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Abstract

We present the use of a new computationaly efficient 3D
physics model for the simulation of cells in a virtual sea
world. In this model, cells can freely assemble and discon-
nect along the simulation without any separation between the
developmental and evaluation stages, as is the case in most
evo-devo models which only consider one cell cluster. While
allowing for the discovery of interesting behaviors through
the addition of new degrees of freedom, this 3D center-based
physics engine and its associated virtual world also come with
their drawbacks when applied to evolutionnary experiments:
larger search space and numerous local optima. In this paper,
we have designed an experiment in which cells must learn to
survive by keeping their genome alive as long as possible in
a demanding world. No morphology or strategy is explicitly
enforced; the only objective the cells have to optimize is the
survival time of the organism. We show that a novelty metric,
adapted to our evo-devo matter, improves the outcome of the
evolutionary runs. This paper also details some of the devel-
opmental strategies the evolved multicellular organisms have
found in order to survive.

Introduction

Over the past two decades, the artificial life community has

seen the development of several models for the simulation

of the environment in which cells can freely evolve. Many

2-dimensional models have been used, mainly for their sim-

plicity and their computational efficiency, (Doursat, 2009;

Joachimczak et al., 2013), but also because they are often

sufficient to let interesting cellular behaviors emerge. With

the addition of the third dimension comes both large possi-

bilities in the exploration of artificial life as well as the excit-

ing opportunity to more precisely compare and understand

real world observations. While there are several 3D physics

engines and simulators developed specifically for artificial

life (Joachimczak and Wróbel, 2011; Fontana and Wróbel,

2013; Doursat and Sánchez, 2014; Cheney et al., 2014) com-

bining low scale features of cells with efficient simulation at

the scale of a whole organism can prove challenging, and

always requires either ignoring interesting aspects of cells,

such as their polarisation system, complex adhesive proper-

ties, and variable stiffnesses, or abandoning computational

efficiency.

Of course, many models of cellular simulations are not di-

rectly linked to the alife comunity (although some have been

used for artificial life experiments) and are more tightly re-

lated to bio-simulation and focus on having engines that be-

have in a bio-realistic manner. Over the years, many mod-

els have been developed using various approaches, among

which 2D lattice based cellular automata (Ouchi et al.,

2003), various off-lattice 3D center-based models and even

precise hybrid multi-scale systems which combine cell-level

deformations as well as tissue-scale constraints (Lowengrub

et al., 2009), to cite just a few. In the context of artificial life,

and specifically when growing multicellular artificial organ-

isms, the complexity of the simulated world directly im-

pacts the developmental strategies and possible morpholo-

gies of the creatures. As this can make for some behav-

iors and strategies that are more desirable and might also

help in the understanding of real-life behaviors by bring-

ing more realism, it also comes with at least two obvious

trade-offs. First, adding realism and complexity to the arti-

ficial world will increase the required computational power,

which is a resource of prime importance when using genetic

algorithms that require the simulation of thousands of in-

stances of these worlds. Secondly, and still in the context

of artificial evolution, adding complexity to the world can

dramatically broaden the search space, requiring even more

simulations for evolutionary algorithms to come up with a

convincing organism, and potentially complexifying the fit-

ness landscape. It can thus be argued that the simulation of

cells for the growth of artificial multicellular organisms is,

while sharing obvious common roots, a different problem

than the simulation of real world cells. Thus, while we take

our inspiration from biology when designing a cell simula-

tion engine, it is of prime importance to keep these trade

offs in mind and to try and see where the truly desirable

features lie, those from which an evolved multicellular or-

ganisms might benefit, and those that can be simplified.

