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Abstract—Multifractal (MF) analysis enables the theoretical
study of scale invariance models and their practical assessment
via wavelet leaders. Yet, the accurate estimation of MF param-
eters remains a challenging task. For a range of applications,
notably biomedical, the performance can potentially be improved
by taking advantage of the multivariate nature of data. However,
this has barely been considered in the context of MF analysis.
This paper proposes a Bayesian model that enables the joint
estimation of MF parameters for multivariate time series. It
builds on a recently introduced statistical model for leaders and
is formulated using a 3D gamma Markov random field joint
prior for the MF parameters of the voxels of spatio-temporal
data, represented as a multivariate time series, that counteracts
the statistical variability induced by small sample size. Numer-
ical simulations indicate that the proposed Bayesian estimator
significantly outperforms current state-of-the-art algorithms.

I. CONTEXT, RELATED WORK AND CONTRIBUTIONS

Context. Multifractal analysis is a widely used signal pro-

cessing tool and enables the study of the scale invariance

properties of data. It has been successfully used in a large

variety of applications, ranging from biomedical [1], [2],

physics [3] to finance [4] and Internet [5], cf., e.g., [6] for

a review. Scale invariance implies that the dynamics of a time

series X(t) are driven by a large continuum of time scales

instead of only a few characteristic scales. This translates

into power law behaviors of the time averages of well chosen

multiresolution quantities TX(j, k) of X (i.e., quantities that

depend jointly on scale 2j and time instance k) over a large

range of scales 2j

S(q, j) ,
1

nj

∑

k

|TX(j, k)|q ≃ (2j)ζ(q), 2j1 ≤ 2j ≤ 2j2 (1)

where nj is the number of TX(j, k) at scale j. In this work,

wavelet leaders l(j, k) are used as multiresolution quantities,

which can be shown to be well suited for this purpose [6],

[7] (and are defined in Section II). Given a time series X , the

goal is the estimation of the so-called scaling exponents ζ(q)
of the power law in (1), which fully characterize the scale

invariance properties of X . Notably, the scaling exponents

permit discrimination between the two fundamental classes

of scale invariance models: self-similar processes, which are

obtained by additive construction mechanisms and charac-

terized by a linear function ζ(q) = qH [8]; multifractal

multiplicative cascades (MMC), which have a multiplicative

structure and yield a strictly concave function ζ(q) [4]. In

order to understand the construction mechanisms underlying

data, it is crucial to decide which model better fits the data in

applications. This decision can be reached by considering the

polynomial development ζ(q) =
∑
m≥1 cmq

m/m! at q = 0. It

can be shown that the coefficient c2, called the multifractality

parameter, is strictly negative for MMC but equals zero

for self-similar processes, cf., e.g., [7], [9]. Therefore, the

estimation of c2 is central in multifractal analysis.

Estimation of c2. The multifractality parameter c2 can be

directly linked to the variance of the logarithm of l(j, k) [9]

C2(j) , Var [ln l(j, ·)] = c02 + c2 ln 2
j . (2)

This motivates estimation of c2 as a linear regression of the

sample variance V̂ar [·] of log-leaders with respect to scale j

ĉ2 = (ln 2)−1
∑j2

j=j1
wj V̂ar [ln l(j, ·)] (3)

where wj are appropriate regression weights [7]. The estimator

(3) is widely used but is known to yield poor performance for

small sample size [10], [11]. Alternative estimators have been

described in, e.g., [12], [13], but they make assumptions, (e.g.

fully parametric model, specific multifractal process), that are

often too restrictive in real-world applications. More recently,

Bayesian estimators for c2 have been proposed in [10], [11].

Their advantage lies in the use of a semi-parametric model

for the statistics of the log-leaders that is generically valid for

MMC processes and induces considerable performance gains

when compared to (3). These gains were obtained at the price

of increased computational cost since the Bayesian inference

was achieved by a Markov chain Monte Carlo (MCMC)

algorithm with a Metropolis-Hastings within Gibbs (MHG)

sampler. A significantly more efficient algorithm was obtained

very recently in [14] by considering a data augmented formu-

lation of the Bayesian model. None of these developments

addressed the estimation of c2 for multivariate data.

Contributions. This paper devises a Bayesian procedure

for the joint estimation of c2 associated with multivariate time

series registered on a volume (voxels) that makes use of the

dependence of neighboring voxels in order to improve estima-

tion accuracy. The algorithm combines the statistical model

introduced in [10], [11] with the data augmentation strategy

proposed for images in [14] (summarized in Section II). The



key contribution (described in Section III) resides in the design

of an appropriate joint prior for the multifractality parameters

for voxels. It consists of a hidden 3D gamma Markov random

field (GMRF) [15] with eight-fold spatial neighborhood that

models the dependence between the parameters of neighboring

voxels. The Bayesian model is designed in such a way that the

conditional distributions of the resulting joint posterior can be

sampled without MHG steps. Consequently, the approximation

of the associated Bayesian estimator by means of an MCMC

algorithm is very efficient (inducing approximately 10 times

only the overall cost of estimation based on (3)). Numerical

simulations with synthetic multifractal data demonstrate that

the proposed method reduces standard deviations as compared

to the linear regression (3) by more than one order of mag-

nitude and permits, for the first time, the accurate assessment

of small differences of the values of c2 associated with voxels

of multivariate time series (cf., Section IV).

