/nd converge in probabil-

ity to constant matrices and the random vectors ∇L?cπ (θ?) /
√
n, ∇L?cρ (θ?) /

√
d and

∇L?cα (θ?) /
√
nd converge in distribution by central limit theorem.

�

4. Profile Likelihood

To study the likelihood behaviors, we shall work conditionally to the real configurations
(z?,w?) that have enough observations in each row or column group. We therefore define
regular configurations which occur with high probability, then introduce conditional and
profile log-likelihood ratio.

imsart-bj ver. 2014/10/16 file: bj-BraultKeribinMariadassou.tex date: April 21, 2017



10 V. BRAULT et al.

4.1. Regular assignments

Definition 4.1 (c-regular assignments). Let z ∈ Z and w ∈ W. For any c > 0, we say
that z and w are c-regular if

min
k
z+k ≥ cn and min

`
w+` ≥ cd. (4.1)

In regular configurations, each row-group (resp. column-group) has Ω(n) members,
where un = Ω(n) if there exists two constant a, b > 0 such that for n enough large
an ≤ un ≤ bn. c/2-regular assignments, with c defined in Assumption H1, have high
Pθ? -probability in the space of all assignments, uniformly over all θ? ∈ Θ.

Each z+k is a sum of n i.i.d Bernoulli r.v. with parameter πk ≥ πmin ≥ c. A simple
Hoeffding bound shows that

Pθ?
(
z+k ≤ n

c

2

)
≤ Pθ?

(
z+k ≤ n

πk
2

)
≤ exp

(
−2n

(πk
2

)2
)
≤ exp

(
−nc

2

2

)
taking a union bound over g values of k and using a similar approach for w+` lead to
Proposition 4.2.

Proposition 4.2. Define Z1 and W1 as the subsets of Z and W made of c/2-regular
assignments, with c defined in assumption H1. Note Ω1 the event {(z?,w?) ∈ Z1×W1},
then:

Pθ?
(
Ω̄1

)
≤ g exp

(
−nc

2

2

)
+m exp

(
−dc

2

2

)
.

We define now balls of configurations taking into account equivalent assignments
classes.

Definition 4.3 (Set of local assignments). We note S(z?,w?, r) the set of configura-
tions that have a representative (for ∼) within relative radius r of (z?,w?):

S(z?,w?, r) = {(z,w) : ‖z− z?‖0,∼ ≤ rn and ‖w −w?‖0,∼ ≤ rd}

4.2. Conditional and profile log-likelihoods

We first introduce few notations.

Definition 4.4. We define the conditional log-likelihood ratio Fn,d and its expectation
G as:

Fnd(θ, z,w) = log
p(x|z,w;θ)

p(x|z?,w?;θ?)

G(θ, z,w) = Eθ?
[

log
p(x|z,w;θ)

p(x|z?,w?;θ?)

∣∣∣∣ z?,w?

] (4.2)
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Consistency and asymptotic normality of LBM estimators 11

We also define the profile log-likelihood ratio Λ and its expectation Λ̃ as:

Λ(z,w) = max
θ

Fnd(θ, z,w)

Λ̃(z,w) = max
θ

G(θ, z,w).
(4.3)

Remark 4.5. As Fnd and G only depend on θ through α, we will sometimes replace θ
with α in the expressions of Fnd and G. Replacing Fn,d and G by their profiled version

Λ and Λ̃ allows us to get rid of the continuous argument of Fnd and to effectively use
discrete contrasts Λ and Λ̃.

The following proposition shows which values of α maximize Fnd and G to attain Λ
and Λ̃.

Proposition 4.6 (maximum of G and Λ̃ in θ). Conditionally on z?,w?, define the
following quantities:

S? = (S?k`)k` = (ψ′(α?k`))k`

x̄k`(z,w) = Eθ? [x̂k`(z,w)|z?,w?] =

[
IRg(z)TS?IRm(w)

]
k`

π̂k(z)ρ̂`(w)

(4.4)

with x̄k`(z,w) = 0 for z and w such that π̂k(z) = 0 or ρ̂`(w) = 0. Then Fnd(θ, z,w) and
G(θ, z,w) are maximum in α for α̂(z,w) and ᾱ(z,w) defined by:

α̂(z,w)k` = (ψ′)−1(x̂k`(z,w)) and ᾱ(z,w)k` = (ψ′)−1(x̄k`(z,w))

so that
Λ(z,w) = Fnd(α̂(z,w), z,w)

Λ̃(z,w) = G(ᾱ(z,w), z,w)

Note that although x̄k` = Eθ? [ x̂k`| z?,w?], in general ᾱk` 6= Eθ? [ α̂k`| z?,w?] by non
linearity of (ψ′)−1. Nevertheless, (ψ′)−1 is Lipschitz over compact subsets of ψ′(Å) and
therefore, with high probability, |ᾱk` − α̂k`| and |x̂k` − x̄k`| are of the same order of
magnitude.

The maximum and argmax of G and Λ̃ are characterized by the following propositions.

Proposition 4.7 (maximum of G and Λ̃ in (θ, z,w)). Let KL(α, α′) = ψ′(α)(α−α′) +
ψ(α′)− ψ(α) be the Kullback divergence between ϕ(., α) and ϕ(., α′) then:

G(θ, z,w) = −nd
∑
k,k′

∑
`,`′

IRg(z)k,k′IRm(w)`,`′ KL(α?k`, αk′`′) ≤ 0. (4.5)

Conditionally on the set Ω1 of regular assignments and for n, d > 2/c,

(i) G is maximized at (α?, z?,w?) and its equivalence class.
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12 V. BRAULT et al.

(ii) Λ̃ is maximized at (z?,w?) and its equivalence class; moreover, Λ̃(z?,w?) = 0.
(iii) The maximum of Λ̃ (and hence the maximum of G) is well separated.

Property (iii) of Proposition 4.7 is a direct consequence of the local upperbound for
Λ̃ as stated as follows:

Proposition 4.8 (Local upperbound for Λ̃). Conditionally upon Ω1, there exists a
positive constant C such that for all (z,w) ∈ S(z?,w?, C):

Λ̃(z,w) ≤ −cδ(α
?)

4
(d‖z− z?‖0,∼ + n‖w −w?‖0,∼) (4.6)

Proofs of Propositions 4.6, 4.7 and 4.8 are reported in Appendix A.

5. Main Result

We are now ready to present our main result stated in Theorem 5.1.

Theorem 5.1 (complete-observed). Consider that assumptions H1 to H4 hold for the
Latent Block Model of known order with n × d observations coming from an univariate
exponential family and define # Sym(θ) as the set of pairs of permutation (s, t) for which
θ = (π,ρ,α) exhibits symmetry. Then, for n and d tending to infinity with asymptotic
rates log(d)/n → 0 and log(n)/d → 0, the observed likelihood ratio behaves like the
complete likelihood ratio, up to a bounded multiplicative factor:

p(x;θ)

p(x;θ?)
=

# Sym(θ)

# Sym(θ?)
max
θ′∼θ

p(x, z?,w?;θ′)

p(x, z?,w?;θ?)
(1 + oP (1)) + oP (1)

where the oP is uniform over all θ ∈ Θ.