In this work, we propose to step up artificial life exper-

iments in the third dimension using a fast cellular physics

engine tailored to artificial life, MecaCell, that offers novel

cell-cell interaction such as collision, adhesion and vol-



ume conservation approximation while keeping the com-

putational cost in reasonable limits. We have designed an

experiment in which the virtual multicellular organism will

have to face many local optima created both by the added

degrees of freedom and the rules of the world in which it

evolves. We show how novelty search with a morphology

metrics can, when used in conjunction with a fitness func-

tion, help overcome many of these local optima. The ex-

periment we present in this paper challenges one cell to pre-

serve its genetic material in a sea-like environment as long

as possible. In order to do so, the cell (which can choose to

eventually become an organism after division) will have to

face harsh conditions where energy is a difficult resource to

harvest. Organisms, or rather same-DNA cell colonies, will

thus have to balance their in-water morphology to collect

light energy while maintaining solid roots in the ground in

order to collect a second essential type of energy. While di-

vision of labor might play a determining role in the survival

of the colony (harvesting nutrients and light, sharing energy,

maintaining the structure of the organism), the rules of the

simulated world should make for the appearance of differ-

ent viable strategies. In the lineage of our previous work

(Disset et al., 2014), and to reduce the clues provided by a

heavily engineered fitness function as much as possible, the

cell controllers, based on gene regulation, are only evolved

for survival (duration of the simulation) in addition to the

novelty search criterion studied in this paper.

Simulated world

This section presents the different aspects of the simulated

world we propose to investigate1. The main goal is to

try various characteristics of the physics engine, to explore

ways to mitigate the adverse effect of adding degrees of free-

dom (comparatively to a 2D simulator or a 3D cell simula-

tor which doesn’t account for precise dynamic adhesions,

for example). We want our virtual organisms to be able to

evolve efficient and various solutions to the problem of sur-

vival in a constrained environment.

Cell physics - MecaCell

MecaCell2 aims to be an artificial life friendly and generic

platform for the 3D simulation of cells. Its goal is to provide

a continuous physics environment that is computationally

efficient and versatile enough to tackle various aLife exper-

iments and configurations (with exotic or simplified physics

rules, for example).

1All the source code as well as images and videos are available
at https://github.com/jdisset/seacells

2MecaCell is written in C++ and available (under LGPL li-
cense) at https://github.com/jdisset/MecaCell. It includes a custom
OpenGL display engine with a plugin system for the extensibility
of its interface.

Cell and volume conservation In MecaCell, each cell is

an agent represented by a center, a membrane and an orien-

tation. A cell can freely evolve in a 3D continuous environ-

ment, where it will collide and adhere with other cells. Here

we consider cells to be spherical objects filled with a mostly

incompressible fluid and wrapped in an elastic membrane.

Every cell has a rest radius Rr and a dynamic radius Rd.

The dynamic radius was introduced to allow for the approx-

imation of volume conservation: each time step t, if a cell is

cut (overlapping either another cell or a 3D object), we re-

compute both its membrane surface area At and its current

volume Vt. The net difference in volume relative to its rest

value Vr is then translated into a stress pressure pt:

pt =
I × (Vt − Vr)

At

where I is the compressibility coefficient of the cell. Cell

pressure acts as a force governing the growth of the dynamic

radius. In an intuitive manner, when pressure increases un-

der mechanical stress, the cell will compensate by expand-

ing its radius in order to recover its original volume. But this

variation also implies a modification of its current membrane

surface area At, which will also act as a shrinking force on

the dynamic radius. The cell membrane is thus, in a com-

putationally efficient manner, brought into equilibrium be-

tween volume conservation and surface area conservation,

using the following explicit integration scheme:

Rdt = Rdt−1 +∆
2
× (∆V −∆A−

dRd

dt
× C)

where ∆V is the volume variation Vt−Vr, ∆A is the surface

area variation At −Ar and C is a damping coefficient.

Collisions In this model, collisions are easily handled by

detecting two overlapping cells and by computing the nor-

mal and the area of the resulting contact plane. Each cell

will then push on the other perpendicularly to this plane and

according to their internal pressure (resulting from their de-

formation). The intensity of the force applied between a cell

Ca of internal pressure pa and a cell Cb (with internal pres-

sure pb) through a contact plane of area Ac is given by:

||!F || = Ac × (Pa + Pb)

with Pi =

{

0, if pi < 0
pi, otherwise

A tunable damping term Ccol is also added.

