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ABSTRACT

Texture analysis is central in many image processing prob-

lems. It can be conducted by studying the local regularity

fluctuations of image amplitudes, and multifractal analysis

provides a theoretical and practical framework for such a

characterization. Yet, due to the non Gaussian nature and

intricate dependence structure of multifractal models, accu-

rate parameter estimation is challenging: standard estimators

yield modest performance, and alternative (semi-)parametric

estimators exhibit prohibitive computational cost for large

images. This present contribution addresses these difficul-

ties and proposes a Bayesian procedure for the estimation

of the multifractality parameter c2 for images. It relies on a

recently proposed semi-parametric model for the multivariate

statistics of log-wavelet leaders and on a Whittle approxi-

mation that enables its numerical evaluation. The key result

is a closed-form expression for the Whittle likelihood. Nu-

merical simulations indicate the excellent performance of

the method, significantly improving estimation performance

over standard estimators and computational efficiency over

previously proposed Bayesian estimators.

Index Terms— Multifractal analysis, Bayesian estima-

tion, Hankel transform, Whittle likelihood, Texture analysis

1. INTRODUCTION

Context. Texture constitutes one of the central features

in images, and its characterization plays an important role in

a variety of image processing applications. Many different

mathematical models for texture have been developped. It

has been recognized that texture characterization can be effi-

ciently conducted within the mathematical framework of mul-

tifractal analysis, which provides a standard signal and image

processing tool that has been used in a large variety of ap-

plications, cf., e.g., [1, 2] and references therein. Multifrac-

tal analysis is a specific instance of scale invariance analysis

which enables the fluctuations of the pointwise smoothness

of image amplitudes to be studied: The texture of an image
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X(k) is characterized by means of the so-called multifractal

spectrum D(h) which is defined as the Hausdorff dimension

of the sets of points that have the same pointwise regularity

h (commonly measured with the so-called Hölder exponent,

cf. [3]). In practice, multifractal models translate into the

power law behaviors of the sample moments of appropriate

multiresolution quantities TX(a,k) (i.e., quantities that de-

pend jointly on scale a = 2j and spatial position k) of X(k),

S(q, j) ≡ 1

nj

nj∑

k=1

|TX(j, k)|q ≃ aζ(q), am ≤ a ≤ aM . (1)

Here, wavelet leaders ℓ(j,k) will be used as multiresolution

quantities TX(a,k), which are considered to be the bench-

mark multiresolution quantities for multifractal analysis and

defined in Section 2.1 below [1, 3]. The exponents ζ(q) of

the power laws in (1), termed scaling exponents, are inti-

mately tied to the local regularity fluctuations of the image

amplitudes, measured by D(h), via a Legendre transform,

D(h) ≤ L(h) := infq∈R[1+qh−ζ(q)]. Notably, they enable

the formal discrimination between the two most prominent

classes of scale invariance models: self-similar processes, for

which ζ(q) is a linear function of q in the neighborhood of

q = 0 [4], and multifractal multiplicative cascade based pro-

cesses, for which ζ(q) is a strictly concave function [5]. The

decision whether a class or the other better models real-world

data is fundamental in applications because they imply com-

pletely different data production mechanisms: additive for the

former, and multiplicative for the latter. In practice, it can be

cast into testing the linearity of ζ(q) at q = 0 [1, 6] by con-

sidering the development of ζ(q) as a polynomial at q = 0,

ζ(q) =
∑
m≥1 cmq

m/m!. One can show that c2 < 0 for mul-

tiplicative cascades while c2 ≡ 0 for self-similar processes

(cf., e.g, [6]) and c2 ≡ 0 implies that cm ≡ 0, ∀m ≥ 3 [3].

The estimation of c2, termed the intermittency or multifrac-

tality parameter, is therefore central in multifractal analysis.

