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Résumé – La récente définition de p-exposants et p-leaders étend l’application de l’analyse multifractale à des fonctions ou signaux de régularité

négative, à conditions que ceux-ci soient localement Lp. Le formalisme multifractal, mis en oeuvre sur des signaux à temps discret, qui ne

satisferaient pas cette contrainte théorique, produira toujours un résultat pratique, qui semblera réaliste, mais n’aura pas de validité théorique.

Il sera cependant impossible a posteriori de s’en rendre compte. Dans ce travail, nous utilisons le modèle simple des cascades d’ondelettes

déterministes pour étudier théoriquement la forme que prendra l’estimation pratique du spectre multifractal de fonctions non localement Lp.

Nous conjecturons que la forme obtenue est valide en général et le validons au moyen de simulations numériques.

Abstract – The recent introduction of p-exponents and p-leaders extends the application of wavelet leader multifractal analysis to functions or

signals with negative regularity. These new quantities are defined only for functions that are locally in Lp. However, in practice, estimations from

discrete data can always be computed, even if the underlying function that models the data is not in Lp. In this case, the analysis is meaningless

but indistinguishable from a valid one. In this contribution, we use a very simple function model provided by deterministic wavelet cascades to

study the behavior of multifractal estimates when they are computed from discrete data that is not modeled by a function in Lp, and show that the

result is a spectrum with correct shape but shifted so as to exactly be in the Lp limit. We also use numerical simulations on various multifractal

random processes to show that the validity of our results extends beyond the simple model that we used.

1 Introduction

Multifractal analysis. Multifractal analysis is nowadays a re-

levant and valid signal processing tool. It has been success-

fully used to analyze, describe, model and classify the dyna-

mics of signals in numerous applications, which include hy-

drodynamic turbulence [11], biomedical data [4] and internet

traffic [3], among many others. Multifractal analysis describes

a function X(t) based on its local regularity, commonly mea-

sured by the Hölder exponent h(t) [6]. It is, however, often the

case in practice that data to be analyzed contain negative regu-

larity. In that case, the Hölder exponent can not be used since

it is a strictly positive quantity. To overcome this limitation,

a generalization has recently been proposed, the p-exponent

hp(t) [1, 8, 9], which can take negative values, hp(t) ≥ −1/p,

for fixed p ∈ (1,+∞], and can be computed for the less res-

trictive set of functions which belong to Lp. This new setting

contains the Hölder exponent as the limit case p = +∞.

Multifractal formalism. Rather than characterizing X(t) via

the function hp(t), multifractal analysis provides a global and

geometric description of the fluctuations of the values of hp(t)
along time : the multifractal spectrum Dp(h), defined as the

Hausdorff dimension of the set of points where hp(t) = h. This

theoretical definition is, however, not constructive for obtaining

procedures for computing Dp(h) from finite resolution data.

Instead, practical estimation is achieved through a procedure

referred to as the multifractal formalism. It relies on the use of

relevant quantities for measuring p-exponents, referred to as p-

leaders [1,8,9]. For p = +∞ (Hölder exponents), one recovers

the well-known wavelet leaders [6].

Practical pitfalls of negative regularity. The multifractal for-

malism requires the parameter p to be fixed a priori. The precise

choice of p is critical because for a function that is not locally

in Lp, the theoretical quantity on which the analysis is based

(the p-exponent) and the multiresolution quantities used for its

estimation (the p-leaders) are theoretically ill defined and take

infinite values. However, in practice, estimation is performed

on discrete data, i.e., on a finite-valued finite-resolution sam-

pled version of a function. Thus, the multiresolution quantities

can always be computed, since they consist of finite sums of

finite values, and are hence finite for any (positive) value of

p. The multifractal formalism therefore always provides finite-

valued estimates for the multifractal spectrum obtained from

discrete data. Yet, if the function modeling the data does not

belong to Lp, the result of the analysis is meaningless, since

the underlying quantities and the multifractal spectrum are not

theoretically defined, and misleading, since the estimated mul-

tifractal spectrum is nevertheless indistinguishable from a valid

spectrum of a function that is in Lp.