II. STATISTICAL MODEL FOR LOG-LEADERS

A. Direct statistical model in the time-domain

Wavelet leaders. A mother wavelet ψ0(t) is a reference

pattern that has narrow supports in the time and frequency

domains. It is chosen such that the collection {ψj,k(t) ≡
2−j/2ψ0(2

−jt − k), j ∈ N, k ∈ N} forms a basis of L2(R)
and is characterized by its number of vanishing moments

Nψ ≥ 1 (∀k = 0, 1, . . . , Nψ − 1,
∫
R
tkψ0(t)dt ≡ 0 and∫

R
tNψψ0(t)dt 6= 0). The (L1-normalized) discrete wavelet

transform coefficients of X are defined as dX(j, k) =
〈X, 2−j/2ψj,k〉, cf., e.g., [16] for details.

Let λj,k = [k2j , (k+1)2j) denote the dyadic interval of size 2j

and 3λj,k the union of λj,k with its 2 neighbors. The wavelet

leaders are defined as the largest wavelet coefficient within

3λj,k over all finer scales [6], [7]

l(j, k) , supλ′⊂3λj,k
|dX(λ′)|. (4)

Statistical model. Denote as ℓj the vector of the log-leaders

ℓ(j, ·) , ln l(j, ·) at scale j after mean substraction (since

it conveys no information on c2) and ℓ , [ℓTj1 , . . . , ℓ
T
j2 ]
T .

The statistics of ℓj of MMC based processes can be well

approximated by a multivariate Gaussian distribution whose

covariance Cj(k,∆k) , Cov[ℓ(j, k), ℓ(j, k+∆k)] is [10]

Cj(k,∆k) ≈ ̺0j (∆k;θ) + ̺1j (∆k;θ) (5)

where θ = (c2, c
0
2), ̺

1
j (r;θ) , c2 ln(4|r|/nj)I(3,nj/4](r),

̺0j (r;θ) ,
( ln(1+|r|)

ln 4 (̺1j (3;θ) − c02 − c2 ln 2
j) + c02 +

c2 ln 2
j
)
I(0,3](r) and where IA is the indicator function of the

set A. Assuming independence between ℓj at different scales

j leads to the following likelihood for ℓ

p(ℓ|θ) =
∏j2

j=j1
|Σj,θ|−

1
2 exp

(
− 1

2
ℓTj Σ

−1
j,θℓj

)
(6)

where the matrices Σj,θ are defined element-wise by (5), | · |
is denoting the determinant and T the transpose operator.

Whittle approximation. The likelihood (6) is problematic

to evaluate numerically since it requires the computation of

the matrix inverses Σ−1
j,θ . Thus, it has been proposed in [11]

to approximate (6) with the asymptotic Whittle likelihood [17]

pW (ℓ|θ) =|Γθ|−1 exp
(
−yHΓ−1

θ
y
)
, (7)

y , [yTj1 , ...,y
T
j2 ]
T , yj = F(ℓj)

where Γθ , c2F + c02G is an NY ×NY diagonal covariance

matrix, with NY , card(y), F , diag (f), G , diag (g),
f , [fTj1 , ..., f

T
j2
]T and g , [gTj1 , ...,g

T
j2
]T . The diagonal

elements of Γθ correspond to the discretized spectral densities

c2 fj(m) + c02 gj(m) associated with the model (5), for the

positive frequencies ωm = 2πm/
√
nj , m ∈ N+. Here,

yj , F(ℓj) is the periodogram of ℓj , where the operator

F(·) computes and vectorizes the discrete Fourier transform

coefficients for ωm, m ∈ N+ and H is the conjugate transpose

operator. Note that fj and gj do not depend on θ and can be

precomputed (and stored) using the fast Fourier transform.

