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ABSTRACT

We present a new anomaly detector for data traffic, ‘SMS’, based on

combining random projections (sketches) with multiscale analysis,

which has low computational complexity. The sketches allow ‘nor-

mal’ traffic to be automatically and robustly extracted, and anomalies

detected, without the need for training data. The multiscale analysis

extracts statistical descriptors, using wavelet leader tools developed

recently for multifractal analysis, without any need for timescales to

be selected a priori. The proposed detector is illustrated using a large

recent dataset of Internet backbone traffic from the MAWI archive,

and compared against existing detectors.

Index Terms— Multifractal analysis, multiscale representation,

random projection, anomaly detection, Internet traffic.

1. INTRODUCTION

Context: Internet traffic monitoring. Research into Internet traffic

measurement has been extensive, ranging from data capture systems,

through to statistical analysis, data modeling and prediction. The

goals of this activity include insights to better design and operate

the network, to optimize resources and performance, and to address

security issues. The detection of anomalies is a crucial network mon-

itoring task as it impacts at multiple levels including the diagnosis of

network dysfunction, localization of performance bottlenecks, and

discovery of unusual traffic including malicious activity.

Anomaly detection in computer network traffic context is highly

challenging. First there is the variable nature of the data itself, which

may be available at levels of granularity that differ in time (from µs

to daily averages), in geographic spread (single link/router or mul-

tiple, core or access networks), or in detailed nature (packet times-

tamps, sizes, 5-tuples1, or application level data). Second, the origins

of anomalies are diverse and include the physical layer, IP protocols,

application layer protocols, source traffic events such as flashcrowds,

and ‘heavy hitter’ or ‘α-flows’. Anomalies due to malicious activ-

ity include those whose signature is well known, for example Dis-

tributed Denial of Service (DDoS) and port scanning, but new forms

of attack, resulting in new anomalies which may be very subtle, reg-

ularly appear. This variety implies anomalous traffics whose forms

and statistics show very different kinds of departures from normal

1The standard 5-tuple consists of five IP packet header fields: IP address
and port number for source and destination, and IP protocol carried (TCP,
UDP or ICMP). Timestamps may be combined with 5-tuples to define flows.

traffic, which precludes the use of matched filter approaches, even if

adaptive and advanced. Third, normal traffic is itself an ill-defined

notion, and the construction of a traffic reference, against which

anomalies can be defined, is non-trivial, in particular since traffic

characteristics naturally vary over time with the evolution of appli-

cations and services. This significantly impairs the use of supervised

classification strategies, as training sets of expert-annotated anoma-

lies will in general be unavailable. Fourth, the very high volume of

Internet traffic restricts the complexity of statistical features that can

be routinely computed. Finally, privacy concerns may also constitute

a barrier to anomaly detection.

Related works: anomaly detection. We focus on anomaly de-

tection based on aggregated time series, being counts of IP pack-

ets or bytes in consecutive time bins, obtainable from packet header

traces containing timestamps plus 5-tuples for each packet. This ap-

proach has the advantage of being more privacy-friendly than tech-

niques that rely on packet payload, and remains relevant in the face

of payload encryption techniques such as IPsec. Another advan-

tage of time series is that existing signal statistical processing de-

tection/classification tools are available, including many with low

computational cost, suitable for long time series.

Among unsupervised approaches applied to univariate time se-

ries, wavelet filtering has been used to select relevant time scales for

detection [1]. Entropy-based detectors applied to specific features

(IP addresses and port numbers [2, 3, 4], connection patterns [5])

have also proved successful. Exploiting the scale invariance proper-

ties of Internet traffic [6, 7], anomaly detection has also been based

on the self-similarity parameter [8, 9]. For multivariate data (multi-

link/point measurements), Principal Component Analysis (PCA) al-

lows a reference traffic to be computed, and thus to quantify anoma-

lous deviations from it [10]. In an attempt to capture different classes

of anomalies, multimodal detection procedures were also attempted.

For example, Astute [11] monitors packet and byte counts jointly

at six different aggregation levels. Random projection tools, also

known as hashing procedures or sketching, were also used for the

automatic construction of reference traffic [12, 13]. To do this they

exploited the flow-level structure of IP traffic. Other works which

exploit flow structure include [3, 4, 8].