Adhesions When wanting to simulate artificial multicellu-

lar organism in a 3D environment, the capability to maintain

oriented connections is of prime importance. In MecaCell,

cell-cell adhesions use the same kind of contact planes than

for the collisions. A cell can choose its adhesive properties

distribution across its membrane through the definition of an



adhesion function fadh which associates an adhesive recep-

tor density dadh to a unit vector expressed in the local coor-

dinate system of the cell (and represents the adhesive poten-

tial at a given membrane location). We simulate an adhesion

between two cells by the creation of a dynamic mass-spring-

damper system of length 0, attached to the centers of the

contact surfaces on both cells membranes. This spring acts

on both membranes but all of the generated forces and mo-

mentum is applied at the respective cells centers. When the

two adhesive cells get closer from each other, the centers of

the adhesion planes are updated, as well as all the mechan-

ical properties of the adhesion mass-spring-damper system.

The stiffness K and damping coefficient C are proportional

to the contact plane surface area as well as the average recep-

tor density on said surface (and to the intrinsic characteris-

tics of these receptor, which can be different for every cells,

or favor certain cell-cell affinities between particular cellular

types). When two adhesive cells are pulled apart (or rotated

in different directions), the adhesive dynamic mass-spring-

damper system can elongate up to a certain length defined by

the maximum length Ml reachable by an adhesion receptor.

Thus, if the cells are pulled apart too strongly (relatively to

the strength of their connection), they can actually come out

of contact again. Similarly, if they experience a torque of

too much intensity or a shear stress above a certain thresh-

old, they will be able to slide on each other’s membrane (as

the centers of their adhesion plane will have moved too far

apart due to rotation).

Environment - Ground and sea

In this experiment, the world is divided in two parts: the

ground and the sea.

Ground The ground is a dense medium in which cells can-

not easily move. In order to achieve this effect, we used a

special integrator which does not take into account any iner-

tia term, using only the force exerted on each cell to compute

its next position. This ground acts as a solid when the forces

exerted by the cells are below a certain threshold, only al-

lowing cells to move if they push hard enough. This is, al-

though in a simplified manner, a depiction of the mechanical

characteristics of dense mud.

The ground contains nutrients, which are not available in

the water. They are present in the mud at various depth, in

small areas and finite amounts. At the beginning of the sim-

ulation, we initialize N = 200 nutrients sources. For a given

nutrient source i placed at a random position (xi, yi, zi) in

the mud, the initial amount of nutrient ni is given by:

ni = Qn ∗ (1 + Cn × |yi|
Pn)

where Qn is a constant and Pn and Cn are two parameters

that determine how the amount of nutrient varies for each

nutrient source according to its depth yi. This is meant to

mimic how the nutrient distribution can be different accord-

ing to the type of soil. It also allows for the tuning of some

aspect of the fitness landscape: with Cn < 0, the selective

pressure would force the cells to expand laterally while a

positive value of Cn should favor a vertical growth to find

more reliable sources of nutrients. In this particular expe-

rience, we use Qn = 0.03, Pn = 1.5 and Cn = 0.035.

These values have been chosen empirically in order to make

a environment in which organisms can survive easily for a

short amount of time but must develop complex strategies to

survive longer.

Sea The second layer of the world is placed on top of the

first ”mud” layer. We call it water, because its mechanical

characteristics, namely density and viscosity, are supposed

to mimic those of a still body of water. Here, a classic semi-

implicit Euler integration scheme is used to update the cell

positions and orientations. For the sake of computational re-

duction, no flows are simulated in this water. This would re-

quire hydrodynamics to be simulated, which would be very

expensive to compute. However, the cells are all slightly

buoyant which means that they need to keep adhesions to

cells that are still inside the mud in order to avoid being

taken away.

Light is abundantly available in the water but stopped by

the ground. It only comes in straight rays, perpendicular to

the ground, and if one light ray shines upon a given cell, it

won’t be able to reach any other cell below that first one.

