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Abstract. In this paper, we show how a dangerousness metric can be
used to modify the input of a gene regulatory network when plugged to
a virtual car. In the context of the 2015 Simulated Car Racing Cham-
pionship organized during GECCO 2015, we have developed a new car-
tography methodology able to inform the controller of the car about the
incoming complexity of the track: turns (slipperiness, angle, etc.) and
bumps. We show how this dangerousness metric improves the results of
our controller and outperforms other approaches on the tracks used in
the competition.

Keywords: Gene regulatory network, virtual car racing, dangerousness
measure

1 Introduction

The Simulated Car Racing competition (SCR1) aims to design a controller in
order to race competitors on various unknown tracks. This competition is based
on The Open-source Racing Car Simulator (TORCS2). Both scripted and evo-
lutionary approaches can be used to control the virtual car. Within the frame
of the 2015 competition that was held during GECCO2015, we have improved
the approach based on gene regulation evolved with a genetic algorithm firstly
presented at the previous edition in 2013 [21]. The SCR competition involves vir-
tual car driver competing on 12 tracks, each of them having different properties
(shape, track adherence, etc.). The virtual drivers can be hand-written scripts,
optimized scripts or learning agents. For each track, the competitors first run
alone for 5 laps (warm-up) during which they can learn the track. Then, the
competitors run for a qualifying session during which they have to race against
the clock in 5 laps. This qualifying session determines the starting order of the
final round: the race. During this stage, all the competitors are running at the
same time for 5 laps. The competitors are evaluated on this race based on the
Formula One point system. The championship is composed of 12 of these races
and the winner is the driver with the maximum number of points.

1 http://cs.adelaide.edu.au/∼optlog/SCR2015/index.html
2 http://torcs.sourceforge.net/
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Amongst the existing controllers for virtual car racing games that use an evo-
lutionary process to optimize the driver behavior, we can broadly consider two
kind of controllers. The first kind are indirect controllers where the inputs are
not directly linked to the outputs of the virtual racing car. The inputs are com-
puted and transmitted to driving policies based on hand-coded rules or heuristics
that manage steering and throttle controls. Usually, these controllers optimize
their driving policies with an evolutionary algorithm [4,18,19]. These kind of
controllers are efficient and they have been at the top of the SRC competition
since 2009. The second kind of controllers are direct controllers where sensors are
directly mapped to the car effectors. These direct controllers actually learn how
to drive the car using its sensors and actuators. They can be based on evolved
artificial neural networks [24,2,23,22,5] or genetic programming [1]. These meth-
ods usually produced either very fast controllers but specialized on one specific
track or slower more generic drivers. Because evolving a direct controller from
scratch that can drive on-track and manage all car controls and race events is
difficult, these controllers are sometimes mixed with hand-coded policies that
modify the controller outputs to handle crash recovery or opponents, or that
manage specific controls such as gear handling.

The controller we develop is a direct controller. Instead of designing complex
hand-coded heuristics, we prefer to evolve the controller to drive the car by
using a standard genetic algorithm. In this work, the controller is based on
a Gene Regulatory Network (GRN). In order to optimize this GRN, we have
used an incremental evolution (as in [24,4]) based on different fitnesses that
gradually refine the controller’s behavior. The improvement we detail in this
paper is related to the first stage (warm-up) but it impacts the behavior of the
driver on both other stages. It consists in modifying the GRN inputs depending
on an on-the-fly dangerousness measure of the track. Based on that, the GRN
modify its behavior in order to slow down or speed up based on the current
situation of the car (position on the track, sliding of the car, etc.).

The paper is organized as follows. Section 2 presents gene regulatory networks
in general, describing the existing computational models and the problems they
are currently handling. This section also introduces the computational model
we have used in this work. Section 3 summarizes how the GRN is connected
to the car sensors and actuators and how the GRN is incrementally trained
with a genetic algorithm to produce a basic driver. Then, section 4 details our
learning approach of the tracks, the dangerousness measure we produce and
how it influences the inputs of the gene regulatory network. Section 5 proposes
an experimental validation of our approach by evaluating the GRNDriver with
and without the dangerousness measure against the drivers involved in the 2015
edition of the SCR competition.