Goals, contributions and outline. This paper proposes a network

traffic anomaly detection procedure, called Sketch and MultiScale

(SMS), based on the analysis of packet count time series assembled

from 5-tuple plus timestamp data. The procedure is unsupervised,

and is therefore suitable for the detection of new anomaly types as



well as old, and avoids the need for training sets. Instead, it uses mul-

tiple flow-preserving sketches to extract a reference ‘normal’ traffic

from the trace itself. Each sketch yields a time series which is anal-

ysed using wavelet-leader based multiscale representations, recently

designed for the most up-to-date formalism for practical multifractal

analysis [14]. These result in fast, robust, multiscale representations

of the statistical properties of the time series, defined over a set of

time scales ranging from milliseconds to minutes (over 5 decades).

This avoids the a priori selection of time scales at which anoma-

lies should be seen and make it feasible to process very large traces.

Finally, comparing across independent sets of sketches allows the

flow-defining IP addresses involved in the anomaly to be isolated.

Random projections and wavelet leaders are presented in Sec-

tion 2.1 and 2.2 respectively, while the anomaly detection and

anomalous flow identification is detailed in Section 2.3. We put

SMS to work on a large recent Internet dataset (1st half of 2014),

part of the Japanese MAWI repository [15], described in Section 3.

Detection performance is quantified and interpreted qualitatively in

Section 4, and compared against that obtained with MAWILab [16],

the reference tool of the MAWI repository.

2. METHODOLOGY

For each packet i in a given trace, arriving at time ti, we assign a flow

label Ai based on its 5-tuple. Here we use Ai ∈ {IPsrci, IPdsti}.

2.1. Random projections / Sketches

A random projection of an IP trace X consists of a hash function,

acting on flow labels, which inserts the packets ofX into a hashtable

of size M , resulting in a random flow-splitting of X into M sub-

traces Xm, m ∈ {1, . . . ,M}. In other words, all packets of any

given flow are allocated together to a randomly chosen entry in the

hashtable. If there are no anomalies, then we expect each sub-trace,

or sketch, to be statistically equivalent (and moreover equivalent to

the full trace up to a constant variance factor assuming independence

between flows). The intuition here is that anomalies in X will only

be present in some of its sketches. A median over sketches can there-

fore provide a reference for normal traffic that shows little sensitivity

to the outlier sketches carrying the anomalies. Furthermore, anoma-

lies will be easier to detect in sketches where they appear, as the

volume of normal traffic is reduced (higher signal to noise ratio).

A random projection procedure [12, 13] consists of {hn, n =
1, . . . , N} k-universal hash functions [17], giving rise toN indepen-

dent sets of M sketches, and NM packet count timeseries Xn,m.

2.2. Wavelet-leader multiscale representations

It is well-accepted that Internet traffic statistics are well-characterized

by scale invariance properties, notably self-similarity and long-

memory [6], and that such scaling can be efficiently analyzed using

multiscale representations, in particular based on wavelet decompo-

sitions [7]. It has also been proposed that scaling in Internet traffic

can be modeled by multifractal models [18, 19], and that multifractal

properties are best analyzed using wavelet leader based represen-

tations [14]. Wavelet-leader based multiscale representations are

therefore a natural choice as a basis for anomaly detection.

Wavelet coefficients. Let ψ denote the mother wavelet, charac-

terized by a strictly positive integer Nψ , defined as
∫

R
tkψ(t)dt ≡ 0

∀n = 0, . . . , Nψ−1, and
∫

R
tNψψ(t)dt 6= 0, known as the num-

ber of vanishing moments. The (L1-normalized) discrete wavelet

transform coefficients dX(j, k) of the process X are defined as

dX(j, k) = 〈ψj,k|X〉, with {ψj,k(t) = 2−jψ(2−jt− k)}(j,k)∈N2 .

For a detailed introduction to wavelet transforms see [20].

Wavelet leaders. Let λj,k = [k2j , (k + 1)2j) denote the dyadic

interval of size 2j centered at k2j , and 3λj,k the union of λj,k with

its left and right neighbors: 3λj,k =
⋃

m{−1,0,1} λj,k+m. The

wavelet leader L
(γ)
X (j, k) is defined as the largest wavelet coefficient

in the neighborhood 3λj,k over all finer scales j′ < j [14]:

L
(γ)
X (j, k) := sup

λ′⊂3λj,k

|2j
′γdX(λ′)|. (1)

The parameter γ ≥ 0 must be chosen to ensure a minimal regularity

constraint (see [14] for a theoretical study).