In other words, cells block light and their shadows prevent

other cells to be lit. We implemented this feature using a

classical depth-buffer and depth-culling algorithm.

Cells

Cell life cycle In order to survive in this world, a cell has to

fulfill one requirement: all its energy levels must stay above

zero. In this particular experiment, a cell needs to handle

two forms of energy: light and nutrient. At the initialisation

stage, we place one unique “seed” cell in the mud, just be-

low the water (precisely one cell diameter deep). When the

simulation starts, the seed cell has maximum levels of light

and nutrient, mimicking the seed endosperm (which provide

the initial energy to the seed). At each time step, every cell

consumes a fixed amount of light and nutrient energy. When

any of the two levels of energy reach 0, the cell dies.

We implemented a simplified cell cycle in which every

cell can choose between three actions: growth, quiescence,

apoptosis. This lifecycle is controlled by an aGRN that will

be detailled at the end of this section. When in quiescent

mode, the cell consumes normal amount of nutrients and

light. When choosing apoptosis, the cell will disappear and

all the nutrients and light it contained will be lost. When a

cell enters its growth phase, it will grow (while consuming

20% more energy) until its volume has doubled; at which

point division will happen along a particular axis, deter-



mined by the cell’s aGRN. When division occurs, the mother

cell is replaced by two identical daughter cells whose energy

levels are exactly half those of the mother cell at the time of

division. Only one variable, the age of the cell, differs be-

tween the two daughters cells: one is kept from the mother

cell, the other is restarted at zero. This variable is incre-

mented at each time step and is an input to the cells’ aGRN.

Energy In order to survive, cells need to keep both their

levels of light and nutrient above zero. Nutrients and light

are not available at the same place, which means the cells of

our organism need to be able to absorb nutrients and light

and share that energy with each other. More generally, a

cell with large quantities of energy should be able to transfer

part of it to any cell in need. In this experiment, we ap-

proximate this process through a passive diffusion based on

Darcy’s law, which describes the flow of an incompressible

fluid throughout a porous isotropous medium in the laminar

case (which is arguably the case here given the low Reynolds

numbers involved). The energy (nutrient or light) flow Fn

between two connected cells a and b is thus described by the

following equation:

Fn =
−k ×A×∆p

µL

where ∆p is the energy’s pressure drop (here approximated

by the difference in levels nb − na or lb − la) between cell

b and cell a. This flow is also determined by the intrinsic

permeability of the medium k, the viscosity of the nutritive

fluid µ as well as the connection area A and the distance L
between the two cells centers. The value of this flow is com-

puted at each time step for each active connection (i.e. real

adhesions) between two cells using an explicit integration

scheme. Using the free surface area of a cell’s membrane,

we also use this diffusion system to simulate the absorption

of both light and nutrients from the environment. Any lit

cell will perceive a light intensity proportional to its eleva-

tion (above the ground) until a certain altitude where this

intensity is capped to one. Inside the ground and from any

cell positioned at !Pc, the available nutrients concentration

As coming from a nutrient source s at position !Ps, with cur-

rent absolute content in nutrient Ct, initial diffusion radius

of Rt0 and an initial content of Ct0 is given by

As = Ct × (1− (| !Ps −
!Pc|/Rt0 ∗ (Ct/Ct0)) ∗ Ct/Ct0)

Morphogens Bio-inspired communication through the

diffusion of molecules in the environment has successfully

been used in numerous artificial life experiment and has

proven to be an efficient way to enable information transmis-

sion between agents. While some authors use detailed and

realistic diffusion of signalling molecules, here, for compu-

tational efficiency purpose, we use a very simple instanta-

neous diffusion system. Every cell can emit one or several

of Nm morphogens through the mi output protein concen-

tration of its aGRN, and can sense the concentration of each

morphogens through its ci input proteins. The perceived

intensity of a morphogen follows an inverse squared law.