Estimation of c2. In the seminal contribution [7], it was

shown that the coefficients cm are related to the cumulants

of the logarithm of the multiresolution quantities (here, the

wavelet leaders ℓX(j,k)). In particular, the variance of the

log of wavelet leaders is given by the expression

C2(j) ≡ Var [ln ℓX(j,k)] = c02 + c2 ln 2
j . (2)



The parameter c2 can thus be estimated by linear regression

of the sample variance V̂ar of the log-leaders with respect to

scale j

ĉ2 =
1

ln 2

j2∑

j=j1

wj V̂ar [ln ℓ(j,k)] (3)

where wj are suitable regression weights. The main limita-

tion of (3) is that it requires a sufficient number of scales to

be available and hence sufficiently large images (in practice,

images of size N ×N&512× 512) to yield satisfactory per-

formance. As an alternative to (3), a generalized method of

moments has been proposed [8], relying on fully parametric

models that are often too restrictive in applications.

To overcome such limitations, it has recently been pro-

posed to conduct the estimation of c2 in a Bayesian frame-

work [2,9]. The method relies on the use of a semi-parametric

Gaussian likelihood model for the multivariate statistics of

the log-leaders. The model is generically valid for multi-

fractal multiplicative cascade processes and imposes minimal

assumptions (essentially, (2)) on data. To enable the evalu-

ation of the likelihood for images, a Whittle approximation

was used in [2] that expresses the likelihood in the spectral

domain. The Bayesian estimators associated with the model

were then approximated using a Markov chain Monte Carlo

(MCMC) algorithm. The method is robust and significantly

improves estimation performance when compared to (3). Yet,

the variance-covariance model does not lead to a closed-form

expression of the Whittle likelihood and its successive eval-

uations in the MCMC algorithm are thus costly, practically

prohibiting its application to very large images.

Goals and contributions. This present contribution pro-

poses a Bayesian estimation procedure for c2 for images that

is effective and efficient for both small and large images. The

proposed procedure extends the work presented in [2] by de-

veloping an original formulation of the multivariate Gaussian

model leading to a more efficient algorithm.

The key contribution resides in the derivation of a closed-

form expression for the spectral density associated with the

multivariate Gaussian model for log-leaders. This contribu-

tion is specific for the analysis of images. First, the model

is expressed in continuous time and its radial symmetry is

exploited for expressing the associated spectral density as a

Hankel transform [14]. Second, by evaluation of the Hankel

transform, we obtain closed-form expressions for the radial

component of the spectral density model in which the param-

eters are made explicit. Finally, this closed-form model is

discretized and substituted in the Whittle approximation.

The performance of the proposed Bayesian estimation

procedure for the parameter c2 of images are assessed with

Monte Carlo simulations for synthetic multiplicative cascade

based multifractal processes, showing the clear benefits of

the proposed method: it strongly outperforms (3) in estima-

tion performance and significantly reduces computation time

when compared to the solution of [2].

2. BAYESIAN MODEL AND ESTIMATION

2.1. Wavelet coefficients and leaders.

Let φ(x) and ψ(x) denote the scaling function and mother

wavelet defining a 1D multiresolution analysis [10]. 2D

wavelets can be defined as: ψ(0)(x) = φ(x1)φ(x2), ψ
(1)(x) =

ψ(x1)φ(x2), ψ
(2)(x) = φ(x1)ψ(x2), ψ

(3)(x) = ψ(x1)ψ(x2).

The collections ψ
(m)
j,k (x) = 2−jψ(m)(2−jx−k) of templates

of ψ0, dilated to scales a = 2j and translated to space posi-

tions x = 2jk, form a basis of L2(R2) for a well chosen ψ.

The (L1-normalized) discrete wavelet transform coefficients

of the image X are defined as d
(m)
X (j, k) = 〈X,ψ(m)

j,k 〉, m =
0, . . . , 3 [10]. Let λj,k denote the dyadic cube of side length

2j centered at k2j and 3λj,k =
⋃
n1,n2={−1,0,1}λj,k1+n1,k2+n2

the union of this cube with its eight neighbors. The wavelet

leaders are defined as the supremum of the wavelet coeffi-

cients in this spatial neighborhood over all finer scales [1, 3]

ℓ(j,k) , sup
m∈(1,2,3),λ′⊂3λj,k

|d(m)
X (λ′)|. (4)

