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Variation totale multivariée pour la détection de changement du spectre multifractal

Dans sa formulation naturelle, l'analyse multifractale pratique suppose a priori que les propriétés multifractales des signaux sont homogènes, c.-à-d., constantes au cours du temps. Nous nous intéressons à la situation d'intérêt pratique où les propriétés multifractales changent au cours du temps. Nous proposons le développement d'approches variationnelles, ou d'optimisation, univariées et multivariées, reposant sur l'usage de variation totale et de normes mixtes, pour la détection de tels changements. Nous comparons, selon plusieurs critères, les performances de ces procédures appliquées à des signaux synthétiques dont les propriétés multifractales sont homogènes par morceaux.

Introduction

Analyse multifractale. L'analyse multifractale constitue un outil d'analyse du signal mesurant finement les fluctuations de régularité d'un signal le long de sa trajectoire, quantifiée à l'aide de l'exposant de Hölder h. Pour caractériser un signal, l'analyse multifractale préfère cependant à l'évolution temporelle h(t), une information globale et géométrique des fluctuations de h, le spectre multifractal [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF]. En pratique, la mesure de ce spectre multifractal repose sur le choix de quantités multiéchelles. Parmi les différentes quantités multiéchelles envisagées dans la littérature, on peut citer les coefficients de la transformée en ondelettes continue, ou le squelette de cette transformée [START_REF] Roux | A wavelet-based method for multifractal image analysis. III. Applications to highresolution satellite images of cloud structure[END_REF]. Plus récemment, il a été proposé d'utiliser les coefficients d'ondelettes dominants, définis comme supremum locaux à travers toutes les échelles plus fines des coefficients de la transformée en ondelettes discrètes [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF]. Segmentation des propriétés multifractales. Dans sa formulation actuelle, l'analyse multifractale suppose a priori que le signal étudié possède des propriétés multifractales homogènes et constantes sur l'ensemble de son support. Cependant, dans nombre d'applications, l'information peut être contenue davantage dans le changement de ces propriétés multifractales que dans les valeurs des paramètres qui les caractérisent. Le modèle schématique de telles situations que nous adopterons dans ce travail consiste à modéliser un signal comme un en- * Ce travail a été réalisé avec le soutien du programme de recherche jeunes chercheurs GALILEO du GdR ISIS. semble de segments de supports disjoints, chacun caractérisé par un spectre multifractal différent. La question abordée dans ce travail est alors de pouvoir détecter ces changements, quand leurs nombres et positions sont inconnus, comme le sont les propriétés multifractales de chaque segment. Travaux préliminaires. La question de détection de changement de régularité locale dans les signaux/images a été précédemment abordée dans [START_REF] Pustelnik | Inverse problem formulation for regularity estimation in images[END_REF][START_REF] Nafornita | Regularised, semi-local hurst estimation via generalised lasso and dual-tree complex wavelets[END_REF]. Dans ces travaux, le problème sous-jacent était cependant plus facile à traiter car les signaux étaient modélisés par des processus multi-fractionnaires, dont la régularité locale était constante par morceaux. Cela impliquait que le spectre multifractal de chaque segment était réduit à un singleton, et donc que la régularité locale était constante par morceaux. Dans ces travaux, la régularité est mesurée de manière ponctuelle et la détection de changement de régularité repose sur l'utilisation de la variation totale. Les excellents résultats obtenus nous suggèrent d'étendre cette étude au cas où le spectre multifractal de chaque segment n'est plus réduit à un singleton. Ce problème est significativement plus difficile, car pour un signal multifractal dont les propriétés multifractales sont constantes par morceaux, la régularité locale peut varier significativement d'un instant à l'autre même au sein d'un même segment. Cela interdit une estimation strictement ponctuelle qui doit être remplacée par une estimation dans un voisinage impliquant la contradiction fondamentale suivante : l'estimation est meilleure si la taille du voisinage augmente, mais une mesure glissante en temps reposant sur un grand voisinage produit une estimation fortement corrélée, compliquant ainsi la localisation fine d'un changement. Objectifs et contribution. La présente contribution propose une première tentative pour segmenter un signal en zones où ses propriétés multifractales peuvent être considérées homogènes par morceaux. La section 2 présente brièvement les éléments nécessaires à l'analyse multifractale. La section 3 présente deux approches variationelles permettant d'obtenir des estimées de c 1 et c 2 constantes par morceaux, soit univariées (ou disjointes), soit multivariées (ou conjointes). Les performances des deux méthodes sont comparées dans la Section 4. L'apport de la segmentation multivariée y est également discutée. Conclusions et perspectives sont discutées dans la Section 5.

