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Abstract—Texture characterization of photographic papers is
likely to provide scholars with valuable information regarding
artistic practices. Currently, texture assessment remains mostly
based on visual and manual inspections, implying long repetitive
tasks prone to inter- and even intra-observer variability. Auto-
mated texture characterization and classification procedures are
thus important tasks in historical studies of large databases of
photographic papers, likely to provide quantitative and repro-
ducible assessments of texture matches. Such procedures may,
for instance, produce vital information on photographic prints of
uncertain origins. The hyperbolic wavelet transform, because it
relies on the use of different dilation factor along the horizontal
and vertical axes, permits to construct robust and meaningful
multiscale and anisotropic representation of textures. In the
present contribution, we explore how unsupervised clustering
strategies can be complemented both to assess the significance
of extracted clusters and the strength of the contribution of each
texture to its associated cluster. Graph based filterbank strategies
are notably investigated with the aim to produce small size
significant clusters. These tools are illustrated at work on a large
database of about 2500 exposed and non exposed photographic
papers carefully assembled and documented by the MoMA and
P. Messier’s foundation. Results are commented and interpreted.

I. INTRODUCTION

In historical studies of photographic papers, surface exam-
ination constitutes an important task, likely to provide photo
conservators with crucial information regarding artistic inten-
tions, manufacturer practices, assessment of texture matches
or outliers in an artist production. Often, texture assessment
remains mostly achieved by visual or manual inspections. This
implies long, tedious and repetitive tasks, which are moreover
prone to inter- and even intra-observer variability and cannot
be achieved for large size databases, cf. e.g., [1], [2], [3].

There is thus a strong need for automated procedures
achieving reproducible and quantitative texture characteriza-
tion. This gave birth to several recent attempts and efforts
to investigate the relevance and performance of computer-
assisted automated texture characterization and clustering pro-
cedures in the context of historical studies of photographic
papers, cf. e.g., the Historic Photographic Paper Classification
Challenge lead by R. Johnson and P. Messier, under the
supervision of the Museum of Modern Art, New York (cf.
http://www.papertextureid.org and [3]).

As a first step towards automation, a raking light imag-
ing device, the TextureScope, has recently been designed
to measure photographic paper texture with a standardized
procedure, currently accepted by numerous museums, thus

permitting reproducible and quantified texture measurement
[1], [3]. The paper sheets analyzed in this contribution were
digitized according to that procedure.

Once digitized samples are made available, image process-
ing tools are needed to characterize textures. Several of them,
of very different natures were recently compared in [3], [4].
Following our first works [5], [6], texture characterization in
the present contribution makes use of the Hyperbolic Wavelet
Transform [7], providing anisotropic multiscale characteriza-
tion of textures [8].

Texture characterization produces a collection of features
from which distance between prints, ressemblance and dissem-
blance can be quantified. In the context of photographic print
classification, several unsupervised classification procedures
were compared in [3], [4]. In previous contributions [5], [6],
Spectral Clustering [9] was used. A well-known shortcoming
of spectral clustering, as well as of other unsupervised clus-
tering techniques such as K-means, lies in the fact that the
number K of clusters is either arbitrarily chosen or decided via
the recourse to external criteria (such as e.g., AIC, BIC) [10].
In addition, such approaches necessarily classify all images,
including those consisting of potential outliers actually far
from any cluster. The present contribution aims to alleviate
such shortcomings by revisiting spectral clustering as being
an ideal low-pass filtering on graphs and considering other
multiscale lowpass filterbanks instead, following what has been
done for community detection in networks [11]. This elaborate
on a first attempt [12] on a larger dataset.

We illustrate how measures of cluster stability and cluster
core permit to estimate the relevant number(s) of clusters as
well as the relevance of a given print’s attribution to a cluster.

This is applied to a large dataset of photographic papers,
prepared by P. Messier, and detailed in the following Section.