2.2. Statistics of log-wavelet leaders for images

Extensive numerical simulations in [2,9] have shown that the

statistics of the log-leaders, l(j, ·) , ln ℓ(j, ·), of multiplica-

tive cascade based multifractal processes can be well approx-

imated by multivariate Gaussian distributions. In [2], a model

for the covariance Cj(k,∆k) , Cov[l(j,k), l(j,k + ∆k)]
at scale j for images has been proposed. It is inspired by the

asymptotic covariance properties that are induced by the mul-

tiplicative cascade construction [5], can be parametrized by

the parameter vector θ , [c2, c
0
2]
T and is given by

Cj(k,∆k)≈̺j(|∆k|;θ),
{
̺0j (|∆k|;θ) 0 < |∆k| ≤ 3

̺1j (|∆k|;θ) 3 < |∆k| (5)

where | · | is the Euclidian norm. The model (5) is radial

symmetric, with radial component defined by the functions

̺0j and ̺1j . These functions are linear functions of ln(r + 1)
and ln r, respectively, and are defined as

̺0j (r;θ) , aj ln(1 + r) + c02 + c2 ln 2
j (6)

where aj , (̺1j (3;θ)− c02 − c2 ln 2
j)/ln 4 and

̺1j (r;θ) , c2 ln(r/rj)I[0,rj ](r) (7)

where rj = ⌊√nj/4⌋, ⌊·⌋ truncates to integer values, nj ≈
⌊N2/22j⌋ is the number of wavelet leaders at scale j and

IA(r) is the indicator function of the set A. Note that ̺0j (r =
0;θ) reduces to the variance given in (2).

2.3. Likelihood, prior and posterior distributions

We consider the estimation of c2 here and therefore do not

consider the mean of the log-leaders in the model. The log-

leaders at scale j are centered, l̄(j,k) , l(j,k)− Ê[lX(j, .)],



where Ê[·] is the sample mean, and stacked in the vector ℓj
according to the lexicographic order ki, i = 1, · · · , n2j .

Likelihood. For a given scale j, the statistical model and

notations above straightforwardly lead to the likelihood of ℓj

p(ℓj |θ),
(
(2π)njdetΣj(θ)

)− 1
2 exp

(
− 1

2
ℓ
T
j Σ

−1
j (θ)ℓj

)
(8)

where Σj(θ) is the covariance matrix with elements given by

[Σj(θ)]u,v = ̺j(|ku − kv|;θ). The log-leaders at different

scales are assumed independent. The likelihood for all cen-

tered log-leaders, L = [ℓTj1 , ..., ℓj2 ]
T , is thus given by

p(L|θ) =
j2∏

j=j1

p(ℓj |θ). (9)

Prior distribution. The parameter vector θ must be chosen

such that the variances C2(j) are positive for j = j1, . . . , j2,

which is ensured if θ belongs to the admissible set A =
(A+ ∪ A−) ∩ AM with A− = {(c2, c02) ∈ R

2 | c2 <
0 and c02 + c2 j2ln 2 > 0}, A+ = {(c2, c02) ∈ R

2 | c2 >
0 and c02 + c2 j1ln 2 > 0} and Am = {(c2, c02) ∈ R

2 | |c02| <
c0,M2 , |c2| < cM2 }, where cM2 and c0,M2 are the largest admis-

sible values for c2 and c02, respectively. When no additional

prior information is available, a uniform prior distribution on

the set A is assigned to θ, i.e., π(θ) = UA(θ) ∝ IA(θ).
Posterior distribution and Bayesian estimators. The pos-

terior distribution of θ follows from Bayes rule

p(θ|L) ∝ p(L|θ) π(θ). (10)

It is used to define the minimum mean squared error (MMSE)

and maximum a posteriori (MAP) estimators in (11).