Thus, for any receiver positioned at !Pr, the perceived inten-

sity Im of a morphogen m emitted by N sources placed at

positions !Psi with intensity Emi is given by:

Im( !Pr) =
N
∑

i

Emi

Am × || !Psi −
!Pr||2 + 1

where Am is the attenuation coefficient of morphogen m
Morphogen gradients are also used by the cells to determine

their axis of division. We compute, for each cell, the average

variation of intensity of a morphogen along the x, y, and z
axis, from one extremity of the cell to the other.

Cell adhesion In the early stages of this experiment, ev-

ery cell would automatically establish a strong connection

with every other cell upon contact. This led to the invari-

able collapsing of the morphology diversity, especially in

the water part of the world, where inertia is not negligible.

Indeed, as cells divide, they experience various forces that

propagate along the entirety of the organism. As a result,

opposite ends of an organism often come in contact, bounc-

ing against each other; but the automatic creation of a strong

connection would prevent cells to go back apart and will

eventually make for the construction of an unordered blob of

connected cells. In various multicellular artificial life mod-

els, this problem is avoided because the actual ”simulation”

stage, in which the organism is evaluated, is separated from

the development phase, where the cells are positioned and

linked without perturbations. While this simplifies things

and allows for the creation of complex morphologies with-

out the risk of discovering a spherical amalgamation of cells

at the end of the evaluation, it also means that we lose some

of the properties of real world organisms which can be of

prime interest, especially for this experiment which aims to

get closer to real world organism development: mainly self-

repair and real time morphology adaptation to a changing

environment. To tackle this problem, we once again take

inspiration from biology by introducing a cell mechanism

which lets the cell decide if it wants to create new connec-

tions or only keep the one already existing and bounce off

of a potential companion. This capacity, named “solidify”,

is managed by the cells’ gene regulatory network. In Meca-

Cell, the normal algorithm for adhesion creations between

two cells is to “ask” them what are their reciprocal affinities

(also taking into account their orientations) at each time step.

In order to let the cells decide when they are open to new ad-

hesions, we add an “active connections” list to each cell that

keeps track of all their “real” adhesions. At each time step,

and for every cell, we compare this active connections list

with a candidate list of cells that are currently colliding. A

new bond is then created only if both candidates decide not



to solify. In combination with the age protein t and other

input proteins (such as the pressure p), this, in theory, allows

for the emergence of complex adhesions strategies.

Cell controller - aGRN Within our multicellular organ-

ism, each cell has its own gene regulatory network that con-

trols the cell lifecycle. Even though the aGRNs are physi-

cally different, as in nature, they share the same genetic code

and thus, the same topology. When a cell division occurs, an

exact copy the mother cell’s aGRN is copied into the daugh-

ter cell. In this work, the gene regulatory network used

to control the cells is inspired by Banzhaf’s model. It has

already been successfully used in other applications. This

model has been designed for computational efficiency and

is not meant to simulate a real biological gene regulatory

network in all its complexity.

This model is composed of a set of abstract proteins. A

protein a is composed of three tags: (1) the protein tag ida
that identifies the protein, (2) the enhancer tag enha that de-

fines the enhancing matching factor between two proteins,

and (3) the inhibitor tag inha that defines the inhibiting

matching factor between two proteins. These tags are coded

with an integer in [0, p] where the upper bound p can be

tuned to control the precision of the network. In addition

to these tags, a protein is also defined by its concentration

that will vary over time with particular dynamics described

later. A protein can be of three different types:input, a pro-

tein whose concentration is provided by the environment,

which regulates other proteins but is not regulated, output, a

protein with a concentration used as output of the network,

which is regulated but does not regulate other proteins, and

regulatory, an internal protein that regulates and is regulated

by others proteins.

With this structure, the dynamics of the GRN are com-

puted by using the protein tags. They determine the pro-

ductivity rate of pairwise interaction between two proteins.