The maximum over all θ′ that are equivalent to θ stems from the fact that because
of label-switching, θ is only identifiable up to its ∼-equivalence class from the observed
likelihood, whereas it is completely identifiable from the complete likelihood.
As already pointed out, if Θ exhibits symmetry, the maximum likelihood assignment is
not unique under the true model, and # Sym(θ) terms contribute with the same weight.
This was not taken into account by [2]. The next corollary is deduced immediately :

Corollary 5.2. If Θ contains only parameters that do not exhibit symmetry:

p(x;θ)

p (x;θ?)
= max
θ′∼θ

p(x, z?,w?;θ′)

p(x, z?,w?;θ?)
(1 + oP (1)) + oP (1)

where the oP is uniform over all Θ.
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Consistency and asymptotic normality of LBM estimators 13

Using the conditional log-likelihood, the observed likelihood can be written as

p(x;θ) =
∑

(z,w)

p(x, z,w;θ)

= p(x|z?,w?;θ?)
∑

(z,w)

p(z,w;θ) exp(Fnd(θ, z,w)). (5.1)

The proof proceeds with an examination of the asymptotic behavior of Fnd on three
types of configurations that partition Z ×W:

1. global control : for (z,w) such that Λ̃(z,w) = Ω(−nd), Proposition 5.3 proves a large
deviation behavior for Fnd = −ΩP (nd) and in turn those assignments contribute a
oP of p(x, z?,w?;θ?)) to the sum (Proposition 5.4).

2. local control : a small deviation result (Proposition 5.5) is needed to show that the
combined contribution of assignments close to but not equivalent to (z?,w?) is also
a oP of p(x, z?,w?;θ?) (Proposition 5.6).

3. equivalent assignments: Proposition 5.7 examines which of the remaining assign-
ments, all equivalent to (z?,w?), contribute to the sum.

These results are presented in next section 5.1 and their proofs reported in Appendix
A. They are then put together in section 5.2 to achieve the proof of our main result.
The remainder of the section is devoted to the asymptotics of the ML and variational
estimators as a consequence of the main result.

5.1. Different asymptotic behaviors

We begin with a large deviations inequality for configurations (z,w) far from (z?,w?)
and leverage it to prove that far away configurations make a small contribution to p(x;θ).

5.1.1. Global Control

Proposition 5.3 (large deviations of Fnd). Let Diam(Θ) = supθ,θ′ ‖θ− θ
′‖∞. For all

εn,d < κ/(2
√

2 Diam(Θ)) and n, d large enough that

∆1
nd(εnd)

= P

(
sup
θ,z,w

{
Fnd(θ, z,w)− Λ̃(z,w)

}
≥ σ̄ndDiam(Θ)2

√
2εnd

[
1 +

gm

2
√

2ndεnd

])

≤ gnmd exp

(
−ndε

2
nd

2

)
(5.2)

Proposition 5.4 (contribution of global assignments). Assume log(d)/n→ 0, log(n)/d→
0 when n and d tend to infinity, and choose tnd decreasing to 0 such that tnd � max(n+d

nd ,
log(nd)√

nd
).
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14 V. BRAULT et al.

Then conditionally on Ω1 and for n, d large enough that 2
√

2ndtnd ≥ gm, we have:

sup
θ∈Θ

∑
(z,w)/∈S(z?,w?,tnd)

p(z,w,x;θ) = oP (p(z?,w?,x;θ?))

5.1.2. Local Control

Proposition 5.3 gives deviations of order OP (
√
nd), which are only useful for (z,w) such

that G and Λ̃ are large compared to
√
nd. For (z,w) close to (z?,w?), we need tighter

concentration inequalities, of order oP (−(n+ d)), as follows:

Proposition 5.5 (small deviations Fnd). Conditionally upon Ω1, there exists three
positive constant c1, c2 and C such that for all ε ≤ κσ2, for all (z,w) � (z?,w?) such
that (z,w) ∈ S(z?,w?, C):

∆2
nd(ε) = Pθ?

(
sup
θ

Fnd(θ, z,w)− Λ̃(z,w)

d‖z− z?‖0,∼ + n‖w −w?‖0,∼
≥ ε

)
≤ exp

(
− ndc2ε2

128(c1σ̄2 + c2κ−1ε)

)
(5.3)

The next propositions builds on Proposition 5.5 and 4.7 to show that the combined
contributions of assignments close to (z?,w?) to the observed likelihood is also a oP of
p(z?,w?,x;θ?)

Proposition 5.6 (contribution of local assignments). With the previous notations

sup
θ∈Θ

∑
(z,w)∈S(z?,w?,C)

(z,w)�(z?,w?)

p(z,w,x;θ) = oP (p(z?,w?,x;θ?))

5.1.3. Equivalent assignments

It remains to study the contribution of equivalent assignments.

Proposition 5.7 (contribution of equivalent assignments). For all θ ∈ Θ, we have

∑
(z,w)∼(z?,w?)

p(x, z,w;θ)

p(x, z?,w?;θ?)
= # Sym(θ) max

θ′∼θ

p(x, z?,w?;θ′)

p(x, z?,w?;θ?)
(1 + oP (1))

where the oP is uniform in θ.

5.2. Proof of the main result

Proof.
We work conditionally on Ω1. Choose (z?,w?) ∈ Z1×W1 and a sequence tnd decreasing
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Consistency and asymptotic normality of LBM estimators 15

to 0 but satisfying tnd � max
(
n+d
nd ,

log(nd)√
nd

)
(this is possible since log(d)/n → 0 and

log(n)/d→ 0). According to Proposition 5.4,

sup
θ∈Θ

∑
(z,w)/∈S(z?,w?,tnd)

p(z,w,x;θ) = oP (p(z?,w?,x;θ?))

Since tnd decreases to 0, it gets smaller than C (used in proposition 5.6) for n, d large
enough. As this point, Proposition 5.6 ensures that:

sup
θ∈Θ

∑
(z,w)∈S(z?,w?,tnd)

(z,w)�(z?,w?)

p(z,w,x;θ) = oP (p(z?,w?,x;θ?))

And therefore the observed likelihood ratio reduces as:

p(x;θ)

p(x;θ?)
=

∑
(z,w)∼(z?,w?)

p(x, z,w;θ) +
∑

(z,w)�(z?,w?)

p(x, z,w;θ)

∑
(z,w)∼(z?,w?)

p(x, z,w;θ?) +
∑

(z,w)�(z?,w?)

p(x, z,w;θ?)

=

∑
(z,w)∼(z?,w?)

p(x, z,w;θ) + p(x; z?,w?,θ?)oP (1)

∑
(z,w)∼(z?,w?)

p(x, z,w;θ?) + p(x; z?,w?,θ?)oP (1)

And Proposition 5.7 allows us to conclude

p(x;θ)

p(x;θ?)
=

# Sym(θ)

# Sym(θ?)
max
θ′∼θ

p(x, z?,w?;θ′)

p(x, z?,w?;θ?)
(1 + oP (1)) + oP (1).

�

5.3. Asymptotics for the MLE of θ

The asymptotic behavior of the maximum likelihood estimator in the incomplete data
model is a direct consequence of Theorem 5.1.

Corollary 5.8 (Asymptotic behavior of θ̂MLE). Denote θ̂MLE the maximum likeli-
hood estimator and use the notations of Proposition 3.1. If # Sym(θ) = 1, there exist
permutations s of {1, . . . , g} and t of {1, . . . ,m} such that

π̂ (z?)− π̂sMLE = oP

(
n−1/2

)
, ρ̂ (w?)− ρ̂tMLE = oP

(
d−1/2

)
,

α̂ (z?,w?)− α̂s,tMLE = oP

(
(nd)

−1/2
)
.
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If # Sym(θ) 6= 1, θ̂MLE is still consistent: there exist permutations s of {1, . . . , g} and t
of {1, . . . ,m} such that

π̂ (z?)− π̂sMLE = oP (1) , ρ̂ (w?)− ρ̂tMLE = oP (1) ,

α̂ (z?,w?)− α̂s,tMLE = oP (1) .

Hence, the maximum likelihood estimator for the LBM is consistent and asymptoti-
cally normal, with the same behavior as the maximum likelihood estimator in the com-
plete data model when θ does not exhibit any symmetry. The proof in appendix A.9
relies on the local asymptotic normality of the MLE in the complete model, as stated in
Proposition 3.2 and on our main Theorem.