2.4. Gibbs sampler

Since the Bayesian estimators associated with (10) are dif-

ficult to compute, we investigate a Gibbs sampling strategy

to generate samples {θ(t)}Nmc

t=1 that are asymptotically dis-

tributed according to the posterior distribution (10). It relies

on successive sampling according to the conditional distribu-

tions associated with p(θ|L). Since these conditional distri-

butions do not correspond with standard laws, they are sam-

pled using a Metropolis-within-Gibbs procedure, defined by

random walks with Gaussian proposal distributions. More

precisely, given the state θ
(t−1), two steps are computed.

Sampling according to p(c
(t)
2 |c0,(t−1)

2 ,L). A candidate c∗2
is drawn from the proposal distribution pc2(c

∗
2|c(t−1)

2 ) =

N (c
(t−1)
2 , σ2

c2
). It is accepted (c

(t)
2 = c∗2) or rejected

(c
(t)
2 = c

(t−1)
2 ) with the Metropolis-Hastings ratio rc2 .

Sampling according to p(c
0,(t)
2 |c(t)2 ,L). A candidate c0,∗2

is drawn from the proposal distribution pc02(c
0,∗
2 |c0,(t−1)

2 ) =

N (c
0,(t−1)
2 , σ2

c02
) and accepted (c

0,(t)
2 = c0,∗2 ) or rejected

(c
0,(t)
2 = c

0,(t−1)
2 ) with the Metropolis-Hastings ratio rc02 .

The Metropolis-Hastings acceptance ratios are defined by

rθ = p(θ∗|L)

p(θ(t−1)|L)

pθ(θ
(t−1)|θ∗)

pθ(θ∗|θ(t−1))
. The variances σ2

(·) of the

proposal distributions are chosen to yield acceptance ratios

rθ ∈ [0.4, 0.6] (see [11] for details on MCMC methods).

Bayesian estimators. The generated samples (after a burn-

in of Nbi samples) are used to approximate the Bayesian esti-

mators of θ as follows

θ̂
MMSE≈ 1

Nmc −Nbi

Nmc∑

Nbi

θ
(t), θ̂

MAP≈ argmax
t≥Nbi

p(θ(t)|L).(11)

3. FAST COMPUTATION USING A WHITTLE

APPROXIMATION AND A HANKEL TRANSFORM

Whittle likelihood. The inversion of Σj(θ) in (8) at each

iteration of the Gibbs sampler is computationally intensive

and numerically problematic (large condition number) even

for small images. Therefore, it was proposed in [2] to re-

place the exact likelihood (8) by a Whittle approximation [12]

whose evaluation in the spectral domain is efficient and nu-

merically robust. Under the assumptions of Section 2.2, the

Whittle approximation of (8) is given by [12, 13]

p(ℓj |θ)∝ p†(ℓj |θ),exp
1

2

∑

m∈Jj

lnφj(ωm;θ)+
Ij(ωm)

φj(ωm;θ)

(12)

where Ij(ωm) , |∑k l̄(j,k) exp(−ikTωm)|2/nj is the

periodogram of {l̄(j,k)}, ωm = 2πm/nj and m ∈ Jj ,
[[⌊(−√

nj−1)/2⌋:√nj−⌊√nj/2⌋]]2. The function φj(ωm;θ)
is the parametric spectral density associated with the co-

variance model (5). Finally, the approximation p†(L|θ) ,∏j2
j=j1

p†(ℓj |θ) replaces (9) in (10).

Numerical spectral density model. In [2], it was pro-

posed to compute the spectral density φj(ωm;θ) in (12) nu-

merically by using the discrete Fourier transform (DFT)

φDFTj (ωm;θ)=
∣∣∑

∆k

̺j(|∆k|;θ) exp(−i∆k
T
ωm)

∣∣. (13)

Practically, this means that at each step of the Gibbs sampler

a 2D DFT must be computed.