II. PHOTOGRAPHIC PAPER DATASET AND FEATURES

A. Dataset

The dataset consists of 2491 images obtained using the
texturescope, a raking light close up image acquisition that
provide repeatable standardized conditions. This imaging sys-
tem, extensively described in [3], requires minimal specialized
handling so that large image sets can be produced rapidly. The
images obtained have a size of 1536× 2080 pixels and depict
a surface of 1.00× 1.35 cm (1 pixel equivalent to 42.2µm2).
This selected scale reveals some microscopic features, such



as matting agents occasionally used by manufacturers, but
also depicts attributes recognizable to a human observer. The
dataset includes blank and printed paper with a very large
diversity of origin and material, and consists in several subsets:

- 2031 sample images of traditional black and white paper
surface texture taken directly from manufacturer packages or
sample books spanning the 20th century. These samples are
representative of the full range of surface textures available
to 20th century photographers. Documentation about texture,
reflectance, brand, manufacturer and year are provided by
art experts and curators for a large proportion of the dataset
samples, essentially consisting of blank papers ;

- 348 sample images from Thomas Walther collection
held by the Museum of Modern Art and contain work by
leading modernist photographers primarily active in Central
and Eastern Europe between the World Wars ;

- 83 sample images from Man Ray (1890-1976) prints ;
- 18 sample images from Lewis Hines (1874-1940) prints ;
- 11 prints belonging to the Museum of Fine Arts, Houston

(MFAH) from the same artist and depicting the same images
as 11 prints from the Thomas Walther collection.

B. Multiscale features

Texture characterization is achieved using the Hyperbolic
wavelet transform [7], [8], a variation of the two dimensional
discrete wavelet transform which relies on two independent
dilation factors along the x1 and x2 directions. This transform
explicitly takes into account the possible anisotropic nature
of image textures. More precisely, the hyperbolic wavelet
coefficients of an image I are obtained by scalar product of
the digitalized image with a separable wavelet dilated by two
different factors, a1 and a2:

TI((a1, a2),(k1, k2)) =

1√
a1a2

〈I(x1, x2),
(
ψ(
x1 − k1
a1

,
x2 − k2
a2

)

)
〉.
(1)

The multiscale representation of the image is then obtained by
computing space averages (l2–norm) of these coefficients at
fixed scale (a1, a2):

SI(a1, a2) =
1
na

∑
k1,k2

|TI(a1, a2, k1, k2)|2, (2)

Cepstral distance: To quantify proximity between images
I and J , we use a cepstral-type distance of SI(a1, a2):

D(I, J) =
∑

a1,a2
|S̃I(a1, a2)− S̃J(a1, a2)|, (3)

where S̃I(a1, a2) = log
(
SI(a1, a2)

/ ∑
a′

1
,a′

2

SI(a
′
1, a

′
2)
)
.

This distance does not depend upon a change in the intensity
of the raking light and exposure variables that influence
overall image brightness. The selected analysis scales are
1 ≤ a1, a2 ≤ 7 and correspond to physical scales ranging
from 13µm ≤ a1, a2 ≤ 83mm (7 octaves) thus yielding a
matrix of 49 multiscale features. The similarity matrix is then
defined using the non-linear transformation W = exp(−D/ǫ)
where ǫ is a constant assessing the typical closeness between
images (of the order of the standard deviation of the distance
between all pairs of the database). A comparison with classical
clustering tools (PCA, K-means...) apply directly on D will be
done in a future work.

III. UNSUPERVISED CLUSTERING WITH GRAPH FILTERS

A. Background : Spectral clustering

There are many ways to cluster data in an unsupervised
manner (see, e.g., [10]) and we focus in this work on the net-
work interpretation of the similarity matrix W as a weighted
adjacency matrix. Finding groups in the data can be tackled as
finding a partition of the corresponding undirected weighted
graph (each node being a data sample).

We first recall the method of spectral clustering [10],
[9] to partition a graph. The normalized Laplacian matrix is

L= IN−S
− 1

2WS
− 1

2 , where S is the diagonal matrix of node
strengths, with Sii =

∑
i 6=j Wij , and IN is the identity matrix

of size N (the number of nodes). L is diagonalizable, and its
sorted eigenvalues are: 0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN ≤ 2;
associated to orthonormal eigenvectors: χ = (χ1|χ2| . . . |χN ).
Classical spectral clustering makes use of the first K eigen-
vectors to define feature vectors fK,i ∈ R

K for each node
i:

∀k ∈ [1,K] fK,i(k) = χk(i). (4)

Then, any suitable classification method can be used to obtain
K clusters from these feature vectors. The K-means algorithm
or hierarchical clusterings are often used.

B. Graph filters for spectral clustering

It was first proposed in [11] to use graph wavelet filters
(introduced in [13]) to find relevant sub-groups that partition
the data. This work was done for the mining of communities
in graphs and it was later introduced in [12] in the context
of unsupervised clustering. Let us consider the analogy stating
that the graph Laplacian’s eigenvectors are equivalent to the
graph’s Fourier modes [14]. It follows from this analogy that
filtering on graphs is defined by a filter kernel which is
diagonal on the Laplacian eigenvector basis. Following [15],
we will use low-pass filters (derived from a kernel function
h) designed in this graph Fourier space [0, 2] as being scaling
function filterbanks (in relation to wavelet filterbanks). Refer
to [15] for their exact mathematical expression.