2 Gene regulatory network

Gene Regulatory Networks (GRN) are biological structures that control the in-
ternal behavior of living cells. They regulate gene expression by enhancing and
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inhibiting the transcription of certain parts of the DNA. For this purpose, the
cells use protein sensors dispatched on their membranes; these provide crucial
information to guide the cells through their cycle. Many modern computational
models of these networks exist. They are used both to simulate real gene regu-
latory networks [20,3,11] and to control agents [10,12,17,14].

When used for simulation purpose, a GRN is usually encoded within a bit
string, as DNA is encoded within a nucleotide string. As in real DNA, a gene
sequence starts with a particular sequence, called the promoter in biology [16].
In the real DNA, this sequence is represented with a set of four protein: TATA
where T represents the thymine and A the Adenine. In [20], Torsten Reil is one
of the first to propose a biologically plausible model of gene regulatory networks.
The model is based on a sequence of bits in which the promoter is composed of
the four bits 1010. The gene is coded directly after this promoter whereas the
regulatory elements are coded before the promoter. To visualize the properties
of these networks, he uses graph visualization to observe the concentration vari-
ation of the different proteins of the system. He points out three different kinds
of behavior from randomly generated gene regulatory networks: stable, chaotic
and cyclic. He also observes that these networks are capable of recovering from
random alterations of the genome, producing the same pattern when they are
randomly mutated. In 2003, Wolfgang Banzhaf formulates a new gene regulatory
network heavily inspired from biology [3]. He uses a genome composed of mul-
tiple 32-bit integers encoded as a bit string. Each gene starts with a promoter
coded by any integer ending with the sequence “XYZ01010101”. This sequence
occurs with a 2−8 probability (0.39%). The gene following this promoter is then
coded in five 32-bits integers (160 bit) and the regulatory elements are coded
upstream to the promoter by two integers, one for the enhancing and one for
the inhibiting kinetics. Banzhaf’s model confirms the hypothesis pointed out by
Reil’s one; the same properties emerges from his model.

From these seminal models, many computational models have been initially
used to control the cells of artificial developmental models [11,10,14]. They sim-
ulate the very first stage of the embryogenesis of living organisms and more
particularly the cell differentiation mechanisms. One of the initial problem of
this field of research is the French Flag problem [26] in which a virtual organism
has to produce a rectangle that contains three strips of different colors (blue,
white and red). This simulates the capacity of differentiation in a spatial environ-
ment of the cells. Many models addressed this benchmark with cells controlled
by a gene regulatory network [15,14,6]. More recently, gene regulatory networks
have proven their capacity to regulate complex behaviors in various situations:
they have been used to control virtual agents [17,13,9] or real swarm or modular
robots [12,8].

2.1 Our model

The gene regulatory network used to control a virtual car in this work is based
on Banzhaf’s model. It has already been successfully used in other applications.
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It is capable of developing modular robot morphologies [8], controlling cells de-
signed to optimize a wind farm layout [25] and controlling reinforcement learning
parameters in [7]. This model has been designed for computational purpose only
and not to simulate a biological network.

This model is composed of a set of abstract proteins. A protein a is composed
of three tags:

– the protein tag ida that identifies the protein,
– the enhancer tag enha that defines the enhancing matching factor between

two proteins, and
– the inhibitor tag inha that defines the inhibiting matching factor between

two proteins.

These tags are coded with an integer in [0, p] where the upper bound p can be
tuned to control the precision of the network. In addition to these tags, a protein
is also defined by its concentration that will vary over time with particular
dynamics described later. A protein can be of three different types:

– input, a protein whose concentration is provided by the environment, which
regulates other proteins but is not regulated,

– output, a protein with a concentration used as output of the network, which
is regulated but does not regulate other proteins, and

– regulatory, an internal protein that regulates and is regulated by others pro-
teins.