5.4. Consistency of variational estimates

Due to the complex dependence structure of the observations, the maximum likelihood
estimator of the LBM is not numerically tractable, even with the Expectation Max-
imisation algorithm. In practice, a variational approximation can be used ([?, see for
example]]govaert2003): for any joint distribution Q ∈ Q on Z×W a lower bound of L(θ)
is given by

J (Q,θ) = L(θ)−KL (Q, p (., .;θ,x))

= EQ [Lc (z,w;θ)] +H (Q) .

where H (Q) = −EQ[log(Q)]. Choose Q to be the set of product distributions, such that
for all (z,w)

Q (z,w) = Q (z)Q (w) =
∏
i,k

Q (zik = 1)
zik
∏
j,`

Q (wj` = 1)
wj`

allow to obtain tractable expressions of J (Q,θ). The variational estimate θ̂var of θ is
defined as

θ̂var ∈ argmax
θ∈Θ

max
Q∈Q

J (Q,θ) .

The following corollary states that θ̂var has the same asymptotic properties as θ̂MLE

and θ̂MC .

Corollary 5.9 (Variational estimate). Under the assumptions of Theorem 5.1 and if
# Sym(θ) = 1, there exist permutations s of {1, . . . , g} and t of {1, . . . ,m} such that

π̂ (z?)− π̂svar = oP

(
n−1/2

)
, ρ̂ (w?)− ρ̂tvar = oP

(
d−1/2

)
,

α̂ (z?,w?)− α̂s,tvar = oP

(
(nd)

−1/2
)
.

The proof is available in appendix A.10.
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Consistency and asymptotic normality of LBM estimators 17

Appendix A: Proofs

A.1. Proof of Proposition 4.6

Proof.
Define ν(x, α) = xα− ψ(α). For x fixed, ν(x, α) is maximized at α = (ψ′)−1(x). Manip-
ulations yield

Fnd(α, z,w) = log p(x; z,w,θ)− log p(x; z?,w?,θ?)

= nd

[∑
k

∑
`

π̂k(z)ρ̂`(w)ν(x̂k`(z,w), αk`)−
∑
k

∑
`

π̂k(z?)ρ̂`(w
?)ν(x̂k`(z

?,w?), α?k`)

]
which is maximized at αk` = (ψ′)−1(x̂k`(z,w)). Similarly

G(α, z,w) = Eθ? [log p(x; z,w,θ)− log p(x; z?,w?,θ?)]

= nd

[∑
k

∑
`

π̂k(z)ρ̂`(w)ν(x̄k`(z,w), αk`)−
∑
k

∑
`

π̂k(z?)ρ̂`(w
?)ν(ψ′(α?k`), α

?
k`)

]
is maximized at αk` = (ψ′)−1(x̄k`(z,w))

�

A.2. Proof of Proposition 4.7 (maximum of G and Λ̃)

Proof.
We condition on (z?,w?) and prove Equation (4.5):

G(θ, z,w) = Eθ?
[

p(x; z,w,θ)

p(x; z?,w?,θ?)

∣∣∣∣ z?,w?

]
=
∑
i

∑
j

∑
k,k′

∑
`,`′

Eθ? [xij(αk′`′ − α?k`)− (ψ(αk′`′)− ψ(α?k`))] z
?
ikzik′w

?
j`wj`′

= nd
∑
k,k′

∑
`,`′

IRg(z)k,k′IRm(w)`,`′ [ψ
′(α?k`)(αk′`′ − α?k`) + ψ(α?k`)− ψ(αk′`′)]

= −nd
∑
k,k′

∑
`,`′

IRg(z)k,k′IRm(w)`,`′ KL(α?k`, αk′`′)

If (z?,w?) is regular, and for n, d > 2/c, all the rows of IRg(z) and IRm(w) have at
least one positive element and we can apply lemma B.4 (which is an adaptation for LBM
of Lemma 3.2 of [2] for SBM) to characterize the maximum for G.

The maximality of Λ̃(z?,w?) results from the fact that Λ̃(z,w) = G(ᾱ(z,w), z,w)
where ᾱ(z,w) is a particular value of α, Λ̃ is immediately maximum at (z,w) ∼ (z?,w?),
and for those, we have ᾱ(z,w) ∼ α?.

The separation and local behavior of G around (z?,w?) is a direct consequence of the
proposition 4.8.
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18 V. BRAULT et al.

�

A.3. Proof of Proposition 4.8 (Local upper bound for Λ̃)

Proof.

We work conditionally on (z?,w?). The principle of the proof relies on the extension
of Λ̃ to a continuous subspace ofMg([0, 1])×Mm([0, 1]), in which confusion matrices are
naturally embedded. The regularity assumption allows us to work on a subspace that
is bounded away from the borders of Mg([0, 1]) ×Mm([0, 1]). The proof then proceeds

by computing the gradient of Λ̃ at and around its argmax and using those gradients to
control the local behavior of Λ̃ around its argmax. The local behavior allows us in turn
to show that Λ̃ is well-separated.

Note that Λ̃ only depends on z and w through IRg(z) and IRm(w). We can therefore
extend it to matrices (U, V ) ∈ Uc ×Vc where U is the subset of matrices Mg([0, 1]) with
each row sum higher than c/2 and V is a similar subset of Mm([0, 1]).

Λ̃(U, V ) = −nd
∑
k,k′

∑
`,`′

Ukk′V``′ KL (α?k`, ᾱk′`′)

where

ᾱk` = ᾱk`(U, V ) = (ψ′)−1

([
UTS?V

]
k`

[UT1V ]k`

)
and 1 is the g ×m matrix filled with 1. Confusion matrices IRg(z) and IRm(w) satisfy
IRg(z)1I = π(z?) and IRm(w)1I = ρ(w?), with 1I = (1, . . . , 1)T a vector only containing
1 values, and are obviously in Uc and Vc as soon as (z?,w?) is c/2 regular.

The maps fk,` : (U, V ) 7→ KL(α?k`, ᾱk`(U, V )) are twice differentiable with second

derivatives bounded over Uc×Vc and therefore so is Λ̃(U, V ). Tedious but straightforward
computations show that the derivative of Λ̃ at (Dπ, Dρ) := (Diag(π(z?)),Diag(ρ(w?)))
is:

Akk′(w
?) :=

∂Λ̃

∂Ukk′
(Dπ, Dρ) =

∑
`

ρ`(w
?) KL (α?k`, α

?
k′`)

B``′(z
?) :=

∂Λ̃

∂V``′
(Dπ, Dρ) =

∑
k

ρ`(z
?) KL (α?k`, α

?
k`′)

A(w?) and B(z?) are the matrix-derivative of −Λ̃/nd at (Dπ, Dρ). Since (z?,w?) is c/2-
regular and by definition of δ(α?), A(w?)kk′ ≥ cδ(α?)/2 (resp. B(w?)``′ ≥ cδ(α?)/2)
if k 6= k′ (resp. ` 6= `′) and A(w?)kk = 0 (resp. B(z?)`` = 0) for all k (resp. `). By
boundedness of the second derivative, there exists C > 0 such that for all (Dπ, Dρ) and
all (H,G) ∈ B(Dπ, Dρ, C), we have:

−1

nd

∂Λ̃

∂Ukk′
(H,G)

{
≥ 3cδ(α?)

8 if k 6= k′

≤ cδ(α?)
8 if k = k′

and
−1

nd

∂Λ̃

∂V``′
(H,G)

{
≥ 3cδ(α?)