Analyse multifractale

Analyse multifractale. Soit X le signal d'intérêt constitué de N échantillons. Sa régularité locale autour de la position ℓ peut être quantifiée par l'exposant de Hölder h ℓ . Des grandes valeurs de h ℓ indiquent une portion lisse du champ alors que de faibles valeurs caractérisent une forte irrégularité locale. Les fluctuations de régularité peuvent être décrites par le spectre multifractal D(h) qui représente de fac ¸on globale et géométrique les fluctuations de h ℓ (cf. e.g., [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF] pour une description detaillée). En pratique, D(h) est souvent approché par une parabole d'équation D(h) = 1 + (hc 1 ) 2 /(2c 2 ). Son estimation requiert l'usage d'un formalisme multifractal reposant sur des quantités multiéchelles. Dans le présent travail, nous utiliserons les coefficients d'ondelettes dominants, récemment introduits pour permettre une caractérisation complète et précise du spectre multifractal [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF]. Coefficients d'ondelettes dominants. Soit ψ 0 une fonction de référence appelée ondelette-mère et ψ j,k (t) = 2 -j ψ 0 (2 -j tk) la collection de ses dilatées et translatées. On note d j,k = X, ψ j,k le coefficient d'ondelettes discret de X à la position ℓ = 2 j k et à l'échelle 2 j où j ∈ {1, . . . , J}. Le coefficient d'ondelettes dominant autour de la position k et à l'échelle j, est noté L j,k et il est défini comme le supremum local autour d'un voisinage spatial, de tous les coefficients d'ondelettes à travers les échelles plus fines 2 j ′ ≤ 2 j . Formellement,

L j,k = sup ω j ′ ,k ′ ⊂Ω j,k |d j ′ ,k ′ |, (1) 
où

ω j,k = [k2 j , (k + 1)2 j ) et Ω j,k = ∪ p∈{-1,0,1} ω j,k+p .
Formalisme multifractal. Considérons C 1,j et C 2,j les moyennes et variances de ln L j , pour une échelle 2 j donnée. Il a été montré [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF] que les fonctions

C 1,j et C 2,j sont reliées à D(h) = 1 + (h -c 1 ) 2 /(2c 2 ) par les coefficients c 1 et c 2 : C 1,j = c 0 1 + c 1 ln 2 j , C 2,j = c 0 2 + c 2 ln 2 j . ( 2 
)
Estimateurs empiriques de la moyenne et de la variance. Les quantités C 1,j et C 2,j sont estimées localement par des moyennes en temps, dans une fenêtre W j,ℓ centrée en ℓ à l'échelle 2 j :

C 1,j,ℓ = 1 |W j,ℓ | k∈W j,ℓ ln L j,k , (3) 
C 2,j,ℓ = 1 |W j,ℓ | -1 k∈W j,ℓ ln L j,k -C 1,j,ℓ 2 . ( 4 
)
où |W j,ℓ | est le nombre de coefficients dans le voisinage W j,ℓ . Estimateurs de c 1 et c 2 . Les équations en (2) suggèrent que des estimateurs de c 1 et c 2 peuvent être obtenus par régression linéaire à travers les échelles j ∈ {j 1 , . . . , j 2 } ⊆ {1, . . . , J} :

(∀ℓ ∈ {1, . . . , N })(∀i ∈ {1, 2}) c i,ℓ = j2 j=j1 w j C i,j,ℓ (5) 
où les poids de régression w j vérifient j2 j=j1 jw j = 1 et j2 j=j1 w j = 0 afin d'obtenir un estimateur non biaisé [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF].

Segmentation multivariée

Dans cette étude, nous proposons de raffiner l'estimation de c 1 et c 2 par une approche variationnelle faisant intervenir un terme de variation totale permettant de favoriser les solutions constantes par morceaux : Il est plus réaliste dans les applications de considérer que l'ensemble du spectre multifractal (donc a priori à la fois c 1 et c 2 ) change à un instant donné. Pour favoriser la détection de ruptures conjointes dans les estimées c 1 et c 2 , le problème (6) peut être reformulé comme :

( c 1 , c 2 ) λ = arg min (u1,u2)∈R 2N 2 i=1 c i -u i 2 + λ 2 i=1 N -1 ℓ=1 |(Du i ) ℓ | (6) 
( c 1 , c 2 ) λ = arg min (u1,u2)∈R 2×N 2 i=1 c i -u i 2 + λ N -1 ℓ=1 2 i=1 |(Du i ) ℓ | 2 . (7)
où le second terme dans le membre de droite de (7) a été remplacé par une norme mixte ℓ 1,2 .