With this structure, the dynamics of the GRN are computed by using the
protein tags. They determine the productivity rate of pairwise interaction be-
tween two proteins. For this, the affinity of a protein a for another protein b
is given by the enhancing factor u+

ab and the inhibiting factor u−
ab calculated as

follows:

u+
ab = p− |enha − idb| ; u−

ab = p− |inha − idb| (1)

The proteins are then compared pairwise according to their enhancing and
inhibiting factors. For a protein a, the total enhancement ga and inhibition ha

are given by:

ga =
1

N

N
∑

b

cbe
βu

+

ab
−u+

max ; hi =
1

N

N
∑

b

cbe
βu

−

ab
−u−

max (2)

where N is the number of proteins in the network, cb is the concentration of
the protein b, u+

max is the maximum observed enhancing factor, u−
max is the

maximum observed inhibiting factor and β is a control parameter which will be
detailed hereafter. At each timestep, the concentration of a protein a changes
with the following differential equation:

dca
dt

=
δ(ga − ha)

Φ
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where Φ is a normalization factor to ensure that the total sum of the output
and regulatory protein concentrations is equal to 1. β and δ are two constants
that influence the reaction rates of the network. β affects the importance of the
matching factors and δ is used to modify the production level of the proteins in
the differential equation. In summary, the lower both values are, the smoother
the regulation is; the higher the values are, the more sudden the regulation is.

3 Using a GRN to drive a virtual car

3.1 Linking the GRN to the car sensors and actuators

The GRN can be seen as any kind of computational controller: it computes
inputs provided by the problem it is applied to and it returns values to solve
the problem. To use the gene regulatory network to control a virtual car, our
main wish is to keep the connection between the GRN and the car sensors and
actuators as simple as possible. In our opinion, the approach should be able to
handle the reactivity necessary to drive a car, the possible noise of the sensors
and unexpected situations. The car simulator provides 18 track sensors spaced
10◦ apart and many other sensors such as car fuel, race position, motor speed,
distance to opponents, etc. However, in our opinion, all of the sensors are not
required to drive the car. Reducing the number of inputs directly reduces the
complexity of the GRN optimization. Therefore, we have selected the following
subset of sensors provided by the TORCS simulator:

– 9 track sensors that provide the distance to the track border in 9 different
directions,

– longitudinal speed and transversal speed of the car.

Figure 1 represents the sensors used by the GRN to drive the car. Before being
computed by the GRN, each sensor value is normalized to [0, 1] with the following
formula:

norm(v(s)) =
v(s)−mins

maxs −mins

(3)

where v(s) is the value of sensor s to normalize, mins is the minimum value of
the sensor and maxs is the maximum value of the sensor.

Once the GRN input protein concentrations are updated, the GRN’s dy-
namics are run one time in order to propagate the concentration modification
to the whole network. The concentrations of the output proteins are then used
to regulate the car actuators. Four output proteins are necessary: two proteins
ol and or for steering (left and right), one protein oa for the accelerator and one
ob for the brake. The final values provided to the car simulator are computed as
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Fig. 1: Sensors of the car connected to
the GRN. The red plain arrows are
used track sensors whereas the gray
dashed ones are the track sensors also
available in the simulator but not used
by the GRN. The plain arrows Speed

X and Speed Y are respectively the
longitudinal and the transversal car
speeds.
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Fig. 2: The GRN uses 9 track sensors
and the longitudinal and transversal
speeds to compute the steering, the
acceleration and the brake of the car.

follow:

steer =

{

0 if c(ol) = c(or) = 0
c(ol)−c(or)
c(ol)+c(or)

otherwise
(4)

accel = max(0, ab) (5)

brake = min(−ab, 0) (6)

ab =

{

0 if c(oa) = c(ob) = 0
c(oa)−c(ob)
c(oa)+c(ob)

otherwise

where steer is the final steering value of the car in [−1, 1], accel is the final
acceleration value in [0, 1], brake is the final brake value in [0, 1], c(o∗) is the
concentration of the output protein o∗. Figure 2 shows the connection of the
GRN to the virtual car. When the both output proteins corresponding to the
direction are equal to zero, the final steering is equal to zero, meaning that
the car keeps its direction. Likewise, when both the accelerator and the brake
proteins are equal to zero, the car is neither accelerating nor braking: the car
will slowing reduce its speed with the engine brake.