Goals and contributions. The goal of the present contribu-



tion is to shed light on this important pitfall and to study the

multifractal spectrum obtained with the p-leader multifractal

formalism when the condition X ∈ Lp is violated. To that end,

we study theoretically the multifractal spectrum obtained for

finite resolution data from a simple deterministic multifractal

model. We obtain explicit expressions of the estimated spectra

when the model function is not in Lp. We provide numerical si-

mulations for different synthetic multifractal random processes

that indicate that this theoretical result is a valid approximation

in general for multifractal processes, beyond the simple deter-

ministic model it is based on.

2 p-leaders multifractal analysis

p-exponent regularity. Let X ∈ Lploc(R) for p ≥ 1. X is

said to belong to T pα(t), with α > −1/p, if there existC,R > 0
and a polynomial Pt (with deg(Pt) ≤ α) such that ∀α < R,
(

1
a

∫ t+a/2

t−a/2
|X(u)− Pt(u− t)|

p
du
)1/r

≤ Caα. The p-expo-

nent of X at t is defined as hp(t) = sup{α : X ∈ T pα(t)}.

It is a natural substitute for the Hölder exponent when dealing

with functions which are not bounded (but belong to Lp) and

admits negative values hp > −1/p. The Hölder exponent is re-

covered for p = +∞. The p-exponents can be measured using

p-leaders, defined in the next paragraph.

Wavelet coefficients and p-leaders. Let {X(t)}t∈R denote

the signal to be analyzed. Letψ denote the mother wavelet, cha-

racterized by its number of vanishing moments Nψ , a strictly

positive integer such that
∫

R
tkψ(t)dt = 0, ∀k = 0, . . . , Nψ −

1, and
∫

R
tNψψ(t)dt 6= 0. Let {ψj,k(t) = 2jψ(2jt−k)}(j,k)∈N2

be the orthonormal basis of L2(R) formed by dilations and

translations of ψ. The (L1-normalized) discrete wavelet trans-

form coefficients are defined as cj,k = 2j/2〈ψj,k|X〉 (cf., e.g.,

[10], for more details on wavelet transforms).

Now let λ = λj,k = [k2j , (k + 1)2j) denote a dyadic in-

terval and 3λ =
⋃

m∈{−1,0,1} λj,k+m the union with its two

neighbors. The p-leaders are defined for X ∈ Lp as [1, 8, 9]

ℓ
(p)
j,k ,

(

∑

λ′⊂3λ

|cλ′ |p 2j−j
′

)
1

p

, (1)

where the sum involves all the wavelet coefficients in a narrow

time neighbourhood of t = 2−jk for all finer scales j′ ≥ j. It

can be shown that they reproduce p-exponents in the limit of

fine scales j → ∞ as ℓ
(p)
j,k ∼ 2−jhp(2

jk) [1, 8, 9].

The classical wavelet leaders are given for p = +∞, in

which case (1) reduces to ℓ∞j,k , supλ′⊂3λ |cλ′ |.
Multifractal formalism. The p-leader multifractal formalism

for computing Dp(h) is defined as follows. First, the structure

functions are computed, defined as

Sp(j, q) = 2−j
2j
∑

k=1

(

ℓ
(p)
j,k

)q

∼ 2−jζp(q), j → ∞. (2)

The scaling function ζp(q) is estimated by means of linear re-

gressions of log2 Sp(j, q) versus j. It can be shown that ζp(q)

is the Legendre transform of Dp(h), and thus the concave hull

of the multifractal spectrum can be recovered from ζp(q) as [6]

Dp(h) ≤ Lp(h) , min
q

(1 + qh− ζ(p)(q)). (3)

In practice, the function Lp(h) is the only accessible quantity

and is used as the estimate of Dp(h).
Function space requirements. p-exponents and p-leaders are

theoretically defined only for functions X ∈ Lp. This requi-

rement can be checked based on the wavelet scaling function

η(p), practically defined by the relation

2−j
2j
∑

k=1

|cj,k|
p
∼ 2−jη(p), j → ∞, p ≥ 0. (4)

It can be shown that if η(p) > 0, then X ∈ Lp, and that the

condition η(p) > 0 implies that the multifractal spectrum must

satisfy Dp(h) ≤ 1 + ph [1, 8].