8 if ` 6= `′

≤ cδ(α?)
8 if ` = `′
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Consistency and asymptotic normality of LBM estimators 19

Choose U and V in (Uc × Vc) ∩ B(Dπ, Dρ, C) satisfying U1I = π(z?) and V 1I = ρ(w?).
U − Dπ and V − Dρ have nonnegative off diagonal coefficients and negative diagonal
coefficients. Furthermore, the coefficients of U, V,Dπ, Dρ sum up to 1 and Tr(Dπ) =
Tr(Dρ) = 1. By Taylor expansion, there exists a couple (H,G) also in (Uc × Vc) ∩
B(Dπ, Dρ, C) such that

−1

nd
Λ̃ (U, V ) =

−1

nd
Λ̃ (Dπ, Dρ)+Tr

(
(U −Dπ)

∂Λ̃

∂U
(H,G)

)
+Tr

(
(V −Dρ)

∂Λ̃

∂V
(H,G)

)

≥ cδ(α?)

8
[3
∑
k 6=k′

(U −Dπ)kk′ + 3
∑
` 6=`′

(V −Dρ)``′ −
∑
k

(U −Dπ)kk −
∑
`

(V −Dρ)``]

=
cδ(α?)

4
[(1− Tr(U)) + (1− Tr(V ))]

To conclude the proof, assume without loss of generality that (z,w) ∈ S(z?,w?, C)
achieves the ‖.‖0,∼ norm (i.e. it is the closest to (z?,w?) in its representative class).
Then (U, V ) = (IRg(z), IRm(w)) is in (Uc × Vc) ∩ B(Dπ, Dρ, C) and satisfy U1I = π(z?)
(resp. V 1I = ρ(w?)). We just need to note n(1 − Tr(IRg(z))) = ‖z − z?‖0,∼ (resp.
d(1− Tr(IRm(w))) = ‖w −w?‖0,∼) to end the proof.

�

The maps fk,` : x 7→ KL(α?k`, (ψ
′)−1(x)) are twice differentiable with a continuous sec-

ond derivative bounded by σ−2 on ψ′(Cα). All terms
[
UTS?V

]
k`

[
UT1V

]−1

k`
are convex

combinations of the ψ′(α?k`) and therefore in ψ′(Cα). Furthermore, their first and second
order derivative are also bounded as soon as each row sum of U and V is bounded away
from 0. By composition, all second order partial derivatives of Λ̃ are therefore continuous
and bounded on U × V.

We now compute the first derivative of Λ̃ at (Dπ, Dρ) := (Diag(π(z?)),Diag(ρ(w?)))

by doing a first-order Taylor expansion of Λ̃ (Dπ + U,Dρ + V ) for small U and V .
Tedious but straightforward manipulations show:

ᾱk`(Dπ + U,Dρ + V ) =α?k` +
1

πk(z?)

∑
k′

Ukk′(Sk′` − 1)

+
1

ρ`(w?)

∑
`′

V``′(Sk`′ − 1) + o(‖U‖1, ‖V ‖1)

KL (α?k`, ᾱk′`′) = KL
(
α?k`, α

?
k′,`′

)
+

{
O(‖U‖1, ‖V ‖1) if (k′, `′) 6= (k, `)

o(‖U‖1, ‖V ‖1) if (k′, `′) = (k, `)

where the second line comes from the fact that f ′k,`(ψ
′(α?k`)) = 0. Keeping only the first

order term in U and V in Λ̃ and noting that Λ̃ (Dπ, Dρ) = 0 yields:
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−1

nd
[Λ̃ (Dπ + U,Dρ + V )− Λ̃ (Dπ, Dρ)] =

−1

nd
Λ̃ (Dπ + U,Dρ + V )

=
∑
k

Dπ,kk

∑
`,`′

V``′ KL (α?k`, ᾱk`′) +
∑
`

Dρ,``

∑
k,k′

Ukk′ KL (α?k`, ᾱk′`) + o(‖U‖1, ‖V ‖1)

=
∑
k

πk(z?)
∑
`,`′

V``′ KL (α?k`, α
?
k`′) +

∑
`

ρ`(w
?)
∑
k,k′

Ukk′ KL (α?k`, α
?
k′`) + o(‖U‖1, ‖V ‖1)

= Tr(UA(w?)) + Tr(V B(z?)) + o(‖U‖1, ‖V ‖1)

where Akk′(w
?) :=

∑
` ρ`(w

?) KL (α?k`, α
?
k′`) and B``′(z

?) :=
∑
k ρ`(z

?) KL (α?k`, α
?
k`′). A

and B are the matrix-derivative of −Λ̃/nd at (Dπ, Dρ). Since (z?,w?) is c/2-regular and
by definition of δ(α?), Akk′ ≥ cδ(α?)/2 for k 6= k′ and B``′ ≥ cδ(α?)/2 for ` 6= `′ and
the diagonal terms of A and B are null. By boundedness of the lower second derivative
of Λ̃, there exists a constant C > 0 such that for all (H,G) ∈ B(Dπ, Dρ, C), we have:

−1

nd

∂Λ̃

∂Ukk′
(H,G)

{
≥ 3cδ(α?)

8 if k 6= k′

≤ cδ(α?)
8 if k = k′

and
−1

nd

∂Λ̃

∂V``′
(H,G)

{
≥ 3cδ(α?)

8 if ` 6= `′

≤ cδ(α?)
8 if ` = `′

In particular, if U and V have nonnegative non diagonal coefficients and negative diagonal
coefficients.

−1

nd

[
Tr

(
U
∂Λ̃

∂U
(H,G)

)
+ Tr

(
V
∂Λ̃

∂V
(H,G)

)]

≥ cδ(α?)

4

[∑
kk′

Ukk′ +
∑
``′

V``′ − Tr(U)− Tr(V )

]

Choose U and V in (U×V)∩B(Dπ, Dρ, c3) satisfying U1I = π(z?) and V 1I = ρ(w?). Note
that U −Dπ and V −Dρ have nonnegative non diagonal coefficients, negative diagonal
coefficients, that their coefficients sum up to 1 and that Tr(Dπ) = Tr(Dρ) = 1. By Taylor
expansion, there exists a couple (H,G) also in (U × V) ∩B(Dπ, Dρ, C) such that

−1

nd
Λ̃ (U, V ) =

−1

nd
Λ̃ (Dπ + (U −Dπ), Dρ + (V −Dρ))

= Tr

(
(U −Dπ)

∂Λ̃

∂U
(H,G)

)
+ Tr

(
(V −Dρ)

∂Λ̃

∂V
(H,G)

)

≥ cδ(α?)

4
[
∑
k,k′

(U −Dπ)kk′ +
∑
`,`′

(V −Dρ)``′ − Tr(U −Dπ)− Tr(V −Dρ)]

=
cδ(α?)

4
[(1− Tr(U)) + (1− Tr(V ))]
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To conclude the proof, choose any assignment (z,w) and without loss of generality assume
that (z,w) are closest to (z?,w?) in their equivalence class. Then IRg(z) is in U and
additionally satifies IRg(z)1I = π(z?) and ‖z − z?‖0,∼ = n‖IRg(z) − Dπ‖1/2 = n(1 −
Tr(IRg(z))). Similar equalities hold for IRm(w) and ‖w −w?‖0.

�

A.4. Proof of Proposition 5.3 (global convergence Fnd)

Proof.
Conditionally upon (z?,w?),

Fnd(θ, z,w)− Λ̃(z,w) ≤ Fnd(θ, z,w)−G(θ, z,w)

=
∑
i

∑
j

(αziwj − α?z?i w?j )
(
xij − ψ′(α?z?i w?j )

)
=
∑
kk′

∑
``′

(αk′`′ − α?k`)Wkk′``′

≤ sup
Γ∈IRg

2×m2

‖Γ‖∞≤Diam(Θ)

∑
kk′

∑
``′

Γkk′``′Wkk′``′ := Z

uniformly in θ, where the Wkk′``′ are independent and defined by:

Wkk′``′ =
∑
i

∑
j

z?ikw
?
j`zi,k′wj`′ (xij − ψ′(α?k`))

is the sum of ndIRg(z)kk′IRm(w)``′ sub-exponential variables with parameters (σ̄2, 1/κ)
and is therefore itself sub-exponential with parameters (ndIRg(z)kk′IRm(w)``′ σ̄

2, 1/κ).