Then, a scale parameter s ∈ R
+∗ is introduced to dilate the

kernel h in order to explore different levels of resolutions of the
clusters to be found. Specifically, the discrete filter vector hs

reads ∀i ∈ [1, N ] hs(i) = h(sλi), and the scaling function
centered around node i at scale s has value φs,i = χHsχ

⊤δi
where Hs = diag(hs). Given these scaling functions, we
define new feature vectors different from the fK,i of classical
spectral clustering :

fs,i = χ⊤φs,i = Hsχ
⊤δi. (5)

Note that if one defines hs as a simple low pass step function
up to λK (i.e. hs(i) = 1 for all λi ≤ λK and zero otherwise),
then fs,i is exactly equivalent to the classical feature vectors
fK,i of Eq. (4). These new feature vectors may therefore be
seen as a generalization of spectral clustering feature vectors
to filter kernels that may be different from the step function
involved in spectral clustering (as illustrated in Fig. 1).
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Fig. 1. Filterbanks for scaling functions (black lines) at scales s =
1, 10, 30, 50, for comparison against the step function filters (in blue) involved
in classical spectral clustering. The magenta dots correspond to the eigenvalues
of the normalized Laplacian matrix L.

C. A stochastic estimate of the cosine distance between feature
vectors

The next step is to estimate a distance. Here, we choose
the cosine distance1 between feature vectors associated to any
pair of nodes i and j :

Ds(i, j) = 1−
f⊤
s,ifs,j

||fs,i||2 ||fs,j ||2
. (6)

Note that :

f⊤
s,ifs,j

||fs,i||2 ||fs,j ||2
=

f⊤
s,iχ

⊤χfs,j

f⊤
s,iχ

⊤χfs,i f
⊤
s,jχ

⊤χfs,j

=
φ⊤

s,iφs,j

||φs,i||2 ||φs,j ||2
.

The cosine distance between fs,i and fs,j is equal to the
cosine distance between the scaling functions associated to
i and j. To compute Ds, one needs first to compute all
scaling functions φs,i, which requires the diagonalisation of
the (potentially large) Laplacian matrix. To circumvent this
issue, and inspired by Section 5 of [11] where the cosine dis-
tance between wavelets is stochastically estimated, we define
stochastic features as :

f⊤
s,i = φ⊤

s,iR = δ⊤i χHsχ
⊤R (7)

where R = (r1|r2| . . . |rη) is a set of η realizations of random
vectors, of N i.i.d. Gaussian random variables of zero mean
and finite variance. We can show, following [11] for wavelet
filters, that the correlation of the feature vectors fs,i, of size η
for each node, gives an estimate of the cosine distance between
scaling functions :

lim
η→+∞

Ĉor(fs,i,fs,j) =
φ⊤

s,iφs,j

||φs,i||2 ||φs,j ||2
= 1−Ds(i, j).

(8)
Furthermore, even though the limit holds for η infinite, in
practice, a small η is enough. Empirically we observe that
to correctly estimate a partition in K clusters, one needs to
use at least η > K random vectors.

The advantages of the stochastic approach are two-fold.
First, it is not necessary anymore to diagonalize the Laplacian
because one can rely on the fast graph filtering proposed in

1This section’s argumentation is true for the cosine distance. Another
classically used distance is the correlation distance, which would only slightly
change the following calculations.

[13] to directly compute Eq. (7) without explicitly knowing χ.
This method relies on a polynomial approximation of the filter
h which is extensively explained in references [16]. Second,
the inherent stochasticity allows us to assess the stability of
the obtained results, which in turn helps us to estimate the
relevant number of clusters.

D. Clustering algorithm

We have just shown that given η random vectors grouped
in matrix R, and computing the correlation of their scaling
function transform, one obtains an estimate of the cosine
distance matrix Ds. We then use hierarchical clustering with
average linkage as in [11] to obtain a partition in clusters Ps.

We generate J random matrices R, and obtain thereby a
family of partitions {P j

s }j∈[1,J]. Because of the randomness
in the definition of R, any two partitions in this family are
not necessarily equal. This stochasticity allows us to propose
two indices to assess whether an obtained clustering is robust
enough: the global stability of the clusters, and the local
constancy of the attribution of each node to cluster(s).