Finally, note that the conditionX∈Lp is much more restrictive

for wavelet leaders (p=+∞) since L∞ ⊆ Lp for all p ≥ 1.

3 Analysis of Legendre spectra limits

We study the behavior of the multifractal spectrum (3) that

is obtained from finite resolution data for functions X ∈ Lp

and X /∈ Lp. We base our analysis on simple multifractal mo-

del functions provided by (binomial) deterministic wavelet cas-

cades (DWC), defined as follows [11] : Let 0 < ω0 < ω1 and

let the parent coefficient at scale j = 0 equal 1, c0,1 = 1.

At scale j > 0, the 2j wavelet coefficients are obtained as

cj,2k = ω0cj−1,k and cj,2k+1 = ω1cj−1,k, and therefore take

values cj,k ∈ {ωn0ω
j−n
1 , n = 0, . . . , j}. The corresponding

function is obtained by an inverse wavelet transform.

Substitution of the coefficients cj,k in (4) yields

2−j
2j
∑

k=1

(cj,k)
q = 2−j(ωq0 + ωq1)

j = 2−jη(q)

from which we identify the wavelet scaling function of DWC

η(q) = 1− log2(ω
q
0 + ωq1). (5)

The Legendre spectrum of DWC reads

Lω0,ω1

η (h) = min
q

(1 + qh− η(q)). (6)

It can be easily seen in (5) that the cascade is inLp if ωp0+ω
p
1 <

2 (and hence in L∞ as long as ω1 < 1).

Restricted p-leaders analysis. For simplicity, we consider

the restricted p-leaders defined by ℓ
(p)
λ =

(

∑

λ′⊂λ |cλ′ |p2j−j
′

)
1

p

.

It was shown that structure functions with ℓ
(p)
λ yield quantities

equivalent to (2) so that the corresponding scaling functions

(defined in the limit of fine scales) coincide [7]. We suppose

that the DWC is available at finite resolution and that the largest

available scale is J . Let p ≥ 0. Using the change of variables

l=j′−j and the multiplicative structure of the cascade we have

ℓ
(p)
λ = cλ

(

J−j
∑

l=0

(ωp0 + ωp1)
l2−l

)
1

p

= cλ

(

J−j
∑

l=0

2−η(p)l
)

1

p

.



In the limit of infinite resolution J → ∞, or coarse scales j →
−∞, the sum diverges for η(p) < 0. Yet, for finite J − j

ℓ
(p)
λ = cλ

(

1− 2−(J−j+1)η(p)

1− 2−η(p)

)1/p

.

The p-leader structure function is therefore given by

Sp(j, q) = 2−j
2j
∑

k=1

(cj,k)
q
(

J−j
∑

l=0

2−η(p)l
)
q

p

=

(

ωq0 + ωq1
2

)j







1−
(

ωp
0
+ωp

1

2

)J−j+1

1−
(

ωp
0
+ωp

1

2

)







q

p

. (7)

Cascade in Lp. The evolution of Sp(j, q) with j is different

from the one in (2) by a term that converges to a constant for

coarse scales j → −∞ when ωp0 + ωp1 < 2. As a result, the

power law scaling defining ζp(q) in (2) can only be measured

at coarse scales. In the limit of coarse scales,

Sp(j, q)
j→−∞
∼ 2−jη(q)

(

1−
ωp0 + ωp1

2

)− q

p

,

and hence ζp(q) = η(q) with η(q) defined in (5). Therefore,

Lp(h) ≡ Lω0,ω1

η (h).
Cascade not in Lp. In case the cascade is not in Lp (i.e.,

ωp0 + ωp1 ≥ 2), the term
(

ωp
0
+ωp

1

2

)J−j+1

in (7) diverges as a

power law when j → −∞. To proceed with the analysis, we

use the substitution ω0 = αv0 and ω1 = αv1 with vp0 +v
p
1 = 2,

implying α > 1. Then, (7) becomes

Sp(j, q) =

(

αq
vq0 + vq1

2

)j
(

1− (αp)
J−j+1

1− αp

)
q

p

=

(

vq0 + vq1
2

)j
(

(αp)
j
− (αp)