According to Proposition B.3, Eθ? [Z|z?,w?] ≤ gmDiam(Θ)
√
ndσ̄2 and Z is sub-exponential

with parameters (ndDiam(Θ)2(2
√

2)2σ̄2, 2
√

2 Diam(Θ)/κ). In particular, for all εn,d <
κ/2
√

2 Diam(Θ)

Pθ?
(
Z ≥ σ̄gmDiam(Θ)

√
nd

{
1 +

√
8ndεn,d
gm

}∣∣∣∣∣ z?,w?

)
≤ Pθ?

(
Z ≥ Eθ? [Z|z?,w?] + σ̄Diam(Θ)nd2

√
2εn,d

∣∣∣ z?,w?
)

≤ exp

(
−
ndε2

n,d

2

)

We can then remove the conditioning and take a union bound to prove Equation (5.2).

�
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A.5. Proof of Proposition 5.4 (contribution of far away
assignments)

Proof.
Conditionally on (z?,w?), we know from proposition 4.7 that Λ̃ is maximal in (z?,w?)

and its equivalence class. Choose 0 < tnd decreasing to 0 but satisfying tnd � max
(
n+d
nd ,

log(nd)√
nd

)
.

This is always possible because we assume that log(d)/n→ 0 and log(n)/d→ 0. Accord-
ing to 4.7 (iii), for all (z,w) /∈ (z?,w?, tnd)

Λ̃(z,w) ≤ −cδ(α
?)

4
(n‖w −w?‖0,∼ + d‖z− z?‖0,∼) ≤ −cδ(α

?)

4
ndtnd (A.1)

since either ‖z− z?‖0,∼ ≥ ntnd or ‖w −w?‖0,∼ ≥ dtnd.
Set εnd = inf(cδ(α?)tnd/16σ̄,κ)

Diam(Θ) . By proposition 5.3, and with our choice of εnd, with

probability higher than 1−∆1
nd(εnd),∑

(z,w)/∈S(z?,w?,tnd)

p(x, z,w;θ)

= p(x|z?,w?,θ?)
∑

(z,w)/∈S(z?,w?,tnd)

p(z,w;θ)eFnd(θ,z,w)−Λ̃(z,w)+Λ̃(z,w)

≤ p(x|z?,w?,θ?)
∑
z,w

p(z,w;θ)eFnd(θ,z,w)−Λ̃(z,w)−ndtndcδ(α?)/4

≤ p(x|z?,w?,θ?)
∑
z,w

p(z,w;θ)endtndcδ(α
?)/8

=
p(x, z?,w?;θ?)

p(z?,w?;θ?)
e−ndtndcδ(α

?)/8

≤ p(x, z?,w?;θ?) exp

(
−ndtnd

cδ(α?)

8
+ (n+ d) log

1− c
c

)
= p(x, z?,w?;θ?)o(1)

where the second line comes from inequality (A.1), the third from the global control
studied in Proposition 5.3 and the definition of εnd, the fourth from the definition of
p(x, z?,w?;θ?), the fifth from the bounds on π? and ρ? and the last from tnd � (n +
d)/nd.

In addition, we have εnd � log(nd)/
√
nd so that the series

∑
n,d ∆1

nd(εnd) converges
and: ∑

(z,w)/∈S(z?,w?,tnd)

p(x, z,w;θ) = p(x; z?,w?,θ?)oP (1)

�
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A.6. Proof of Proposition 5.5 (local convergence Fnd)

Proof.
We work conditionally on (z?,w?) ∈ Z1 × W1. Choose ε ≤ κσ2 small. Assignments
(z,w) at ‖.‖0,∼-distance less than c/4 of (z?,w?) are c/4-regular. According to Propo-
sition B.1, x̂k` and x̄k` are at distance at most ε with probability higher than 1 −
exp

(
− ndc2ε2

128(σ̄2+κ−1ε)

)
. Manipulation of Λ and Λ̃ yield

Fnd(θ, z,w)− Λ̃(z,w)

nd
≤ Λ(z,w)− Λ̃(z,w)

nd

=
∑
k,k′′

∑
`,`′

IRg(z)kk′IRm(w)``′ [fk`(x̂k′`′)− fk`(x̄k′`′)]

where fk`(x) = −S?k`(ψ′)−1(x) +ψ ◦ (ψ′)−1(x). The functions fk` are twice differentiable

on Å with bounded first and second derivatives over I = ψ′([−Mα,Mα]) so that:

fk`(y)− fk`(x) = f ′k`(x) (y − x) + o (y − x)

where the o is uniform over pairs (x, y) ∈ I2 at distance less than ε and does not depend
on (z?,w?). x̄k` is a convex combination of the S?k` = ψ′(α?k`) ∈ ψ′(Cα). Since ψ′ is
monotonic, x̄k` ∈ ψ′(Cα) ⊂ I. Similarly, |x̂k`− x̄k`| ≤ κσ2 and |ψ′′| ≥ σ2 over I therefore
x̂k` ∈ I. We now bound f ′k`:

|f ′k`(x̄k′`′)| =
∣∣∣∣ x̄k′`′ − S?k`
ψ′′ ◦ (ψ′)−1(x̄k′`′)

∣∣∣∣ =

∣∣∣∣∣∣∣
[IRg(z)TS?IRm(w)]

k′`′
π̂k(z)ρ̂`(w) − S?k`
ψ′′ ◦ (ψ′)−1(x̄k′`′)

∣∣∣∣∣∣∣
≤
(

1− IRg(z)kk′IRm(w)``′

π̂k(z)ρ̂`(w)

)
S?max − S?min

σ2

where S?max = maxk,` S
?
k` and S?min = mink,` S

?
k`. In particular,

IRg(z)kk′IRm(w)``′ |f ′k`(x̄k′`′)| ≤ IRg(z)kk′IRm(w)``′

(
1− IRg(z)kk′IRm(w)``′

π̂k(z)ρ̂`(w)

)
S?max − S?min

σ2

≤

{
IRg(z)kk′IRm(w)``′

S?max−S
?
min

σ2 if (k′, `′) 6= (k, `)

[π̂k(z)ρ̂`(w)− IRg(z)kkIRm(w)``]
S?max−S

?
min

σ2 if (k, `) = (k, `)
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Wrapping everything,

|Λ(z,w)− Λ̃(z,w)|
nd

=

∣∣∣∣∣∣
∑
k,k′

∑
`,`′

IRg(z)kk′IRm(w)``′ [f
′
k`(x̄k′`′)(x̂k` − x̄k`) + o(x̂k` − x̄k`)]

∣∣∣∣∣∣
≤

 ∑
(k′,`′) 6=(k,`)

IRg(z)kk′IRm(w)``′ +
∑
k,`

(π̂k(z)ρ̂`(w)− IRg(z)kkIRm(w)``)


× S?max − S?min

σ2
max
k,`
|x̂k` − x̄k`|(1 + o(1))

= 2

 ∑
(k′,`′)6=(k,`)

IRg(z)kk′IRm(w)``′

 S?max − S?min

σ2
max
k,`
|x̂k` − x̄k`|(1 + o(1))

= 2 [1− Tr(IRg(z)) Tr(IRm(w))]
S?max − S?min

σ2
max
k,`
|x̂k` − x̄k`|(1 + o(1))

≤ 2

(
‖z− z?‖

n
+
‖w −w?‖

d

)
S?max − S?min

σ2
max
k,`
|x̂k` − x̄k`|(1 + o(1))

≤ 2

(
‖z− z?‖

n
+
‖w −w?‖

d

)
S?max − S?min

σ2
ε(1 + o(1))

We can remove the conditioning on (z?,w?) to prove Equation (5.3) with c2 = 2(S?max−
S?min)/σ2 and c1 = c22.