Whereas other approaches use a noise reduction filter in addition to the stan-
dard anti-locking braking system (ABS) and the traction control systems (TCS),
the GRN approach does not need any noise filter: it is naturally noise-resistant.
The ABS and TCS are switched on because they provide a large support in the
braking and acceleration zones. The impact of noise on the GRN reaction is
detailed in [21].
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3.2 GRN genome

Before it can drive, the regulatory network needs to be optimized. In this work,
we use a standard genetic algorithm to optimize the GRN’s protein tags, en-
hancing tags and inhibiting tags. The GRN can be easily encoded in a genome.
The genome contains two independent chromosomes. The first one is defined as
a variable length chromosome of indivisible proteins. Each protein is encoded
with three integers between 0 and p that correspond to the three tags. In this
particular work, p is set at 32 and the genome proteins are organized with the
input proteins first, followed by the output proteins and then regulatory pro-
teins. The inputs and outputs presented in the previous section will be always
be linked to the same protein.

This chromosome requires particular crossover and mutation operators:

– a crossover can only occur between two proteins and never between two tags
of the same protein. This ensures the integrity of both subnetworks when the
GRN is subdivided into two networks. When assembling another GRN, local
connections are kept with this operator and only new connections between
the two networks are created.

– three mutations can be equiprobably used: add a new random regulatory
protein, remove one protein randomly selected in the set of regulatory pro-
teins, or mutate a tag within a randomly selected protein.

A second chromosome is used to evolve the dynamics variables β and δ. This
chromosome consists of two double-precision floating point values and uses the
standard mutation and crossover methods. These variables are evolved in the in-
terval [0.5, 2]. Values under 0.5 produce unreactive networks whereas values over
2 produce very unstable networks. These values are chosen empirically through
a series of test cases.

3.3 Incremental evolution

In order to optimize the GRN to drive a car, we use an incremental evolution in
three stages3. This section summarizes these three stages. More details can be
found in [21].

The first stage consists of training the GRN to drive as far as possible, with
a minimum speed, on one track. We use CGSpeedway, which is simple with
long turns and straight lines. Each tested GRNDriver is rewarded when going
farther and faster with an innovative ticket system. The ticket represents the
maximum time the GRNDriver must take to cover a sector of a certain distance.
Furthermore, the ticket’s value is reduced each time the GRNDriver validates
a sector: the farther the GRN goes on the track, the faster it must drive. The

3 During these stages, the same parameters have been used to tune the genetic algo-
rithm. Only the fitness function is modified. The genetic algorithm parameters are:
Population size: 500; Mutation rate: 15%; Crossover rate: 75%; GRN Size: [4, 20]
regulatory proteins plus inputs and outputs.
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fitness is given by the distance covered by the GRNDriver without getting out
of the track or getting out of time on a sector. This first stage builds a basic
network with which the GRNDriver can drive endlessly on this particular track.
It can also drive on most of the tracks but hard turns, never encountered in
CGSpeedway, are still problematic.

In order to generalize the network to any possible track, we evolved the
previous GRN a second time with the same evolutionary process but on three
different tracks. The tracks used are CGSpeedway (in order not to lose the
driving capabilities of the previous GRN), Alpine and Street. The fitness function
is the sum of the fitnesses of the first evolution stage successively applied to the
three tracks. At the end of this evolution, the best GRN is able to drive on every
possible track. It drives very safely, going at a suitable speed to go through every
kind of turn and braking when it detects a turn.

The final stage of evolution consists in removing all possible imperfection of
the best GRN obtained previously. We observed a few oscillatory behavior, very
common with GRNs, that could be a problem in a racing car championship.
To minimize the oscillatory behaviors, we evolve the best GRN one last time.
This time we add to the fitness function another test case that penalizes the
continuous oscillations of the car on straight lines and long turns or fast multiple
steering changes from full right to full left. As with the ticket system used in the
previous fitness functions, we simply stop the evaluation if we detect oscillatory
behaviors.

4 Influencing the GRN with a dangerousness measure

In order to make the previously evolved GRN fast enough to win a car racing
competition, we have designed a dangerousness measure that allows the GRN
to anticipate the incoming complexity of the track. This measure needs a full
cartography (turns, slipperiness, etc.) of the track and modify the longitudinal
speed input of the GRN. This sections details these two parts.