B. Data augmented statistical model in the Fourier domain

The parameters θ are encoded in Σ−1
j,θ , and their condi-

tional distributions are not standard. Sampling the posterior

distribution with an MCMC method would hence require

accept/reject procedures [10], [11]. A more efficient algorithm

can be obtained by interpreting (7) as a statistical model for

the Fourier coefficients y [14]. Assuming that Γθ is positive

definite, (7) amounts to modeling y by a random vector with

a centered circular-symmetric complex Gaussian distribution

CN (0,Γθ), hence to the use of the likelihood

p(y|θ) = |Γθ|−1 exp
(
−yHΓ−1

θ
y
)
. (8)

Reparametrization. The matrix Γθ is positive definite as long

as the parameters θ=(c2, c
0
2) belong to the admissible set

A={θ∈R−
⋆× R+

⋆ |c2f(m) + c02g(m)>0,m=1,..., NY}. (9)

Since ∀m, c02g(m) > 0 (while c2f(m) < 0), (9) can be

mapped onto independent positivity constraints by a one-to-

one transformation from θ ∈ A to v ∈ R+2
⋆ defined as θ 7→

v = (v1, v2),(−c2, c02/γ+ c2), where γ = supm f(m)/g(m)
[14]. Consequently, (8) can be expressed using v ∈ R+2

⋆ as

p(y|v) ∝|Γv|−1 exp
(
−yHΓ−1

v y
)

(10)

Γv = v1F̃ + v2G̃, F̃ = −F +Gγ, G̃ = Gγ

where F̃ , G̃ and Γv are positive definite diagonal matrices.

Data augmentation. One can now introduce an NY × 1
vector of latent variables µ that enables us to augment (10) us-

ing the model y|µ, v2 ∼ CN (µ, v2G̃), µ|v1 ∼ CN (0, v1F̃ ),
which is associated with the extended likelihood [14]

p(y,µ|v) ∝ v2
−NY exp

(
− v−1

2 (y − µ)HG̃
−1

(y − µ)
)

× v1
−NY exp

(
− v−1

1 µH F̃
−1

µ
)
. (11)

Simple calculations show that (11) leads to standard condi-

tional distributions when inverse-gamma priors are used for

vi, i = 1, 2, and that (10) is recovered by marginalization of

(11) with respect to µ.



III. BAYESIAN MODEL FOR MULTIVARIATE TIME SERIES

A. Likelihood

Based on the likelihood (11) for one single time series

X(t), we now design a joint Bayesian model for the analysis

of multivariate time series. Let Xm, m , (m1,m2,m3),
md = 1, . . . ,Md, denote M1 ×M2 ×M3 discrete time series

(voxels) of length N (as illustrated in Fig. 1). Denote as

ym, µm and vm the Fourier coefficients, latent variables and

parameter vector associated with Xm and as Y , {ym},

M , {µm}, and V , {V 1,V 2} (where V i , {vi,m},

i = 1, 2) the corresponding collections for all voxels {Xm}.

Assuming independence between the vectors ym, the joint

likelihood of Y can be written as

p(Y ,M |V ) ∝
∏

m
p(ym,µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(αi,m, βi,m) are conjugate

priors for the parameters vi,m in (12), and we propose to

specify (αi,m, βi,m) such that the resulting prior for V i is a

hidden GMRF [15]. A GMRF makes use of a set of positive

auxiliary variables Z = {Z1,Z2}, Zi = {zi,m}, to induce

positive dependence between the neighbooring elements of

V i (and thus spatial regularization) [15]. Specifically, each

vi,m is connected to the eight auxiliary variables zi,m′ >
0, m′ ∈ Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and

therefore, each zi,m to vi,m′ , m′ ∈ Vz(m) , {m +
(d1, d2, d3))}d1,d2,d3=−1,0), via edges with weights ρi, i =
1, 2, that are hyperparameters and control the amount of

smoothness. It can be shown that this prior for (V i,Zi) is

associated with the density [15]

p(V i,Zi|ρi) ∝
∏

k
e(8ρi−1) log zi,m e−(8ρi+1) log vi,m

.× e
−

ρi
vi,m

∑
m

′∈Vv(m) zi,m′

. (13)

C. Posterior distribution and Bayesian estimators

Under the assumption of prior independence between

(V 1,Z1) and (V 2,M ,Z2), the joint posterior distribution

associated with the proposed model is obtained as

p(V ,Z,M |Y , ρ1, ρ2) ∝ p(Y |V 2,M) p(M |V 1)

× p(V 1,Z1|ρ1) p(V 2,Z2|ρ2) (14)

using Bayes’ theorem. To infer the parameters of inter-

est V i, we consider the marginal posterior mean (mini-

mum mean square error) estimator, denoted MMSE, which

is defined as V MMSE
i , E[V i|Y , ρi], where the expecta-

tion is taken with respect to the marginal posterior den-

sity p(V i|Y , ρi). The direct computation of V MMSE
i is not

tractable since it requires integrating the posterior (14) over

the variables Z and M and computation of the expectation.