�

A.7. Proof of Proposition 5.6 (contribution of local assignments)

Proof.
By Proposition 4.2, it is enough to prove that the sum is small compared to p(z?,w?,x;θ?)
on Ω1. We work conditionally on (z?,w?) ∈ Z1×W1. Choose (z,w) in S(z?,w?, C) with
C defined in proposition 5.4.

log

(
p(z,w,x;θ)

p(z?,w?,x;θ?)

)
= log

(
p(z,w;θ)

p(z?,w?;θ?)

)
+ Fnd(θ, z,w)

For C small enough, we can assume without loss of generality that (z,w) is the repre-
sentative closest to (z?,w?) and note r1 = ‖z − z?‖0 and r2 = ‖w − w?‖0. We choose
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εnd ≤ min(κσ2, cδ(α?)/8). Then with probability at least 1− exp
(
− ndc̃2ε2nd

8(c1σ̄2+c2κ−1εnd)

)
:

Fnd(θ, z,w) ≤ Λ(z,w)− Λ̃(z,w) + Λ̃(z,w)

≤ Λ(z,w)− Λ̃(z,w)− cδ(α?)

4
(dr1 + nr2)

≤ εnd (dr1 + nr2)− cδ(α?)

4
(dr1 + nr2)

≤ −cδ(α
?)

8
(dr1 + nr2)

where the first line comes from the definition of Λ, the second line from Proposition 4.7,
the third from Proposition 5.5 and the last from εnd ≤ cδ(α?)/8. A union bound shows
that

∆nd(εnd) = Pθ?

 sup
(z,w)∈(z?,w?,c̃)

θ∈Θ

Fnd(θ, z,w) ≥ −cδ(α
?)

8
(d‖z− z?‖0,∼ + n‖w −w?‖0,∼)


≤ gnmd exp

(
− ndc̃2ε2

nd

8(c1σ̄2 + c2κ−1εnd)

)
Thanks to corollary B.6, we also know that:

log

(
p(z,w;θ)

p(z?,w?;θ?)

)
≤ OP (1) exp

{
Mc/4(r1 + r2)

}
There are at most

(
n
r1

)(
n
r2

)
gr1mr2 assignments (z,w) at distance r1 and r2 of (z?,w?) and

each of them has at most ggmm equivalent configurations. Therefore, with probability
1−∆nd(εnd),∑

(z,w)∈S(z?,w?,c̃)
(z,w)�(z?,w?)

p(z,w,x;θ)

p(z?,w?,x;θ?)

≤ OP (1)
∑

r1+r2≥1

(
n

r1

)(
n

r2

)
gg+r1mm+r2 exp

(
(r1 + r2)Mc/4 −

cδ(α?)

8
(dr1 + nr2)

)

= OP (1)
(

1 + e(g+1) log g+Mc/4−d
cδ(α?)

8

)n (
1 + e(m+1) logm+Mc/4−n

cδ(α?)
8

)d
− 1

≤ OP (1)and exp(and)

where and = ne(g+1) log g+Mc/4−d
cδ(α?)

8 + de(m+1) logm+Mc/4−n
cδ(α?)

8 = o(1) as soon as
n � log d and d � log n. If we take εnd � log(nd)/

√
nd, the series

∑
n,d ∆nd(εnd)

converges which proves the results.

�
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A.8. Proof of Proposition 5.7 (contribution of equivalent
assignments)

Proof.
Choose (s, t) permutations of {1, . . . , g} and {1, . . . ,m} and assume that z = z?,s and
w = w?,t. Then p(x, z,w;θ) = p(x, z?,s,w?,t;θ) = p(x, z?,w?;θs,t). If furthermore
(s, t) ∈ Sym(θ), θs,t = θ and immediately p(x, z,w;θ) = p(x, z?,w?;θ). We can there-
fore partition the sum as

∑
(z,w)∼(z,w)

p(x, z,w;θ) =
∑
s,t

p(x, z?,s,w?,t;θ)

=
∑
s,t

p(x, z?,w?;θs,t)

=
∑
θ′∼θ

# Sym(θ′)p(x, z?,w?;θ′)

= # Sym(θ)
∑
θ′∼θ

p(x, z?,w?;θ′)

p(x, z?,w?;θ) unimodal in θ, with a mode in θ̂MC . By consistency of θ̂MC , either
p(x, z?,w?;θ) = oP (p(x, z?,w?;θ?)) or p(x, z?,w?;θ) = OP (p(x, z?,w?;θ?)) and θ →
θ?. In the latter case, any θ′ ∼ θ other than θ is bounded away from θ? and thus
p(x, z?,w?;θ′) = oP (p(x, z?,w?;θ?)). In summary,∑

θ′∼θ

p(x, z?,w?;θ′)

p(x, z?,w?;θ?)
= max
θ′∼θ

p(x, z?,w?;θ′)

p(x, z?,w?;θ?)
(1 + oP (1))

�

A.9. Proof of Corollary 5.8: Behavior of θ̂MLE

Theorem 5.1, states that:

p(x;θ)

p(x;θ?)
=

# Sym(θ)

# Sym(θ?)
max
θ′∼θ

p(x, z?,w?;θ′)

p(x, z?,w?;θ?)
(1 + oP (1)) + oP (1)

Then,

p(x;θ) = # Sym(θ)
p(x;θ?)

# Sym(θ?)p(x, z?,w?;θ?)
max
θ′∼θ

p(x, z?,w?;θ′) (1 + oP (1)) + oP (1)

= # Sym(θ)
1

# Sym(θ?)p(z?,w?|x;θ?)
max
θ′∼θ

p(x, z?,w?;θ′) (1 + oP (1)) + oP (1).
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Now, using Corollary 3 p. 553 of Mariadassou and Matias [11]

p(·, ·|x;θ?)
(D)−→

n,d→+∞

1

# Sym(θ?)

∑
(z,w)

θ?∼(z?,w?)

δ(z,w)(·, ·),

we can deduce that

p(x;θ) = # Sym(θ)
1

# Sym(θ?)p(z?,w?|x;θ?)
max
θ′∼θ

p(x, z?,w?;θ′) (1 + oP (1)) + oP (1)

= # Sym(θ)
1

1 + oP (1)
max
θ′∼θ

p(x, z?,w?;θ′) (1 + oP (1)) + oP (1)

= # Sym(θ) max
θ′∼θ

p(x, z?,w?;θ′) (1 + oP (1)) + oP (1). (A.2)

Finaly, we conclude with the proposition 3.2.

A.10. Proof of Corollary 5.9: Behavior of J (Q, θ)

Remark first that for every θ and for every (z,w),

p (x, z,w;θ) ≤ exp [J (δz × δw,θ)] ≤ max
Q∈Q

exp [J (Q,θ)] ≤ p (x;θ)

where δz denotes the dirac mass on z. By dividing by p (x;θ?), we obtain

p (x, z,w;θ)

p (x;θ?)
≤

max
Q∈Q

exp [J (Q,θ)]

p (x;θ?)
≤ p (x;θ)

p (x;θ?)
.

As this inequality is true for every couple (z,w), we have:

max
(z,w)∈Z×W

p (x, z,w;θ)

p (x;θ?)
≤

max
Q∈Q

exp [J (Q,θ)]

p (x;θ?)
.