J+1

1− αp

)
q

p

, (8)

where the second term of the right hand side behaves as a

constant when j → −∞ :

Sp(j, q)
j→−∞
∼ 2−jζp(q)

(

1− (αp)
J+1

1− (αp)

)
q

p

with ζp(q) = 1− log2(v
q
0 +v

q
1). Consequently, the multifractal

spectrum does not equal Lω0,ω1

η (h) but is given by

Lp(h) ≡ Lv0,v1η (h), vp0 + vp1 = 2 (9)

i.e., the spectrum of a cascade with multipliers v0 and v1 that

is in Lp but not in Lp
′

for any p′ > p (since vp0 + vp1 = 2).

Conclusion. For a DWC not in Lp, the estimated Lp(h) is

hence shifted to the right to touch the Lp border 1 + ph in

one single point, but does not undergo any shape deformation :

It thus resembles the spectrum that would be obtained for a

function X that is just at the limit of Lp, i.e., X ∈ Lp but

X /∈ Lp
′

for any p′ > p. This behavior is illustrated in Fig. 1.

Conjecture. This leads us to formulate the following conjec-

ture : When applied to any function not in Lp, the estimated

Legendre spectrum Lp(h) is shifted to the right to touch the

Lp border 1 + ph, with no shape deformation and thus corres-

ponds to the theoretical spectrum of an equivalent process that

satisfies the Lp-constraint.

Wavelet leaders. Results for wavelet leaders can be obtained

from the calculations for p-leaders in the limit p → ∞. In this

case, when X /∈ L∞, the multifractal spectrum is given by

L∞(h) = Lv0,v1η (h), v0 = ω0/ω1 < 1, v1 = 1, (10)

It is hence shifted to the right such that its left-most point is at

h = 0. This behavior is illustrated in Fig. 1.

4 Numerical simulations

In this section, we provide numerical evidence for the fact

that expressions (9) and (10) for the limits of Legendre spec-

tra are generically valid for multifractal processes with nega-

tive regularity. To this end, we apply the multifractal forma-

lism to NMC = 50 independent realizations of sample size

N = 218 of several random processes X with known and

controlled multifractal properties. We use fractional differen-

tiation of order ν to control the function space embedding,

X(ν) = F−ν
(

(ıω)νF [X]
)

, where F stands for the discrete

Fourier transform, cf. [13] for details. Analysis is performed

using p = 2 (p-leaders) and p = ∞ (wavelet leaders), for DWC

with (ω0, ω1)=(0.3, 1.6) and ν=0 (for which X(ν)∈Lp with

p≤1.14), and for the following multifractal random processes.

Random wavelet cascades (RWC) are built from wavelet co-

efficients in a similar fashion to DWC, but replacing the deter-

ministic multipliers ω0 and ω1 with random variables [2]. Let

cj=0,k=1 = 0. At scale j > 0, wavelet coefficients are obtained

as cj,2k = W l
j,kcj−1,k and cj,2k+1 = W r

j,kcj−1,k, where W l
j,k

and W r
j,k are iid positive random variables. We use log-normal

multipliers W with mean µ and variance σ2. The multifractal

spectrum is given byD(h) = 1−(h−µ+ν)2/(2 log(2)σ2) [2].

Here, we use µ = 0.56, σ = 0.3 and ν = 0.8, for which RWC

are not in Lp for any p.

α-stable Lévy processes Sα(t) are built from a symmetric

α-stable measure M(ds) as Sα(t) =
∫

R
f(t, s)M(ds), where

f(t, s) = ✶(t − s > 0) − ✶(−s > 0) [12]. Its multifractal

spectrum is given by D(h) = α(h + ν) when −ν ≤ h ≤
1/α−ν, and D(h) = −∞ otherwise [5]. We set α = 1.25 and

ν = 0.7 (for which Sα are in Lp with p ≤ 10/7).