Log-cumulants. It has been shown the cumulants of order p,Cγp (j),

of lnL
(γ)
X (j, k) provide relevant representations of the statistics of

X as a function of scale 2j ([21, 14]). Notably, when X is charac-

terized by multifractal properties, the Cγp (j) take the explicit form

Cγp (j) = c0,(γ)p + c(γ)p ln 2j (2)

where the c
(γ)
p can be directly related to the multifractal spectrum

of X (see [14, 22] for details). The attributes c
(γ)
p are not explicitly

used here, instead SMS relies on the underlying multiscale represen-

tations C
(γ)
p (j), where Cγ1 (j) is mainly associated to the 2nd-order

statistics ofX (covariance or spectrum), whileCγ2 (j) conveys infor-

mation beyond 2nd-order statistics.

2.3. Sketch and MultiScale (SMS)

The anomaly detection and address identification procedure of SMS

can be outlined as follows.

Step 1 For each trace, use the N hash functions to produce N sets

ofM sub-traces, and aggregate each one at resolution ∆0 to produce

the flow-sampled time series Xn,m(t).

Step 2 For each Xn,m, compute wavelet-leader based C
(γ)
p,n,m(j),

p = 1, 2. For each n compute the median over the n-th set of M

cumulants as C
(γ)
p,n(j) = Median{C

(γ)
p,n,m(j),m = 1, . . . ,M}.

Step 3 For each n and p, C
(γ)
p,n(j) constitutes a robust reference

regarded as characteristic of normal traffic. The Euclidean distance

of each sketch to its respective reference in set n is calculated as

Dm
p,n =

1

1 + j2 − j1

(

j2
∑

j=j1

(C(γ)
p,n(j)− C

(γ)
p,n(j))

2

)1/2

. (3)

A sketch k in set n is reported, by cumulant p, as suspicious when its

distance to its reference is large compared to the reference variation:

Dk
p,n > medianm{Dm

p,n}+ τ MADm{Dm
p,n}, (4)

where MAD = Maximum Absolute Deviation, and τ is a parameter.

Step 4 Let An denote the set of all flow labels from suspicious

sketches from the n-th table. This set contains many normal flows

which will vary randomly from table to table, whereas anomalous

flows will be in found in multiple An. We define a flow to be suspi-

cous if it appears in at least ℓ of the An.

3. MAWI TRAFFIC ARCHIVE

MAWI Repository. We evaluate SMS using Internet backbone

traffic from the MAWI archive [15, 23], specifically from the



samplepoint-F transit link connecting several Japanese research

institutes and universities to the Internet. Here packet header traces,

collected daily from 14:00 to 14:15 (Japanese Standard Time), are

anonymized and made publicly available. We use traces captured

from the first 15 days of each of the first 6 months of 2014, a total

of 78 excluding incomplete traces. Each trace contains roughly

100 to 150 million IP packets, corresponding to an average packet

inter-arrival time (IAT) of the order of 7µs.

MAWILab. MAWI traffic is currently monitored by MAWILab

[16], a combination of four conventional detectors [8, 4, 24, 25],

based respectively on multiscale gamma distributions, entropies,

Hough transforms and association rules, that incorporates automated

reporting and documentation of anomalies.

4. RESULTS

Parameter settings. For random projections, we set N = 8, M =
16, and adopt the hn from [17]. The aggregation time (bin size)

is set to ∆0 = 2−3 = 0.125ms, close to the sketch average IAT of

0.115ms ≈ 16×7µs. Cumulants of order p = 1, 2 with γ = 1 (thus,
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Fig. 1. Analysis Example: MAWI trace 2014/01/05. C1(j) (top)

and C2(j) (bottom) computed for the entire trace (solid black line

with ‘o’), each of the M sketches (light gray) and median Cp(j)
(solid red with ‘+’). The median (normal)C1(j) is free of prominent

anomalies and exhibits biscaling. Two sketches contain prominent

anomalies: trinocular (green dash-dot line) and NTP (blue dashed).

mean and variance of lnL
(γ)
X (j, k)) are used as suggested for Inter-

net traffic statistical characterization in [22]. The detection threshold

for suspicious sketches is set to τ = 3. This value was found em-

pirically to control false positives, and allows (4) to be viewed as

a robust form of ‘µ + 3σ’ . The detection threshold for suspicious

flows is set to ℓ = 7, since ℓ = 8 frequently yielded no candidates

(N too small given the sensitivity of the underlying detector for this

data), and the false positive rate is monotonically decreasing in ℓ.