Moreover, using Equation A.2, we get a lower bound:

max
(z,w)∈Z×W

p (x, z,w;θ)

p (x;θ?)
= max

θ′∼θ

p
(
x, z?,w?;θ′

)
(1 + op(1))

p (x;θ?)
+ op(1)

= max
θ′∼θ

p
(
x, z?,w?;θ′

)
(1 + op(1))

# Sym(θ?)p (x, z?,w?;θ?) (1 + op(1))
+ op(1)

= max
θ′∼θ

p
(
x, z?,w?;θ′

)
(1 + op(1))

# Sym(θ?)p (x, z?,w?;θ?)
+ op(1).
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Now, Theorem 5.1 leads to the following upper bound:

max
Q∈Q

exp [J (Q,θ)]

p (x;θ?)
≤ p (x;θ)

p (x;θ?)

≤ # Sym(θ)

# Sym(θ?)
max
θ′∼θ

p
(
x, z?,w?;θ′

)
(1 + op(1))

p (x, z?,w?;θ?)
+ op(1)

so that we have the following control

max
θ′∼θ

p
(
x, z?,w?;θ′

)
(1 + op(1))

# Sym(θ?)p (x, z?,w?;θ?)
+ op(1) ≤

max
Q∈Q

exp [J (Q,θ)]

p (x;θ?)

≤ # Sym(θ)

# Sym(θ?)
max
θ′∼θ

p
(
x, z?,w?;θ′

)
(1 + op(1))

p (x, z?,w?;θ?)
+ op(1).

In the particular case where # Sym(θ) = 1, we have

max
Q∈Q

exp [J (Q,θ)]

p (x;θ?)
=

1

# Sym(θ?)
max
θ′∼θ

p
(
x, z?,w?;θ′

)
(1 + op(1))

p (x, z?,w?;θ?)
+ op(1)

and, following the same reasoning as the appendix A.9, we have the result.

Appendix B: Technical Lemma

B.1. Sub-exponential variables

We now prove two propositions regarding subexponential variables. Recall first that a
random variable X is sub-exponential with parameters (τ2, b) if for all λ such that |λ| ≤
1/b,

E[eλ(X−E(X))] ≤ exp

(
λ2τ2

2

)
.

In particular, all distributions coming from a natural exponential family are sub-exponential.
Sub-exponential variables satisfy a large deviation Bernstein-type inequality:

P(X − E[X] ≥ t) ≤

{
exp

(
− t2

2τ2

)
if 0 ≤ t ≤ τ2

b

exp
(
− t

2b

)
if t ≥ τ2

b

(B.1)

So that

P(X − E[X] ≥ t) ≤ exp

(
− t2

2(τ2 + bt)

)
The subexponential property is preserved by summation and multiplication.
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• If X is sub-exponential with parameters (τ2, b) and α ∈ R, then so is αX with
parameters (α2τ2, αb)

• If the Xi, i = 1, . . . , n are sub-exponential with parameters (τ2
i , bi) and indepen-

dent, then so is X = X1 + · · ·+Xn with parameters (
∑
i τ

2
i ,maxi bi)

Proposition B.1 (Maximum in (z,w)). Let (z,w) be a configuration and x̂k,`(z,w)
resp. x̄k`(z,w) be as defined in Equations (3.1) and (4.4). Under the assumptions of the
section 2.2, for all ε > 0

P
(

max
z,w

max
k,l

π̂k(z)ρ̂`(w)|x̂k,` − x̄k`| > ε

)
≤ gn+1md+1 exp

(
− ndε2

2(σ̄2 + κ−1ε)

)
. (B.2)

Additionally, the suprema over all c/2-regular assignments satisfies:

P
(

max
z∈Z1,w∈W1

max
k,l
|x̂k,` − x̄k`| > ε

)
≤ gn+1md+1 exp

(
− ndc2ε2

8(σ̄2 + κ−1ε)

)
. (B.3)

Note that equations B.2 and B.3 remain valid when replacing c/2 by any c̃ < c/2.

Proof.

The random variablesXij are subexponential with parameters (σ̄2, 1/κ). Conditionally
to (z?,w?), z+kw+`(x̂k,` − x̄k`) is a sum of z+kw+` centered subexponential random
variables. By Bernstein’s inequality [12], we therefore have for all t > 0

P(z+kw+`|x̂k,` − x̄k`| ≥ t) ≤ 2 exp

(
− t2

2(z+kw+`σ̄2 + κ−1t)

)

In particular, if t = ndx,

P (π̂k(z)ρ̂`(w)|x̂k,` − x̄k`| ≥ x) ≤ 2 exp

(
− ndx2

2(π̂k(z)ρ̂`(w)σ̄2 + κ−1x)

)
≤ 2 exp

(
− ndx2

2(σ̄2 + κ−1x)

)

uniformly over (z,w). Equation (B.2) then results from a union bound. Similarly,

P (|x̂k,` − x̄k`| ≥ x) = P (π̂k(z)ρ̂`(w)|x̂k,` − x̄k`| ≥ π̂k(z)ρ̂`(w)x)

≤ 2 exp

(
− ndx2π̂k(z)2ρ̂`(w)2

2(π̂k(z)ρ̂`(w)σ̄2 + κ−1xπ̂k(z)ρ̂`(w))

)
≤ 2 exp

(
− ndc2x2

8(σ̄2 + κ−1x)

)
Where the last inequality comes from the fact that c/2-regular assignments satisfy
π̂k(z)ρ̂`(w) ≥ c2/4. Equation (B.3) then results from a union bound over Z1 × W1 ⊂
Z ×W.
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�

Lemma B.2. If X is a zero mean random variable, subexponential with parameters
(σ2, b), then |X| is subexponential with parameters (8σ2, 2

√
2b).

Proof.
Note µ = E|X| and consider Y = |X| − µ. Choose λ such that |λ| < (2

√
2b)−1. We need

to bound E[eλY ]. Note first that E[eλY ] ≤ E[eλX ] + E[e−λX ] < +∞ is properly defined
by subexponential property of X and we have

E[eλY ] ≤ 1 +
∑
k=2

|λ|kE[|Y |k]

k!

where we used the fact that E[Y ] = 0. We know bound odd moments of |λY |.

E[|λY |2k+1] ≤ (E[|λY |2k]E[|λY |2k+2])1/2 ≤ 1

2
(λ2kE[Y 2k] + λ2k+2E[Y 2k+2])

where we used first Cauchy-Schwarz and then the arithmetic-geometric mean inequality.
The Taylor series expansion can thus be reduced to

E[eλY ] ≤ 1 +

(
1

2
+

1

2.3!

)
E[Y 2]λ2 +

+∞∑
k=2

(
1

(2k)!
+

1

2

[
1

(2k − 1)!
+

1

(2k + 1)!

])
λ2kE[Y 2k]

≤
+∞∑
k=0

2k
λ2kE[Y 2k]

(2k)!

≤
+∞∑
k=0

23k λ
2kE[X2k]

(2k)!
= cosh

(
2
√

2λX
)

= E

[
e2
√

2λX + e−2
√

2λX

2

]
≤ e 8λ2σ2

2

where we used the well-known inequality E[|X − E[X]|k] ≤ 2kE[|X|k] to substitute
22kE[X2k] to E[Y 2k].

�

Proposition B.3 (concentration for subexponential). Let X1, . . . , Xn be independent
zero mean random variables, subexponential with parameters (σ2

i , bi). Note V 2
0 =

∑
i σ

2
i

and b = maxi bi. Then the random variable Z defined by:

Z = sup
Γ∈IRn

‖Γ‖∞≤M

∑
i

ΓiXi

imsart-bj ver. 2014/10/16 file: bj-BraultKeribinMariadassou.tex date: April 21, 2017



Consistency and asymptotic normality of LBM estimators 31

is also subexponential with parameters (8M2V 2
0 , 2
√

2Mb). Moreover E[Z] ≤ MV0
√
n so

that for all t > 0,

P(Z −MV0

√
n ≥ t) ≤ exp

(
− t2

2(8M2V 2
0 + 2

√
2Mbt)

)
(B.4)

Proof.
Note first that Z can be simplified to Z = M

∑
i |Xi|. We just need to bound bound

E[Z]. The rest of the proposition results from the fact that the |Xi| are subexponential
(8σ2

i , 2
√

2bi) by Lemma B.2 and standard properties of sums of independent rescaled
subexponential variables.