Les problèmes de minimisation ( 6) et ( 7) sont convexes nonlisses et peuvent donc être résolus à l'aide d'algorithme proximaux primaux-duaux tels que [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Komodakis | Playing with duality : An overview of recent primal-dual approaches for solving largescale optimization problems[END_REF][START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF].

Configuration expérimentale. Considérons un mouvement

Brownien multifractal X de taille N = 2 9 , dont les propriétés multifractales sont homogènes par morceaux et changent à la position ℓ = 2 8 , selon une configuration motivée par exemple par l'observation de données d'activités cérébrales, où l'on passe du repos (longue mémoire c 1 = 0.6 > 0.5 et faiblement multifractal c 2 = -0.0125 ≃ 0) à une tache (faible corrélation c 1 = 0.5 mais forte multifractalité c 2 = -0.0250 < 0) (cf. e.g., [START_REF] Ciuciu | Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks[END_REF]).

À partir de c 1 et c 2 , définis en (5) et estimés à travers les oc- 8 . Cet exemple montre que la segmentation conjointe (rouge) permet de gagner en précision sur la localisation de la rupture, comparée à une estimation disjointe (bleu). Paramètre de régularisation λ. Les performances d'estimation dépendent fortement du choix de λ qui n'a pas le même poids dans ( 6) et [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]. Cette question, bien qu'importante lorsque l'on fait fasse à des signaux réels [START_REF] Frecon | Hybrid Bayesian variational scheme to handle parameter selection in total variation signal denoising[END_REF], ne sera pas traitée dans cet article. Pour évaluer les performances des deux approches, nous utilisons deux valeurs de λ différentes : λ 2seg correspond à la plus grande valeur de λ produisant au moins 2 segments.

taves j 1 = 2 et j 2 = 4, nous obtenons ( c 1 , c 2 ) disj λ et ( c 1 ,
λ Jmax est la valeur de λ qui maximise l'indice de Jaccard [START_REF] Jaccard | Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines[END_REF][START_REF] Hamon | Discovering the structure of complex networks by minimizing cyclic bandwidth sum[END_REF], qui permet de mesurer la similarité entre les positions des ruptures des estimées et réelles, La corrélation temporelle de c 1 et c 2 , inhérente à la nécessité d'estimer ces quantités dans des voisinages de taille significative, est susceptible de compliquer a priori les méthodes de segmentation utilisées, reposant sur une formulation par variation totale, qui sont adéquates lorsque les signaux à régulariser ne sont pas corrélés. Nous envisageons de poursuivre ce travail en modifiant les termes d'attache aux données présents dans les équations ( 6) et [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] pour prendre en compte ces corrélations. Par ailleurs, au lieu de segmenter c 1 et c 2 , il serait intéressant de segmenter les fonctions C 1,j et C 2,j conjointement à travers les échelles. 

α et β ∈ [0, 1] N : J(α, β) = N ℓ=1 min(α ℓ , β ℓ ) 1≤i≤N -1 α l >0,β l >0 α l +β l 2 + 1≤ℓ≤N β ℓ =0 α ℓ + 1≤ℓ≤N α ℓ =0 β ℓ . J(α, β) varie entre 0, lorsque α ∩ β = ∅,

  où D ∈ R (N -1)×N représente l'opérateur de premières différences, c'est-à-dire pour tout ℓ ∈ {1, . . . , N -1}, (Du) ℓ = u ℓ+1u ℓ . Dans le membre de droite de[START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF], le premier terme est relié au logarithme d'une loi normale sur les données. Le second terme est la somme de la variation totale de u 1 et u 2 et contribue à pénaliser les variations des quantités à estimer et ainsi à favoriser les solutions constantes par morceaux. Le paramètre de régularisation λ > 0 permet quant à lui d'équilibrer la contribution de ces deux termes. Le critère (6) étant séparable en i ∈ {1, 2}, c 1 et c 2 sont segmentés de fac ¸on disjointe et univariée. Les changements détectés sur c 1 et c 2 n'ont alors aucune raison d'être colocalisés.
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  c 2 ) conj λ les solutions de[START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF] et[START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] ré-estimées a posteriori sur chaque segment. Les performances d'estimation des deux méthodes seront évaluées et comparées, comme moyenne sur 100 réalisations, pour différentes tailles de fenêtre d'estimation |W j,ℓ | variant de 2 2 à 2 8 échantillons. La figure 1 illustre la procédure : En haut, le signal multifractal par morceaux et le spectre multifractal associé sur chaque région, au centre (resp. en bas), c 1 , c 1 , ( c 1 ) disj λJ max , ( c 1 ) conj λJ max (resp. c 2 , c 2 , ( c 2 ) disj λJ max , ( c 2 ) conj λJ max ) pour |W j,ℓ | ≡ 2