4.1 Track cartography

The cartography consists in recording a maximum of information about a track
during one lap. Therefore, we have scripted a driver that strictly follows the
middle of the track at a limited speed of 90km/h. To do so, the behavior is
decomposed as follows:

– Steering wheel. The angle of the wheel is given by the angle of the car with the
track: if the car longitudinal axis is not aligned with the track tangent, the
car driver must turn the wheel in the corresponding direction. This wheel
angle direction is corrected with the track position in order to avoid any
possible derivation of the car: if the car is shifted to the left (respectively
right) hand side of the track, the wheel angle is augmented (respectively
reduced) in order to recenter the car.
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– Gas and brake pedals. The gas/brake pedals are regulated so that the car
speed stay as close as possible to the target speed. To do so, the following
formulas are used to compute the gas pedal value g and the brake pedal
value b:

g = max(0, th) (7)

b = min(0,−th)

with th =
2

1 + exp(sc − st)
− 1

where sc is the car current speed, st is the target speed.

This simple cartographic driver has been made so that the car can pass
through all possible curves fast enough to produce some transversal speed (slides).
This is important in order to evaluate in each turn the quality of the track and
therefore the speed limits of the car. While driving, the script identifies track
sectors according to the wheel angle and Z-axis speed. Sectors can be of following
types:

– left if the left front sensor is greater than the right front sensor and actual
steering is greater than 0.025rad (steering left),

– right if the right front sensor is greater than the left front sensor and actual
steering is smaller than -0.025rad (steering right),

– jump if the Z-axis speed is smaller than -12.5km/h,
– straight otherwise.

At each time step of the cartography, a new sector is created when the sector type
is different to the sector type at the previous time step. This allows subdivision
of the tracks to as a series of sectors. In each sector, the following values are
stored:

– the sector length ls,
– sum of transversal speeds sy,
– sum of Z-axis speeds sz,
– sum of wheel angles wa.

With these data, two dangerousness measures are calculated for each sectors:

– the turn dangerousness, which expresses the turn complexity, given by
|wa−sy|

ls
,

– the jump dangerousness, which expresses the jumping risk of the car, given

by 50|sz|
ls

.

These measures are used by the GRN to regulate its speed before and during
the turn. Before being used by the GRN, the track cartography is first filtered
in order to remove micro sectors generated by sensor noise. To do so, all straight
sectors which length is smaller than 50 meters are removed. Their data are reallo-
cated to the neighbor sectors and their dangerousness measures are recalculated.

The turn dangerousness measure is refined during the 4 last laps of the warm-
up and the qualifying session in order to eliminate all possible risk of accident.
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Fig. 3: Examples of cartographies obtained, before refining (upper figures) and
after (lower ones).

When the GRNDriver gets off the track, the dangerousness value of the sector
is increased so that the same mistake is avoided during the next laps. Figure 3
shows both the turn dangerousness measure obtained right after the cartography
stage (upper figures) and the refined cartographies at the end of the qualifying
session (lower figures). We can observe that the refining is necessary in some
turns, under evaluated by the initial cartography (first two tracks: Wildno and
Limalonges). In particular, this is necessary after long straights to build a braking
zone which cannot appear with the low speed of the driver during cartography.

4.2 Influence on the GRN inputs

In order to regulate the GRNDriver speed, we have decided to distort the car
longitudinal speed sensor. Whereas most other approaches manipulated directly
the output of the controller, we have decided to modify its input so that the
GRNDriver keeps full control of the situation based on its full perceptions. For
example, even if the dangerousness measure is low, the GRN can decide not to
accelerate because the current car state is unstable (the car could be sliding,
on a bad track position, etc.). To distort the longitudinal speed sensor, a speed
regulator coefficient is applied to the direct sensor value. The aim of the coeffi-
cient is to let the GRN think the car is going slower than it really does when the
dangerousness is low and faster when the dangerousness is high. This encourages
the GRN either to speed up or slow down the car. To do so, the GRNDriver uses
the incoming sectors (including the one it is currently in) up to the sector at a
distance of 0.002∗s2x, where sx is the current longitudinal speed. This allows the
GRNDriver to regulate the dangerousness estimation according to the car speed.
With these sectors, the turn dangerousness dt and the jump dangerousness dj
measures are summed in order to provide the incoming global dangerousness dg.
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Based on the global dangerousness, different cases scenarios are identified to
compute the speed regulator coefficient Cs:

Cs =



























































0.5 if si is straight and dg < tn

0.66 if si is not straight and dg < tl

0.66 if si is not straight, dg < th and dist(si) > 0.37 ∗ ls

2 if si is not straight, dg < tm, sx > 135km/h and dist(si+1) < s2x/700

2 if si+1 is jump,sx > 170 and dist(si+1) < s2x/800

5 if si is straight, dg > th, sx > 120km/h and dist(si+1) < s2x/600

5 if si is straight, dg < th, sx > 135km/h and dist(si+1) < s2x/850

0.9 otherwise

(8)
where

– si is the current sector and si+1 is the next sector,
– dg is the current global dangerousness,
– tn = 150 is the no dangerousness threshold, tl = 250 is the low dangerousness

threshold, tm = 400 is the medium dangerousness threshold and th = 800 is
the high dangerousness threshold,

– dist(si) (resp. dist(si+1) is the distance to the beginning of the current (resp.
next) sector,

– sx is the car current longitudinal speed.

In these formulas, the condition dist(si+1) < s2x/y, with y = 600, 700, 800 or 850,
is used to evaluate the braking distance necessary to speed the car down to the
target speed. All the parameters involved in this formula have been empirically
chosen through test. A broader study could improve the approach and its results.

This speed regulator coefficient Cs is then simple multiplied to the car lon-
gitudinal speed sx to provide the car speed input c(iSx) of the GRN:

c(iSx) = norm(sx ∗ Cs) (9)

This input is sufficient to modify because it is strongly linked to the acceleration
output protein: other proteins are too (such as the front track sensor) but are
harder to modify due to their implications in the driving. Modifying a track
sensor might generate bad behavior when the GRNDriver is sliding in a turn for
example. The modification of the car speed input seams to be the more direct
and efficient way to impact the GRNDriver speed behavior.

5 Comparative study

In order to evaluate the dangerousness measure approach, we have compared its
benefits on the GRNDriver to other approaches submitted to the competition4

4 The source code and a short description of these approaches are available on the
competition website: http://cs.adelaide.edu.au/∼optlog/SCR2015/
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Fig. 4: The upper plot presents the overall time to cover the 5 laps in qualifying
mode. The lower one presents the position of the drivers according to the overall
time.

on the 12 tracks used during the competition. With this aim in mind, we have
compared the GRNDriver with and without the speed regulator coefficient as
well as the other approaches using the first two stage of the competition rules:

1. the drivers are run in warm-up mode during 5 laps in order to learn the
track.

2. they are then run in qualifying mode for 5 more laps.

In this comparative study, only the results of the qualifying session are presented.
Because the focus of the paper is the dangerousness measure we have introduced
this year, the results of the race are not presented in this paper. However, they
are also available on competition website. All the runs have been made with
noisy sensors.

Figure 4 presents the overall time taken by the competitors to cover 5 laps and
their position. Times (upper chart) are very close between competitors and it is
hard to evaluate which approach is better than the other. However, when looking
to position (lower chart), we can observe that the GRNDriver is most of the time
first with the dangerousness measure on and second when switched off. This can
be viewed with the last bars labelled “Average” which represent the positions
of the drivers averaged over the tracks. The GRNDriver with the dangerousness
measure finishes on average 2.25, the GRNDriver without dangerousness measure
finishes on average 2.83 and the next closer competitor, Mr. Racer, finishes 3.33.