Closed-form parametric spectral density. In this work,

we derive a closed-form parametric expression for φj(ωm;θ)
that avoids the costly evaluations of 2D DFTs in (12) implied

by (13). The continuous spectral density associated with the

covariance model ̺j(r;θ) is given by Bochner’s theorem

φ̃j(ω;θ) =

∫

R2

e−i(xTω)̺j(|x|;θ) dx. (14)

Note that because ̺j(|x|;θ) is a radial symmetric function,

its Fourier transform φ̃j(ω;θ) is also radial symmetric. It can

therefore be expressed as a Hankel transform [14], given by

φ̃j(ω;θ) = φ̃Hj (|ω|;θ) = 2π

∫ ∞

0

r̺j(r;θ)J0(r|ω|) dr (15)

where Jn(·) is the n-th order Bessel function. To eval-

uate the integral (15), we make use of the identities: (i)

ρ
∫ R
0
rJ0(rρ)dr=RJ1(Rρ) and (ii) ρ2

∫ R
0
r ln(r/R)J0(rρ)dr
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and of models (13) and (18) (red and blue, respectively).

= −(1 − J0(Rρ)) which are valid for R > 0, ρ > 0,

cf. [14, Tab. 17.1]. The function ̺1j (r;θ) is affine in ln(r)
as in (ii), and we thus break up the integration according to

the range of validity of ̺0j and ̺1j in (5), i.e., φ̃Hj (|ω|;θ) =

Aj(|ω|)+Bj(|ω|) withAj(|ω|)=2π
∫ 3

0
r̺0j (r;θ)J0(r|ω|)dr

and Bj(|ω|) = 2π
∫∞

3
r̺1j (r;θ)J0(r|ω|) dr. This yields

Aj(|ω|)
2π

= aj
ln 4

2π
I(|ω|)+(c02+c2 ln 2

j)
3J1(3|ω|)

|ω|
Bj(|ω|)
2πc2

= B̃j(|ω|)= J0(rj |ω|)−J0(3|ω|)
|ω|2 +

3ln(
rj
3 )J1(3|ω|)
|ω|

where I(|ω|) , 2π
∫ 3

0
r ln(1 + r)J0(r|ω|) dr/ ln 4. Group-

ing terms in c2 and c02 leads to the expression

φ̃Hj (|ω|;θ) = c2 fj(|ω|) + c02 gj(|ω|) (16)

for (15), where

fj(|ω|) , 2πB̃j(|ω|) + 3 ln 2j
J1(3|ω|)

|ω| − I(|ω|) ln(rj2
j

3
)

gj(|ω|) , 6π
J1(3|ω|)

|ω| − I(|ω|). .

At last, (16) is discretized using spectral aliasing [13]

φHj (ωm;θ) ,
∑

p∈Z2

φ̃Hj (|ωm+2πp|;θ). (17)

Computation of φHj (ωm;θ). The infinite summation in

(17) is truncated to p∈ [[−K:K]]2, yielding the approximation

φHj (ωm;θ)≈ c2
∑

p∈[[−K:K]]2

fj(|ωm,p|)+c02
∑

p∈[[−K:K]]2

gj(|ωm,p|) (18)

where ωm,p , ωm+2πp. Note that the two functions fj and

gj do not depend on the parameters c2 and c02. The two partial

sums can thus be pre-calculated and stored for the discrete set

of frequencies ωm, using a quadrature rule for the computa-

tion of the integral I. The evaluation of (12) using (18) in the

Gibbs sampler then only requires updating with the parameter

candidates (c2, c
0
2) in (18) at each iteration.

4. NUMERICAL EXPERIMENTS

The proposed Bayesian estimator (using (18) in (12), de-

noted H) is compared to the Bayesian estimator in [2] (using

(13) in (12), denoted DFT) and to the standard linear re-

gression based estimator (3) (denoted LF) by applying them

to a large number of independent realizations of 2D multi-

fractal random walk (MRW) [15]. MRW is a non Gaussian

process whose multifractal properties mimic those of the

Mandelbrot’s multiplicative log-normal cascades and its scal-

ing exponents are given by ζ(q) = (H − c2)q + c2q
2 (the

reader is referred to [15] for precise definitions and details).

Experimental setup. The parameters of MRW are set to

H = 0.72 and c2 ∈ {−0.01,−0.02, . . . ,−0.1}. For the 2D

DWT, a Daubechies’s mother wavelet withNψ = 2 was used.