For this, the affinity of a protein a for another protein b is

given by the enhancing factor u+
ab and the inhibiting factor

u−

ab calculated with the euclidean distance between protein

b tag and protein a enhancer or inhibitor tag. The proteins

are then compared pairwise according to their enhancing and

inhibiting factors. For a protein a, the total enhancement ga
and inhibition ha are given by sum of the exponential in-

fluences between the proteins. Two parameter β and δ are

used to control the dynamics of the system: β affects the

importance of the matching factors and δ is used to modify

the production level of the proteins in the differential equa-

tion. In summary, the lower both values are, the smoother

the regulation is; the higher the values are, the more sud-

den the regulation is. To obtain a usable GRN, both the

protein tags and the dynamics coefficients need to be op-

timized. The next part presents the specifities of the genetic

algorithm used in this work. The concentration are updated

with a simple differential equation taking into account the

Name Type Description or use

ci,∀i∈[0,2] input concentration of morphogen i
cn input sensed nutrients

n input current nutrients level.

cl input sensed light intensity

l input current light level.

t input age of the cell

p input mechanical pressure

oi,∀i∈[0,2] output morphogen i production

oN output normalisation of oi
di,∀i∈[0,2] output divide along morphogen i gradient

dn output divide along nutrient gradient

a output apoptosis

q output quiesence

s output solidify: no new adhesion

sT output threshold for s activation

pd output perpendicular division

Table 1: List of our artificial grn inputs and outputs proteins.

newly produced proteins and the destroyed one. More de-

tails on the aGRN dynamics can be found in (Cussat-Blanc

et al., 2015).

Table 1 describes the configuration of our aGRN input and

output proteins when applied to this artificial embryogenesis

problem. A few clarifications on the role of some of these in-

puts and outputs is necessary. First, the sensed nutrients (cn)

input represents the actual concentration in nutrients sensed

by the cell in its surrounding environment. The current nu-

trients level (n) input is the actual current level of nutrients

in the protein. The same goes for the light intensity sensed

by the cell (cl) and the current amount of light energy accu-

mulated in the cell (l).

The cells express their choices between division, quies-

cence or apoptosis through the concentrations of the out-

put proteins di, a and q respectively. The protein with the

biggest concentration represents the cell’s choice. In ad-

dition to starting a division, the di outputs proteins of the

aGRN also controls the cells’ division plan: each di output

protein corresponds to a morphogen, and the di or dn pro-

tein with maximum concentration is used to determine the

gradient (morphogen or nutrient) along which the cell must

divide. If no gradient of said morphogen is present, the axis

of division is randomly chosen. The pd protein allows the

cell to choose between a division along the morphogen gra-

dient or perpendicular to it.

The solidify output protein s controls the solidify capacity

of a cell: if the concentration of protein s below the thresh-

old protein sT , the cell then solidifies and will not accept any

more adhesion from not yet connected cells until the concen-

tration of protein s decreased under the concentration of sT .



Evolution

One of the goals of this experiment is to explore how ar-

tificial multicellular organism could survive in a harsh en-

vironment without explicitly leading it to a given strategy

or morphology. We wanted to explore the organisms that

the rules of this world could create without constraining the

creativity of evolution through some restrictive explicit ob-

jective function. Therefore, the only objective for the cells

is to survive as long as they can, or more precisely, to keep

at least one copy of their DNA in our virtual world for as

long as possible. While this gives full freedom to the cells

on the developmental strategies they can use and on their

morphologies (one single cell living on its resources is, for

example, an option), it also dramatically increase the search

space and fills it with many local optima that pave the way

to increased longevity. The first employed approach was

to use a standard objective based genetic algorithm (GA).

We implemented most features of the Gene Regulatory Net-

work Evolution through Augmenting Topology algorithm

(GRNEAT) (Cussat-Blanc et al., 2015).

Genetic algorithm

In this algorithm inspired by the NEAT algorithm, the first

population of aGRNs is initialized with small topologies

(Stanley and Miikkulainen, 2002), containing only input and

output proteins. The population is evaluated standardly with

a fitness, detailed hereafter, promoting survival time and

novelty. After a 3-player tournament selection, offspring are

crossed over using a protein alignment operator. This oper-

ator uses a genetic distance metric to compute topological

distances between two aGRN proteins. Each type of pro-

teins is processed separately. Both the input and the output

proteins are treated with the same method. One of each in-

put (or output) protein linked to a sensor (or an actuator) is

randomly selected from one of the parents. The regulatory

proteins are then aligned before being crossed: for each reg-

ulatory protein p1i from the first parent, the closest regulatory

protein p2j not yet aligned is selected from the second parent.