Introduction. We begin with an example of the analysis procedure

over a representative trace, using a single hashtable with IPsrc as

flow key. The top plot of Fig. 1 reports C1(j) computed for each

sketch. All but two almost superimpose (grey lines), and these define

the sketch-median C1(j), whereas the two outliers are detected as

suspicious. The same holds in the bottom plot for C2(j).
Although only two sketches are suspicious, the Cp(j) computed

from the entire trace is mostly dominated by them, showing the dan-

ger of performing statistical analysis blindly on full traces. Inconsis-

tent and difficult to interpret results will be obtained, as the nature of

anomalies varies from day to day. Instead, the proposed procedure

allows the robust extraction of normal traffic and the characterization

of its statistical properties, and thereby the unveiling of anomalies.

Fig. 1 shows that the median sketch C1(j) (red) exhibits biscal-

ing: two different scale ranges separated by a ‘knee’, here at j = 12
(0.5s). Originally reported in [26], this is now commonly consid-

ered as a signature of normal traffic. To avoid a failure of statistical

robustness at small (too close to the IAT) or large (limit of trace du-

ration) scales, we restrict analysis to J = (j1, j2) = (4, 16) (2ms

to 8s). For C2(j), it is now documented [22] that a relevant range,

where multifractality is shown, is (j1, j2) = (2, 10) (0.5-128ms).

Let D
m
p,n = | Dm

p,n−median(Dm
p,n)|/MAD(Dm

p,n) denote the

normalized sketch distance. Fig. 2 provides an overview of all the

sketch summaries by superimposing the NM normalized distance

pairs (D
m
1,n,D

m
2,n) for each of the 78 traces, using IPsrc (left) or

IPdst (right) flow keys. The thresholds defining suspicious sketches

appear at τ = 3 (dashed red lines). The percentages shown give the

proportions of these detected by C1 or C2 alone, or both.

Two Important Anomaly Classes. A manual inspection of the sus-

picious flows extracted from the suspicious sketches from Fig. 1 con-

firmed them to be anomalies belonging to two particular classes.

The first consists of reflection DDoS attacks based on the Net-

work Time Protocol (NTP) [27]. Here NTP query traffic sent by the

attacker is amplified by triggering NTP servers to ‘reflect’ a large

message to the victim. Like most protocols susceptible to reflec-

tion attacks, the NTP protocol is carried by UDP, a connectionless

protocol that allows the reflected traffic to be sent in a tight burst.

Consequently, the compromised server sends packets at an abnor-

mally high rate, visible in both C1(j) and C2(j) at fine time scales

Fig. 2. Normalized sketch distance pairs over all traces. The dashed

lines mark the thresholds defining suspicious sketches.
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Fig. 3. Location j∗ of C1-spikes (spike threshold = 0.1).

(j < 10, or below 128ms), implying it impacts on both temporal

correlations and higher order dependencies. Recent NTP reflection

attacks have had a significant impact worldwide [27, 28].

The second class corresponds to the scanning activities of the

Trinocular project [29]. Trinocular probes millions of computers on

an ongoing basis in order to monitor their network connectivity, and

to detect Internet outages. Because probes are all sent with a timeout

of 3 seconds, the corresponding traffic shows a clear characteristic

time scale, visible in C1(j) at coarse time scales (j > 10) and in

C2(j) at j = 10 (roughly 128ms). This unusual though benign

traffic has a similar appearance to malicious scans.

Anomaly Classification. Due to the huge volume of traffic data it is

not feasible in general, nor here (almost 20,000 sketches were col-

lected) to manually inspect all suspicious sketches and flows in order

to provide the ground truth needed to assess detection performance

using classical tools such as ROC curves. It is however indispens-

able to provide a practical means, beyond the conservative settings

of thresholds detailed above, to ensure that detected anomalies are

meaningful. To this end we make use of a recently proposed back-

bone traffic taxonomy [30] to classify suspicious flows into one of

six categories, those heading the columns in Tables 1 and 2. This

approach contributes to two objectives: (i) an estimated breakdown

of anomaly causes, (ii) a check for false positives - the taxonomy is

a set of independent context-aware checks which in principle should

identify false positives by classifying them as ‘Other’.

To better understand the kinds of anomalies detectable by SMS,

two types of suspicious sketches under C1 are distinguished:

i) C1-shifts: those distant from the median C1 across all of J. These

are consistent with a volume change of a subset of traffic with the

same characteristics as normal traffic;

ii) C1-spikes: those that are close to C1 except at some time scale

j∗∈ J. These indicate traffic with anomalous characteristics.