E. Robustness of the clustering

The first metric, called Global Stability Index γ(s), is
defined as the mean of the similarity between all pairs of
partitions of {P j

s }j∈[1,J]:

γ(s) =
2

J(J − 1)

∑

(i,j)∈[1,J]2,i 6=j

ari(P i
s , P

j
s ) (9)

where the function ari is taken here as the Adjusted Rand
Index [17]. The more stable is the partition at scale s, i.e. the
more interesting this scale is, the closer to 1 will be γ(s). In
the following, we will closely consider scales whose stability
is high enough. In fact, we typically estimate the clustering for
a set of logarithmically spaced scales between two boundaries
automatically detected by the algorithm [11]. Only the scales
s∗, the local maxima of γ(s), and their associated partitions are
kept. This allows us to circumvent the usual issue of choosing
or estimating the number of clusters K in spectral clustering.

Second, we introduce a local robustness measure of the
clustering. Core clusters were defined in [18] in the context of
community detection and we extend its use to the problem of
data clustering. Two nodes i and j will be in the same cluster
core if, in each of the J partitions, they are always classified in
the same cluster. Clusters of size 1 will not be counted as cores.
Given a scale s, from the J different clustering {P j

s }j∈[1,J],
we obtain a list of cluster cores {Cz}z∈[1,Z]. For each node i,
we define its frequency of core association ρs(i): if i belongs
to core Cz , then the frequency is ρs(i) = 1 ; if i is not in a
core, we compute the relative frequency ρs(i) = nz/J based
on the number of occurrences nz for which i is associated to
the same core Cz (we only keep the z′ which maximizes nz).
In some cases, a is always in its own cluster of size 1 which
does not qualify as a core cluster and we keep it unclassified
with ρs(a) = 0. If ρs(i) = 1, then we may confidently classify
data i in its cluster core. If not, then i cannot be classified
with full reliability with other points in this dataset, and Cz

(cluster with a maximal number of occurrences for i) is only
an indication of its closest core. The average

ρ̄s =
1

N

∑

a

ρs(i) (10)



over all nodes of their relative association frequency to a
cluster core gives a second stability function that we will call
Local Stability Index in the following. The closer is ρ̄s to 1,
the more stable is the local association of nodes (i.e., prints)
to cluster cores.

Global and Local Stability Indices are illustrated in Fig. 2.

F. Choice of the Laplacian

The equivalence between spectral clustering and low pass
graph filtering is technically exactly valid for symmetrical
Laplacian matrices (whose eigenbases are orthonormal): the
combinatorial Laplacian L = S − W and the normalized
Laplacian (as previously defined) are two good candidates.
One may extend this analogy to the random walk Laplacian
Lrw = IN − S

−1
W, which is not symmetrical anymore

but has the same spectrum and has shown better results in
the spectral clustering litterature (see [9] for instance). In the
following, we will show results obtained with the random walk
Laplacian.
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Fig. 2. Left: Global (Eq. (9), blue) and Local (Eq. (10), black) Stability
Indices of achieved clustering versus clustering scale. Red dots on the Global
Stability Index correspond to local maxima, and thus indicate scales at which
achieved clustering show most relevance. The three red cross correspond to the
local maxima of the three analyzed scales in section IV. Right: Corresponding
number of cluster cores at each scale.

IV. PHOTOGRAPHIC PAPER CLUSTERING

A. Stability analysis and hierarchy of clusters

The proposed stochastic scaling function filterbank cluster-
ing is applied to the affinity matrix W defined in Section II-B
and computed from features measured on each sample of the
large dataset described in II-A: 50 different scales are scanned,
using η = 200 and J = 100 random matrices.

Fig. 2 reports the obtained stability indices across scales
for this large dataset (left) and the corresponding number of
clusters (right). Red dots on the Global Stability Index indicate
scales at which clustering can be considered relevant. While
fine scale s = 4 is marked as stable by the Global Stability
Index, the Local Stability Index is found very low at that scale
indicating that most prints randomly switch from one cluster
to the other in the stochastic procedure used to compute the
cosine distance (cf. Section III-C). This is due to artifacts of the
similarity measure Adjusted Rand Index used in the definition
of γ in Eq. (9). Scale s = 4 is thus considered as not yielding a
relevant clustering. The Global Stability Index shows 10 local
maxima above scale s > 10. In all cases, these local maxima
coincide with large Local Stability Indices. These scales can
thus be considered as yielding relevant partitions of the datasets
of prints at hand.