The distance between two proteins is computed as follows:

D(A,B) =
1

p

(

a|idA − idB |+ b|enhA − enhB |+

c|inhA − inhB |
)

where idx is the tag, enhx is the enhancer tag and inhx is

the inhibiter tag of protein x and p is the precision of the

GRN. a, b and c are constants that weight each part of the

protein properties, here set up to a = 0.75, b = c = 0.125.

If the distance D(p1i , p
2
j ) is lower than a given alignment

threshold σa, both proteins are aligned. An aligned protein

cannot be aligned anymore. Once alignment of all proteins

has been attempted, one protein of each aligned pair is ran-

domly selected and added to the offspring. The regulatory

proteins that failed to align in both parents are also added to

the offspring. This ensures that no crucial genetic material

is deleted during the crossover. Finally, the dynamics coeffi-

cients are also crossed. One of the β and the δ coefficients is

randomly selected from the parent genomes and used in the

offspring genome.

Crossed-over aGRNs represent 30% of the offsprings.

The rest of the offsprings are built using tournament selected

genomes from the previous generation. All offsprings ex-

cept the elite (the best genome) are then subject to mutation

with a 75% rate. When mutated, a genome can be modi-

fied in three different ways: (1) delete a protein, with a 15%

probability, randomly select a regulatory protein, if any, that

is removed from the aGRN; (2) add a protein, with a 15%

probability, adds a randomly generated regulatory protein;

(3) modify a protein, with 70% probability, randomly mod-

ify exactly one parameter parameter of the aGRN, either one

protein tag or one of the dynamics coefficients.

Novelty metrics

In order to try to mitigate the adverse effects of increased

degrees of freedom and numerous local optima in the mor-

phological parameter space, we added a novelty metric as

defined in (Lehman and Stanley, 2008). We combined this

novelty score with our main survival objective through a

slight modification of the selection phase of our genetic al-

gorithm: each potential parent is selected through a tour-

nament based on either novelty or survival time, with a

50% chance. While not as complex as some other inte-

grations of novelty in a multi-objective genetic algorithm

(Mouret, 2011), this proved sufficient to harness some of

the exploratory power of novelty. In this experiment, we

tried three different novelty metrics, which are based on the

capture (and comparison) of various aspects of a developing

phenotype:

• Nm0 is composed of three numbers: the maximum num-

ber of cells during the simulation, the maximum depth

reached by a cell and the total survival time (which is also

the main objective).

• Nm1 is composed of 5 snapshots of the simulation (at

times t = 10, t = 20, t = 50, t = 75 and t = 100). Each

snapshot contains 2 numbers: the number of cells and the

maximum depth of a cell at the time of the capture.

• Nm2 is a set of 5 captures (taken at the same time steps

as for Nm1) represented as a 20× 20 integer matrix. It is

actually a set of pictures in which each pixel’s value rep-

resents the number of cells stacked. The plane of the shot

is determined through a Principal Component Analysis on

the cells position (it is the most discriminant plane). This

metric is meant to capture the morphologies of the organ-

isms in all their subtleties



Figure 1: Errorbar plots of the best individuals obtained on

10 independent runs. Errorbars represents the median, the

first and third quartiles. All novelty objectives are obviously

helping to escape local optimum. However, the novelty mea-

sure Nm0 is giving better results. The initial value of 41 ob-

tained at generation 0 represents the survival time for a seed

cell that stays quiescent during the whole simulation

Results

Influence of novelty

In Figure 1, we can see the median (with first and third quar-

tile) survival times of the best genomes evolved during 300

generations in 10 independent runs. This graph reveals both

the deceptiveness of the fitness landscape when the survival

time is used as only fitness objective as well the beneficial

impact of novelty. This is undeniable (Student t-test p-values

are provided in table 2): where a classical objective based

evaluation struggles to find solutions that pass the first local

optima (for example: not dividing and surviving on the ini-

tial resources of the seed cell, or just doing a few divisions

in order for some cells to reach the surface and bring in a

little bit of light), the novelty based approaches successfully

find solutions to overcome these optima and efficiently pave

the way to more robust organisms.