When only comparing the GRNDriver with and without the dangerousness
metric, we can observe that the dangerousness measures improve the results of
the GRNDriver on 8 out of 12 tracks. The Wildno track seams to be problematic
for this approach, the GRNDriver with dangerousness measure having lower
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GRNDriver GRNDriver
with without

dangerousness dangerousness
measure measure

Lap 1 117.75 88.24
Lap 2 96.25 79.86
Lap 3 102.63 79.82
Lap 4 97.85 80.12
Lap 5 103.04 80.12

Fig. 5: Lap time of the GRNDriver
with and without the dangerousness
measure on Wildno.
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Fig. 6: The GRNDriver crashes in
two sequences of turns (red stars)
when the dangerousness measure is
activated because it makes the GRN-
Driver braking in a curve.

performances than expected. This bad performance implies a poor ranking on
this particular track. Table 5 provides the time of each lap on the Wildno track
for the GRNDriver with and without dangerousness measure. The table shows
a big instability of the driver over the laps. The GRNDriver with dangerousness
measure actually gets out off the track often, which is unproductive. On this
particular track the dangerousness measure seams to be too optimistic and makes
the car hard to control for the GRN. More precisely, figure 6 shows where the
GRNDriver with dangerousness measure crashes on the track: it is always in
the middle of a sequence of turns. The dangerousness metric forces the GRN
to brake in the turn which leads to a spin. However, the GRNDriver without
dangerousness measures finishes the qualifying session in first position (see figure
4). Wildno is a complex mountain track with a complex track to manage: a safe
approach of this track looks to be more productive than an aggressive one.

Figure 7 shows the best time of the same 5-laps qualifying session. The bene-
fits of the dangerousness measure are here undeniable, the GRNDriver with this
feature making 10 times out of 12 better best time than without it. This is an
important measure because the best lap corresponds to a lap at the very end of
the learning curve of the dangerousness measure. It corresponds to the data that
will be used during the race session against other approaches: being faster on one
lap is decisive at this point. When looking at the average ranking of the GRN-
Driver with and without the dangerousness measure, we observe that enabling
it allows the GRNDriver to overtake Mr Racer, which is the closest opponent to
the GRNDriver. This shows, in race condition regarding to the cartography of
the track, the significance of this feature.

6 Conclusion

In this paper, we have presented an improved version of our learning procedure
of a track used to influence the inputs of a gene regulatory network that drives
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Fig. 7: The upper plot presents the best time of the 5-laps qualifying session.
The lower one presents the position of the drivers according to the best lap.

a simulated racing car. We have designed a dangerousness metric that evaluates
the dangerousness of the track and helps the GRN to regulate the car speed
in function of the turn difficulties (slipperiness, angle, etc.) and the possible
jumps due to track bumps. We show the quality of this metric by comparing the
GRNDriver with and without its influence on the 12 tracks used in the Simulated
Car Racing Championship. In particular, we show that it greatly improves the
best lap time of the GRNDriver, which is crucial when opposed to other drivers
during a race session. At the end, the GRNDriver won the 2015 edition of the
SCRC both because of the generalization capacity of the GRN (able to drive fast
on any kind of track with no re-optimization) and because of the improvement
brought by the dangerousness method.

To improve this work, multiple options have to be investigated. Our goal is
to design a driver with as much automatic learning as possible. First, the use
of the GRN as a racing driver requires the design of a track learning method to
speed up the wise GRNs we generally obtain by evolution. We would like to teach
the GRN to go faster by the use of a hierarchical architecture: a second GRN,
pre-optimized on multiple tracks and reoptimized during the warm-up stage,
could modify the inputs and/or the outputs of the driving GRN according to
the current car state. The specialization capacity of the GRN observed in the
first evolutionary step could be helpful during this warm-up stage.

This GRNDriver must also be improved in order to correctly handle oppo-
nents. For now, the perception of the GRN is modified by a hand-written script
in order to overtake or avoid an opponent detected to close to the car. This
approach is innovative in comparison to most other approaches because they
usually directly impact the car actuators. Modifying the inputs instead of the
output keeps the controller as the center piece of the algorithm. However, we
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want the GRN to learn to handle this move by itself because most overruns are
currently due to this script. Having all the information the car can detect and
letting the GRN decide the best move could reduce this issue.

The application of such an approach to a real car driving is still problem-
atic because of the difficulty to prove the security of this approach: in order to
drive a real car, it is necessary to strictly prove the algorithm. It is currently
mathematically complex to make it on a gene regulatory network because of the
complexity of the generated network. However, this approach could be exploited
as a controller in a car racing game: multiple GRNs could evolve in parallel
with the player, making non-scripted controllers with a large diversity. It could
improve the interest of the game by producing different strategies to which the
player would have to face.
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