Fig. 3 shows that the distribution of j∗ for C1-spike sketches con-

centrates in the range 500 to 1000 ms. Thus, being close to the knee

of biscaling, spikes strongly influence multiscale behaviour.

Applying SMS yielded 554 suspicious flows over all traces and

both IPsrc and IPdst flows, broken down in Table 1 according to

the taxonomy and five disjoint detection scenarios. The proportion

classified as ‘Other’ is only 26/554 ≈ 4.7%, an indication that the

Scan DoS NTP Pt.Multi.Pt. α-Flow Other Total

C1-shift & C2 37 2 2 40 9 1 91

C1-spike & C2 23 1 9 4 1 0 38

C1-shift only 37 1 14 106 40 15 213

C1-spike only 70 0 3 6 0 5 84

C2-only 14 7 7 45 50 5 128

Total 181 11 35 201 100 26 554

Table 1. Detection detail of suspicious flows, and classification.

Scan DoS NTP Pt.M.Pt. α-Flow Other Total

SMS 181 11 35 201 100 26 554

MAWILab 3626 94 105 2878 1178 260 8141

SMS \ MAWILab 44 11 26 81 93 12 267

MAWILab \ SMS 3489 94 96 2758 1171 246 7854

SMS ∩ MAWILab 137 0 9 120 7 14 287

SMS ∪ MAWILab 3670 105 131 2959 1271 272 8408

Table 2. Detection breakdown comparison: SMS and MAWILab.

false positive rate is low. The four volume based anomalies [Denial-

of-Service (DoS), NTP reflection attacks (NTP), point-to-multipoint

traffic (Pt.Multi.Pt.), and α-flows (α-Flow)] are mainly captured as

C1 shift and C2 anomalies, corresponding to both a traffic volume

change and subtle temporal changes beyond correlation. It is worth

noting thatC2-only detections, which includes 7/11 DoS and 50/100

α-Flow anomalies, imply that volume-based or correlation based

procedures would fail to detect them. Manual inspection of the 7

DoS cases showed that 5 of them occured on the same day, and

consisted of many IP sources each sending 45 or fewer TCP SYN

packets to the same network.

Anomalies detected as C1-spikes are mostly classified as Scan

which implies ICMP or UDP traffic. Scanning injects packets with

a typical rate, and hence time scale, which interferes with the entire

dependence structure (correlation, C1, and beyond, C2) of traffic.

Detector Comparison. Table 2 details the detections, classified ac-

cording to the taxonomy, made by SMS and MAWILab over all

traces and flow labels. Unsurprisingly, MAWILab detects many

more anomalies than SMS, as it combines four different detectors,

and multiple parameter settings for each. The main point here is that

SMS provides a complementary detection ability: out of its 554 de-

tections, 267 are new. Adding SMS to MAWILab would allow 12%

(11/94) more DoS detections and 25% (26/105) more NTP ones.

The scan, point-to-multipoint and α-flow anomalies identified

by SMS only (see ’SMS \ MAWILab’ in Table 2) have similar

characteristics to those detected by MAWILab, but they involve far

fewer packets. This indicates a greater sensitivity of SMS in those

cases. Moreover, out of the 26 NTP amplification attacks caught

by SMS only, 13 are significant as they have very high bandwidth.

These were captured using IPdst based flows, whereas MAWILab

missed them because these attacks had few packets per individual

(IPsrc,IPdst) pair.

5. CONCLUSIONS

We have proposed a multiscaling, sketch and flow based detection

procedure, Sketch and MultiScale (SMS), which has low computa-

tional cost, does not require sensitive payload data, has an ability to

generate its own reference traffic automatically and robustly, and in

many cases an ability to identify the flows causing the anomalies.

Although it is not feasible, due to a lack of authoritative ground

truth, to assess the performance of SMS formally, the majority of the

flows detected as suspicious were manually inspected and confirmed

as anomalies. By using the anomaly taxonomy of [30], we were

able not only to explain the classification of SMS’s detections in

terms of the capabilities of the underlying multiscale representations

C
(γ)
1 (j), and Cγ2 (j), we argued that the taxonony acts as a practical

cross-check on the false positive rate, which was inferred to be low.

We found that SMS provides a useful complementary detection

capability compared to the MAWILab detector-set, capable of find-

ing both subtle and significant anomalies missed by the latter.
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