The three novelty measures tested in this experience show

that too much information lose the evolution in the search

space: the novelty measure Nm0 globally does better than

both other measures. This measure is the one that includes

the fewer parameter. In our opinion, when too much param-

eters are used, the exploration is too large and not focus on

real novel individuals. Therefore, it is of high importance

to wisely choose paratemers that really describe the novelty

Survival Nm0 Nm1 Nm2

Survival - 0.002 0.011 0.089

Nm0 0.002 - 0.360 0.050

Nm1 0.011 0.360 - 0.250

Nm2 0.089 0.050 0.250 -

Table 2: p-values of the paired student t-test run comparison

between runs with survival fitness and the different novelty

measures calculated on 10 runs at generation 300.

of the morphology created by the evolution. As depicted by

from table 2, the relatively high p-values between novelty

based runs reveal the necessity to make a broader study on

the influence of the novelty parameters in order to find the

best possible measures for evo-devo models.

Developmental strategies and world setup influence

Along all the evolutionary runs, we observed an important

diversity of developmental strategies and morphologies, es-

pecially when any form of novelty was involved. Figure 2

shows examples of cells arrangements obtained with differ-

ent worlds parameters. The distribution of nutrients in the

world was also found to be of huge influence over the pre-

ferred strategies: as expected, large values of Cn and Pn

favored a very vertical growth of the cell colony, with the

formation of a relatively thick trunk in the ground enabling

fast nutrient and light transfer between the deep roots cells

and the emerged ones. One of the most interesting results

might be the emergence of a form of parthenogenesis when

the nutrients concentration was uniform. Cells indeed under-

standably found the benefits of a vertical growth to be per-

fectly incomparable with the efficiency of a vertical growth.

They also adopted, as shown in Figure 2, a spread method

where they would laterally develop just below the surface.

When a root cell encountered a nutrient source, it would

also divide upward (to the surface) and the cells between

the two formed cluster would undergo apoptosis, thus cre-

ating a simple form of parthenogenesis reminiscent of the

biological reproduction of some plants.

Conclusion

In this paper, we have presented a new developmental model

based on MecaCell, a physics engine build for artificial life

experiments. This developmental model shows how novelty

search can help when steping artificial embryogenesis up to

the third dimension. Indeed, this added dimension allows

for more degrees of freedom for the multicellular organisms

but also add a lot of complexity for the cell controller. As

a matter of fact, this makes the search space hard to explore

with standard fitness function. In addition to the use of a 3D

developmental model, we also wanted to remove all engi-

neering from the main fitness objective: it is only targets to

the survival duration of the organism. By only using this ob-

jective, we showed that the evolution is stuck in one or few

local optima. By adding different novelty objectives based

on the organisms morphologies and capacities to explore its

environment, we showed that the evolution can escape from

this local optimum and develop more complex morpholo-

gies and behaviors able to survive longer in the exact same

environment.

This new developmental model opens many research per-

spectives. Firstly, we need to study more precisely the in-

fluence of the environment parameters on the multicellular

organisms. During the development of the presented exper-



Figure 2: Examples of organisms obtained with the different fitnesses. From left to right: survival only and novelty Nm0,1,2.

iment, one of the major difficulty was to produce a viable

environment, easy enough to allow the organims to grow but

not too hard to produce complex behaviors. Balancing this

is complex and need to be studied in detail.

Once done, we want to produce an artificial world in

which different organisms would coexist, cooperating or

competiting for survival and reproduction. This will require

specialization capacities of the cells in order to balance the

capacities of the organisms, ones could be good at extracting

light energy and other for reproduction. We hope to produce

more complex organisms and mimic the early stage of ap-

pearence of life on earth
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