Instead, by considering a Gibbs sampler (GS) generating

samples ({V (q)
i },M (q), {Zi

(q)})Nmcq=0 that are asymptotically

distributed according to (14), it can be approximated as [18]

V MMSE
i ≈ (Nmc −Nbi)

−1
∑Nmc

q=Nbi
V

(q)
i (15)

1 256 512

c
2
=-0.06

t

c
2
=-0.03

c
2
=-0.01

Fig. 1. Illustration of the cube of 32 × 32 × 32 voxels of time series (left
panel) with prescribed multifractal properties c2 ∈ {−0.01,−0.03,−0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

LF IG GMRF

|b| 0.0158 0.0051 0.0092

std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples

from the conditional distributions that are associated with the

posterior (14) [18]. Simple calculations lead to

p(µ |Y ,V )∼ CN
(
v1F̃Γ−1

v y,
(
(v1F̃ )−1+(v2G̃)−1

)
−1
)

(16a)

p(vi |Y ,M ,Zi) ∼ IG(NY+αi,Ξi+βi) (16b)

p(zi |V i) ∼ G(αi, γi) (16c)

where the subscript m has been omitted for notational con-

venience and where Ξ1 = ||µ||
F̃

−1 , Ξ2 = ||y−µ||
G̃

−1 with

||x||Π , xHΠx, αi,m = 8ρi, βi,m = ρi
∑

m′∈Vv(m) zi,m′

and γi,m = (ρi
∑

m′∈Vz(m) v
−1
i,m′)−1. All conditionals (16a–

16c) are standard laws that can be sampled efficiently, without

MHG steps. Finally, note that when the parameters vi,m
are assumed to be independent and have IG(ci, di) priors

instead of (13) (i.e., no smooth spatial evolution is assumed),

a Bayesian model is obtained that can also be sampled using

the GS steps (16a–16b), with αi,m = ci and βi,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator

(denoted as GMRF) with its counterpart with an IG prior

(denoted as IG) and with the linear regression estimator (3)

(denoted as LF, with weights as in [7]) by applying it to

100 independent realizations of a cube of 323 voxels of

length N = 512. Each voxel is an independent realization

of MRW, with prescribed values c2 ∈ {−0.01,−0.03,−0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC

processes and possesses multifractal properties similar to those

of Mandelbrot’s multiplicative log-normal cascades, with scal-

ing exponents ζ(q) = (H− c2)q+ c2q2/2, cf., [19] for details



Fig. 2. Estimation of c2 for one single realization: ground truth (1st
column) and estimates obtained using LF, IG and GMRF (2nd to 4th column,
respectively) for the 3 slices shown in Fig. 1 (from top to bottom).

(H = 0.72 for the results presented below). The regularization

parameters have been fixed a priori using cross-validation.

Illustration for a single realization. Fig. 2 displays es-

timates obtained for one single realization using LF, IG and

GMRF (2nd to 4th row, respectively) for the slices x = 16,

z = 10 and z = 23 shown in Fig. 1 and yields the

following conclusions. First, the LF estimator completely fails

to reveal the existence of two zones of voxels with constant

c2 ∈ {−0.03,−0.06} in the background of voxels with

c2 = −0.01. The IG estimator improves estimation accuracy

with respect to the LF such that the three groups of voxels

can be evidenced visually, but its variability is too large to

permit accurate identification of the voxels sharing the same

value for c2. In contrast, the GMRF estimator yields excellent

estimates that accurately capture the geometry of the three

zones of voxels and the corresponding values for c2.

Performance. The estimation performance for c2 is quan-

tified via the bias, standard deviation and root mean squared

error defined as b = Ê[ĉ2]−c2, std = (V̂ar[ĉ2])
1
2 and rmse=(

b2+std2
) 1

2 , respectively. The results are given in Table I and

confirm the above conclusions. While IG reduces std values to
1
3 of those of LF, GMRF further and dramatically reduces std

values to 1
40 of those of LF, which clearly demonstrates the

effectiveness of the proposed joint Bayesian model. The bias

is found to be small but non-negligible for all three methods

(largest for LF and smallest for IG). As a result, gains in rmse

values for GMRF are smaller but still significant (rmse values

of GMRF are one order of magnitude below those of LF).

V. CONCLUSIONS

This paper has proposed a Bayesian procedure for the

joint estimation of c2 for spatio-temporal data (voxels). The

Bayesian model is composed of a data-augmented Whittle

likelihood for log-leaders and a GMRF joint prior for the

multifractality parameters for voxels and yields a significant

improvement in estimation performance for each voxel (by

more than one order of magnitude when compared to linear

regression). Moreover, it is designed in such a way that the

associated estimators can be approximated efficiently by an

MCMC algorithm. The proposed joint estimator enables, for

the first time, the reliable assessment of small differences of

c2 for voxels with as little as N = 512 samples. Future work

will include incorporation of the regularization parameters ρi
in the model and allowing them to differ for each voxel in

order to permit abrupt changes in the data while maintaining

strong smoothing within zones of voxels with constant c2.
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