Conjecture. Assuming the conjecture above is true, the esti-

mated spectra for RWC should read Lp(h) = 1 − (h − µ +

ν′)2/(2 log(2)σ2) with : ν′ = µ −
√

2 log(2)σ2 if p = ∞, or

ν′ = µ− log(2)σ2 if p = 2. Similarly, for Sα(t) it should read

Lp(h) = α(h+ ν′) with ν′ = −1/p.

Estimation of multifractal spectra. Fig. 1 plots the p-leader

(left column) and wavelet leader (right column) based estimates

of D(h) (black solid lines, points) for DWC (top row), RWC

(center row) and Sα (bottom row), together with the theoreti-

cal spectra Lω0,ω1

η (h) (red solid lines), the limit spectra (9) and
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FIGURE 1 – Multifractal analysis of DWC (top row), RWC

(center row) and Lévy process (bottom row) with negative re-

gularity using p-leaders (p = 2, left column) and wavelet lea-

ders (p = ∞, right column) : theoretical multifractal spectra

Lω0,ω1

η (h) (red solid lines), Legendre limit spectra Lv0,v1η (h)
(blue solid lines), estimates of multifractal spectra (black solid

lines, points) and Lp limit (black dashed-dotted lines, crosses).

(10) (blue solid lines) and the Lp limits D(h) ≤ 1 + ph (black

dashed-dotted lines). First, the multifractal formalism clearly

provides estimates that conspire to resemble valid multifrac-

tal spectra, despite the fact that p-exponents and p-leaders are

theoretically undefined and infinite. The estimated spectra are

shifted to the right with respect to the theoretical spectra, so that

they are right below the Lp limit for the value of p used in the

analysis, yet they precisely conserve the shape of the theoreti-

cal spectra so that they are a posteriori indistinguishable from

valid spectra. Second, Fig. 1 indicates that the proposed expres-

sions (9) and (10) for the limit spectra provide excellent models

for the estimated multifractal spectra not only for DWC, but

also for the synthetic random processes RWC and Sα. This is

in particular remarkable for Sα, whose construction is not ba-

sed on a multiplicative cascade but on an additive mechanism,

which indicates the general validity of the model for processes

with negative regularity. Finally, note that while inspection of

the estimated multifractal spectra does not provide any indica-

tion for the fact that the Lp assumption is violated, estimates

of the wavelet scaling function η(p) are found to be negative

for p = 2 and p = ∞ for all processes and hence enable to

detect that the assumption X ∈ Lp is violated and the analy-

sis is invalid. This underlines the importance of performing a

preliminary wavelet based analysis and checking the condition

η(p) > 0 before applying the p-leaders multifractal formalism

to data.

5 Conclusions

In this contribution, we provided a theoretical analysis of the

p-leader multifractal formalism when applied to finite resolu-

tion data coming from functions with negative regularity, which

are not in Lp. We used a simple deterministic model to derive

expressions for the estimated multifractal spectra. The model

predicts that the estimated spectra precisely resemble the theo-

retical multifractal spectra of a function that would be obtained

by increasing the regularity of the original function such that

it is in Lp but not in Lp
′

for any p′ > p. Numerical simula-

tions for synthetic multifractal random processes indicate the

validity of this model for general processes with negative regu-

larity. The result provides a better understanding of the p-leader

and wavelet leader multifractal formalisms for discrete data and

stresses the importance of checking a priori that data are in Lp

by performing a preliminary wavelet based analysis.
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K. Gröchenig, Y. Lyubarskii, and K. Seip, editors, The Abel Sym-

posium 2012, volume 9, pages 1–56. Springer, 2015.

[2] A. Arneodo, E. Bacry, and J.F. Muzy. Random cascades on wa-

velet dyadic trees. J. Math. Phys., 39(8) :4142–4164, 1998.

[3] L. Calvet and A. Fisher. Forecasting multifractal volatility. Jour-

nal of Econometrics, 105(1) :27 – 58, 2001.

[4] P.C. Ivanov, L.A. Nunes Amaral, A.L. Goldberger, S. Havlin,

M.G. Rosenblum, Z.R. Struzik, and H.E. Stanley. Multifractality

in human heartbeat dynamics. Nature, 399 :461–465, 1999.

[5] S. Jaffard. The multifractal nature of Lévy processes. Probab.
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