E[Z] = E

 sup
Γ∈IRn

‖Γ‖∞≤M

∑
i

ΓiXi

 = E

[∑
i

M |Xi|

]
≤M

∑
i

√
E[X2

i ]

= M
∑
i

σi ≤M

(∑
i

1

)1/2(∑
i

σ2
i

)1/2

= MV0

√
n

using Cauchy-Schwarz.

�

The final lemma is the working horse for proving Proposition 4.7.

Lemma B.4.
Let η and η̄ be two matrices from Mg×m(Θ) and f : Θ×Θ→ R+ a positive function,

A a (squared) confusion matrix of size g and B a (squared) confusion matrix of size m.
We denote Dk`k′`′ = f(ηk`, η̄k′`′). Assume that

• all the rows of η are distinct;
• all the columns η are distinct;
• f(x, y) = 0⇔ x = y;
• each row of A has a non zero element;
• each row of B has a non zero element;

and note
Σ =

∑
kk′

∑
``′

Akk′B``′dk`k′`′ (B.5)

Then,

Σ = 0⇔

{
A,B are permutation matrices s, t

η̄ = ηs,t cad ∀(k, `), η̄k` = ηs(k)t(`)
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Proof.
If A and B are the permutation matrices corresponding to the permutations s et t:
Aij = 0 if i 6= s(j) and Bij = 0 if i 6= t(j). As each row of A contains a non zero element
and as As(k)k > 0 (resp. Bs(`)` > 0) for all k (resp. `), the following sum Σ reduces to

Σ =
∑
kk′

∑
``′

Akk′B``′dk`k′`′ =
∑
k

∑
`

As(k)kBt(`)`ds(k)t(`)k`

Σ is null and sum of positive components, each component is null. However, all As(k)k

and Bt(`)` are not null, so that for all (k, `), ds(k)t(`)k` = 0 and η̄k` = ηs(k)t(`).
Now, if A is not a permutation matrix while Σ = 0 (the same reasoning holds for B
or both). Then A owns a column k that contains two non zero elements, say Ak1k and
Ak2k. Let ` ∈ {1 . . .m}, there exists by assumption `′ such that B``′ 6= 0. As Σ = 0, both
products Ak1kB``′dk1`k`′ and Ak2kB``′dk2`k`′ are zero.{

Ak1kB``′dk1`k`′ = 0

Ak2kB``′dk2`k`′ = 0
⇔

{
dk1`k`′ = 0

dk2`k`′ = 0
⇔

{
ηk1` = η̄k`′

ηk2` = η̄k`′
⇔ ηk1` = ηk2`

The previous equality is true for all `, thus rows k1 and k2 of η are identical, and contradict
the assumptions.

�

B.2. Likelihood ratio of assignments

Lemma B.5.
Let Z1 be the subset of Z of c-regular configurations, as defined in Definition 4.1. Let

Sg = {π = (π1, π2, . . . , πg) ∈ [0, 1]g :
∑g
k=1 πk = 1} be the g-dimensional simplex and

note Sgc = Sg ∩ [c, 1− c]g. Then there exists two positive constants Mc and M ′c such that
for all z, z? in Z1 and all π ∈ Sgc

|log p(z; π̂(z))− log p(z?; π̂(z?))| ≤ Mc‖z− z?‖0

Proof.
Consider the entropy map H : Sg → R defined as H(π) = −

∑g
k=1 πk log(πk). The

gradient ∇H is uniformly bounded by Mc

2 = log 1−c
c in ‖.‖∞-norm over Sg ∩ [c, 1 − c]g.

Therefore, for all π, π? ∈ Sg ∩ [c, 1− c]g, we have

|H(π)−H(π?)| ≤ Mc

2
‖π − π?‖1

To prove the inequality, we remark that z ∈ Z1 translates to π̂(z) ∈ Sg ∩ [c, 1 − c]g,
that log p(z; π̂(z))− log p(z?; π̂(z?)) = n[H(π̂(z))−H(π̂(z?))] and finally that ‖π̂(z)−
π̂(z?)‖1 ≤ 2

n‖z− z?‖0.

�
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Corollary B.6. Let z? (resp. w?) be c/2-regular and z (resp. w) at ‖.‖0-distance c/4
of z? (resp. w?). Then, for all θ ∈ Θ

log
p(z,w;θ)

p(z?,w?;θ?)
≤ OP (1) exp

{
Mc/4(‖z− z?‖0 + ‖w −w?‖0)

}
Proof.
Note then that:

p(z,w;θ)

p(z?,w?;θ?)
=

p(z,w;π,ρ)

p(z?,w?;π?,ρ?)
=

p(z,w;π,ρ)

p(z?,w?; π̂(z?), ρ̂(w?))

p(z?,w?; π̂(z?), ρ̂(w?))

p(z?,w?;π?,ρ?)

≤ p(z,w; π̂(z), ρ̂(w))

p(z?,w?; π̂(z?), ρ̂(w?))

p(z?,w?; π̂(z?), ρ̂(w?))

p(z?,w?;π?,ρ?)

≤ exp
{
Mc/4(‖z− z?‖0 + ‖w −w?‖0)

}
× p(z?,w?; π̂(z?), ρ̂(w?))

p(z?,w?;π?,ρ?)

≤ OP (1) exp
{
Mc/4(‖z− z?‖0 + ‖w −w?‖0)

}
where the first inequality comes from the definition of π̂(z) and ρ̂(w) and the second
from Lemma B.5 and the fact that z? and z (resp. w? and w) are c/4-regular. Fi-
nally, local asymptotic normality of the MLE for multinomial proportions ensures that
p(z?,w?;π̂(z?),ρ̂(w?))

p(z?,w?;π?,ρ?) = OP (1).

�

imsart-bj ver. 2014/10/16 file: bj-BraultKeribinMariadassou.tex date: April 21, 2017



34 V. BRAULT et al.

References

[1] Christophe Ambroise and Catherine Matias. New consistent and asymptotically
normal parameter estimates for random-graph mixture models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 74(1):3–35, 2012.

[2] Peter Bickel, David Choi, Xiangyu Chang, Hai Zhang, et al. Asymptotic normality
of maximum likelihood and its variational approximation for stochastic blockmodels.
The Annals of Statistics, 41(4):1922–1943, 2013.

[3] Peter J Bickel and Aiyou Chen. A nonparametric view of network models and
newman–girvan and other modularities. Proceedings of the National Academy of
Sciences, 106(50):21068–21073, 2009.

[4] Alain Celisse, Jean-Jacques Daudin, Laurent Pierre, et al. Consistency of maximum-
likelihood and variational estimators in the stochastic block model. Electronic Jour-
nal of Statistics, 6:1847–1899, 2012.

[5] Gérard Govaert and Mohamed Nadif. Clustering with block mixture models. Pattern
Recognition, 36(2):463–473, 2003.

[6] Gérard Govaert and Mohamed Nadif. Block clustering with bernoulli mixture mod-
els: Comparison of different approaches. Computational Statistics & Data Analysis,
52(6):3233–3245, 2008.

[7] Gérard Govaert and Mohamed Nadif. Latent block model for contingency table.
Communications in StatisticsTheory and Methods, 39(3):416–425, 2010.

[8] Gérard Govaert and Mohamed Nadif. Co-clustering. John Wiley & Sons, 2013.
[9] Christine Keribin, Vincent Brault, Gilles Celeux, and Gérard Govaert. Estimation

and selection for the latent block model on categorical data. Statistics and Comput-
ing, 25(6):1201–1216, 2015.

[10] Aurore Lomet. Sélection de modèles pour la classification de données continues.
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