At the finest stable scale s = 11, the achieved partition
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Fig. 3. Hierarchical representation of three stable scales (out of the eleven
detected in Fig. 2): scales s = 16, 21, 26 with respectively 85, 28, 20 clusters
(from bottom to top). The width of the link connecting clusters at two different
scales quantifies the proportion with which the coarse scale cluster feeds the
fine scale one. The size of the dot indicates the size of the clusters. Achieved
clustering is not necessarily hierarchical.

consists of 177 clusters, the largest of which contains 487
prints. The precise analysis and interpretation of the content
of each cluster is beyond the scope of the present article.
For the illustration of the relevance of the proposed cluster-
ing approach, let us now concentrate on three stable scales
(amongst the 9 remaining stable scales), s = 16, 21 and 26,
yielding respectively 85, 28 and 20 clusters. Fig. 3 represents
the evolution of the core communities along the three chosen
scales s = 16, 21 and 26. It shows that the achieved clustering
is not hierarchical: a cluster at scale s can split into several at
scale s′ < s, and conversely, a cluster at scale s′ can results
from the merging of (portions) of clusters at a coarser scale
s > s′.

Fig. 4 displays the mean 49-features, S̃X(a1, a2), rep-
resented as an image, for the 20 cluster cores obtained at
coarse scale s = 26. The differences in the mean signatures
permit to assess differences between the anisotropic multiscale
properties of the prints classified into each cluster: Asymmetry
in amplitude around the first diagonal betrays asymmetry of
the texture ; Large amplitude close to the bottom right corner
indicates energy at coarse physical scales.

The proposed clustering approach relies on a true multi-
scale strategy, that does not favor clusters of similar size but
rather clusters having the same “local vision” of the graph at a
given scale. This implies that the large cluster (Cluster 1 of size
2162) consists of a large ensemble that gathers most typical
prints, while the 19 other clusters have positions in the graph
that are definitely peculiar at that scale, and thus correspond
to prints whose properties depart significantly from the typical
properties of Cluster 1. At intermediate scale s = 21, the large
Cluster 1 splits into several clusters with one larger than the
other ones (size 1944). At fine scale s = 16, this large cluster
further splits into several clusters, the largest of which yet
remains significantly larger than all others (size 830).
Let us focus on some case studies of the 19 smaller clusters
at scale s = 26 and study with some details their evolution
across scales.

B. Case studies

Silk clusters: At coarse scale s = 26, Clusters 13, 14 and
20 (of sizes 25, 30 and 3) contain 45 prints documented as
Silk textures. Out of the 13 remainders, 9 are not documented
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Fig. 4. Intra-cluster mean 49-features quantifying the mean anisotropic

multiscale properties S̃X(a1, a2) of each of the 20 clusters obtained at coarse
scale s = 26. Amplitudes are coded from blue (low) to red (high), with
identical colormaps for all clusters.

and visually look very much like silk texture. Fig. 5 (left)
displays one example of print and the mean features of the
cluster. Obvious differences in mean features explain why the
prints are clustered in 3 different groups. Fig. 3 further shows
that these three clusters remain identical at intermediate scale
s = 21. At fine scale s = 16, however, while Clusters 13 and
20 stay identical, Cluster 14 is split into two clusters (57 and
65, of size 11 and 20). Fig. 5 (right) illustrates differences in
the mean-features of these two refined clusters. Moreover, at
this fine scale, a new small cluster (77 of size 2, Fig. 5 bottom
right) appears as further extraction of Silk texture papers from
the very large Cluster 1 at coarse scale s = 26, where they were
mis-classified. At this fine scale, only 6 prints documented as
silk are not accounted for. They are displayed in Fig. 6 with
their features. The top 4 prints show, at least visually, patterns
similar to other Silk prints, with much less contrasted textures
though. The 2 bottom prints, though documented as Silk, show
very different textures and features. This case study of Silk
textures shows the ability to extract given attributes, such as
Silk texture, in an automated way, and to detect potential
mislabeling in metadata.