The weights wj in (3) are chosen proportional to nj (see, e.g.,

[1]). The summation in (12) is restricted to low frequencies

|ωm| ≤ π
√
η with η = 0.25 as in [2] and K = 3 in (18). The

parameters of the Gibbs sampler are set to Nmc = 2000 and

Nbi = 1000. Performance are quantified using the sample

mean m= Ê[ĉ2], standard deviation s=(V̂ar[ĉ2])
1
2 (STD) and

root mean squared error rms=
√

(m− c2)2 + s2 (RMSE) of

the estimates for 100 independent realizations of MRW.

Spectral density models. The radial components of the

spectral density models (13) and (18) are plotted in Fig. 1

(blue and red lines, respectively) and compared to those of

the periodogram of MRW (black curve, mean over 100 real-

izations). As expected, the DFT based expression (13) and

the closed-form expression (18) proposed in this work are nu-

merically close. Both yield good fits for the periodogram for

low frequencies. The benefits of the proposed model (18) will

become clear in the next paragraph.

Computational complexity. Fig. 2 investigates the com-

putational time T for the estimators LF, DFT and H for dif-

ferent sample sizes N . The computational time includes the

2D DWT for all methods. The pre-calculation of partial sums

in (18) is performed offline and not taken into account in T .

The estimator LF unsurprisingly exhibits the lowest computa-

tional cost. Among the Bayesian estimators, the proposed es-

timator H yields a significant reduction of the computational

time as compared to estimator DFT of [2], by a factor rang-

ing from 6 (small images) to 12 (large images). Neglecting

the computation of the 2D DWT and the 2D periodogram Ij
in (12), the order of the reduction factor can be estimated as∑j2
j=j1

nj ln(nj)/
∑j2
j=j1

nj since computing φj(ωm;θ) is of

complexity O(nj ln(nj)) when using (13) and O(nj) when

using the proposed expression (18). As a result, LF is only 30
times faster than H but 400 times faster than DFT forN=211.

Estimation of c2. Fig. 3 reports estimation performance

as a function of c2 for sample sizesN = 27 (top) andN = 28

(bottom). The performance for the MAP estimators are sim-

ilar to the MMSE estimators and not reported for space rea-

sons. Clearly, the Bayesian estimators H and DFT both yield

excellent estimates for c2. They significantly improve esti-

mation quality as compared to LF, both in terms of bias and

standard deviation. As a result, RMSE values are reduced by

a factor up to 4. The bias and RMSE reduction yielded by H

and DFT is particularly pronounced for small images. It is in-

teresting to note that STD approaches 0 faster with decreasing

|c2| for the Bayesian approach than for LF, resulting in larger

STD gains for H and DFT for small values of |c2|.
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5. CONCLUSIONS AND PERSPECTIVES

A Bayesian approach for the estimation of the multifrac-

tality parameter c2 for images was proposed. It relies on

a semi-parametric model for the multivariate statistics of

log-leaders of multiplicative cascade based multifractal pro-

cesses. An MCMC algorithm was devised for approximating

the Bayesian estimators associated with the posterior dis-

tribution. The computation of the estimators was enabled

through the use of a Whittle approximation in the Bayesian

model. The key contribution resides in the derivation of a

closed-form Whittle approximation via a Hankel transform,

which significantly reduces computational cost. The pro-

posed method realizes, to our knowledge, the first Bayesian

estimator for the parameter c2 that can actually be applied to

real-world images of both small and large size. Numerical

simulations conducted on synthetic multifractal processes

highlight its excellent estimation performance and its compu-

tational efficiency as compared to previous formulations.

The efficiency of the method could be further improved

by performing computations entirely in polar coordinates, ef-

fectively reducing most 2D calculations to 1D calculations

due to radial symmetry. Furthermore, the closed-form Whit-

tle likelihood enables the use of more efficient Hamiltonian

Monte Carlo algorithms in the Metropolis-within-Gibbs pro-

cedure for the analysis of multivariate images (multi-band,

multi-temporal) and large numbers of image patches in re-

mote sensing and biomedical applications. These aspects are

currently under investigation.
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