Glossy clusters: Let us now concentrate on Clusters 3,
8 and 11 (of size 139, 21 and 33) at coarse scale s = 26.
Metadata indicates that they all essentially contain print
reflectance documented as Glossy. Fig. 7 displays a sample
and mean features for each of the 3 clusters and shows that
mean-features of Cluster 3 significantly depart from those of
Clusters 8 and 11. Interestingly, metadata indicate that Cluster
3 preferentially consists of prints from Kodak manufacturer
(64 out of 139), while Clusters 8 and 11 contain far fewer
Kodak prints (2 out of 21 and 7 out of 33, respectively).
The fine scale features of textures may thus be interpreted
as a Kodak manufacturer signature. These clusters remain
identical at intermediate scale s = 21. At finer scale s = 16,
Cluster 11 remains identical, while Cluster 8 splits into three
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Fig. 5. Left: three clusters with texture documented as Silk at coarse scale
s = 26. Right: at fine scale s = 16, Cluster 14 is split into two clusters
(57 and 65), and a new small cluster (77) is created (Clusters 13 and 20
remain identical). For each cluster, a sample image and the mean features are
represented using the same colormap.
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Fig. 6. The only 6 prints of the database documented as Silk that are not
captured in the Silk clusters analyzed in Fig. 5 and their features. The colormap
is the same as in Fig. 5.

clusters (42, 44 and 68, of size 12, 2 and 7), cf. Fig. 7 (right).
Interestingly, Cluster 3 splits into four clusters shown in
Fig. 8: Two of them, Clusters 53 and 56 (of size 11 and 101),
contain mostly Kodak prints (8 out of 11 and 51 ou of 101) ;
Cluster 18 (of size 24) contains hardly any Kodak prints (3
out of 24) ; Cluster 85 (size 2) gathers the only two prints
documented as Kodak manufacturer and Scientific Imaging
Film brand.

Other clusters: At coarse scale s = 26, Clusters 9 (size 3),
10 (size 5) and 18 (size 3) display similar features as shown
in Fig 4. Cluster 10 contains the only two prints from the
entire database documented as Agfa Ansco and brand Cykon
or Cikora with Crystal texture. This cluster remains identical
down to the finest stable scale, thus showing its consisting of
a set of 2 very specific textures. Cluster 9 contains one print
from the Thomas Walther collection and the only two prints
documented as Defender manufacturer, Velour Black Brand
with canvas texture. At fine scale s = 16, the two defender
remain together in a cluster of size 2. Besides the large cluster
(Cluster 1), the two remaining significant clusters at coarse



Cluster 3 (139)

a
2

Cluster 8 (21)

a
2

Cluster 11 (33)

a1

a
2

1 3 5 7

1 3 5 7

1 3 5 7

1

3

5

7

1

3

5

7

1

3

5

7

Cluster 42 (12)

a
2

Cluster 44 (2)

a
2

Cluster 68 (7)

a1

a
2

1 3 5 7

1 3 5 7

1 3 5 7

1

3

5

7

1

3

5

7

1

3

5

7

Fig. 7. Left: clusters with glossy texture at Scale 26 (20 clusters). Right:
cluster 8 split in three clusters at scale 16. For each cluster we show a typical
image and the mean features of the cluster using the same colormap.
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Fig. 8. Cluster number 3 at scale 26 (20 clusters) split in four clusters at
scale 16 (85 clusters). For each cluster we show a typical image and the mean
features of the cluster. The colormap is the same as in Fig. 7.

scale s = 26 (5 and 15 of size 18 and 10) do not receive
simple interpretations.

V. CONCLUSION

This contribution elaborates on spectral clustering, relying
on the framework of filterbanks in the graph Fourier domain.
Instead of ideal low-pass filterbanks, use is made of low-pass
scaling functions filterbanks. While any multiscale clustering
technique, including the one proposed here, can output clusters
with size as targeted, one of the advantages of the technique
developed here lies in the indices of stability. Indeed, the
stochastic evaluation of the cosine distance between graph
nodes is used not only to reduce computational load, but
also to construct two measures of local and global stabilities.
This permits to select scales (and thus number of clusters) for
which the partitioning can be regarded relevant and to assess
a probability of correct classification for each node. We are
thus technically able to create arbitrarily small clusters, and
assess their relevance to partition data. The stability indices
might drop drastically at fine scales, thus indicating that such
small clusters do not make sense. For art historians, measures
of the confidence in clustering may prove a great added value
as it may avoid the burden of trying to interpret clusters and
classifications that are actually not relevant or stable. Further,
the possibility of keeping some samples unclassified may help
to avoid to draw conclusions based on unreliable associations.

Such algorithms and approaches may be used to achieve a
number of tedious systematic tasks, such as detecting mis-
labeling in documentation or proposing automatic tentative
labeling by semi-supervised strategies: art historians would
then only have to validate proposed pre-documentations.

On the technical side, an extension of the work may consist
of exploring the replacement of low-pass with band-pass filters
(wavelet filterbanks on graphs) [13]: this may yield further
details at finer scales.
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