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Abstract. A one-dimensional (1D) g¢-state Potts model with N sites, m-site
interaction K in a field H is studied for arbitrary values of m. Exact results for
the partition function and the two-point correlation function are obtained at H = 0.
The system in a field is shown to be self-dual. Using a change of Potts variables, it is
mapped onto a standard 2D Potts model, with first-neighbour interactions K and H,
on a cylinder with helical boundary conditions (BC). The 2D system has a length N/m
and a transverse size m. Thus the Potts chain with multi-site interactions is expected
to develop a 2D critical singularity along the self-duality line, (e — 1)(e?® — 1) = ¢,
when N/m — oo and m — oc.
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1. Introduction

The standard Potts model is a lattice statistical model with pair interactions between
g-state variables attached to neighbouring sites [1,2]. Multi-site Potts models can be
constructed by extending to an arbitrary number of states existing multispin Ising
models for which ¢ = 2. In this way, a self-dual three-site Potts model on the triangular
lattice was introduced by Enting [3,4], which corresponds to the Baxter-Wu model [5, 6]
when ¢ = 2. Similarly, a 2D self-dual Potts model with m-site interactions in one
direction and n-site interactions in the other [7-9] follows from the Ising version with
n =1 [10].

Multi-site interactions may be generated from two-site interactions in a position-
space renormalisation group transformation and thus have to be included in the initial
Hamiltonian. In this way Schick and Griffiths have introduced a three-state Potts model
on the triangular lattice with two- and three-site interactions [11]. For any value of ¢ it
can been reformulated as a standard ¢-state Potts model with two-site interactions on a
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3-12 lattice [12]. When the three-site interactions are restricted to up-pointing triangles,
the model is self-dual [13,14] and related to a 20-vertex model [13,15].

Extending the results of Fortuin and Kasteleyn [16] for pair interactions, a
random-cluster representation for Potts models with multi-site interactions has been
introduced [17-19] and exploited in Monte Carlo simulations [20].

Multi-site interactions enter naturally when the site percolation process is
formulated as a Potts model in the limit ¢ — 1 [21-25]. Various Potts multi-site
interactions have also been used to model conformational transitions in polypeptide
chains [26-29).

With s; = 0,1,...,¢g — 1 denoting a g-state Potts variable attached to site j, a
multi-site interaction can take one of the following forms

(a) - K H 53j75j+1 ) ( - K5 (Z 3]+l> ’ (1'1)

where 6,,,, is the standard Kronecker delta and §,(n) is a Kronecker delta modulo g.
When K > 0 the ground state is g-times degenerate in the first case (the standard one)
whereas the degeneracy depends on m and is given by ¢! in the second case. As an
example, when ¢ = m = 3 the degenerate ground states are the following ones:

000 000 012 210
(a) 111, (b 111 120 021 (1.2)
222 222 201 102

In the present work we generalize for g-state Potts variables some results recently
obtained for the 1D Ising model with multispin interactions [30]. The Hamiltonian of
the g-state Potts chain takes the following form:

_BHN S} KZ [q5 (Z 5j+l> —1

We assume ferromagnetlc interactions K > 0 and H > 0, too. The Kronecker delta

qzlexp (227?1{:5) _ { 1 when s = 0 (modg) 1.4

+HY [0, (s5)=1], 8= (ksT)"". (1.3)

J

modulo ¢ is given by:

0 otherwise

Introducing the Potts spins [31,32]

2ims,
0; = exp ( zwsj) , (1.5)

q

the Hamiltonian in (1.3) can be rewritten as {:

—

<
,_.

m—

—BHN[{o} =K ) f+l+HZZa (1.6)

7 1 1=0

b
Il

T One may also express the Potts interaction using clock angular variables (see appendix A).
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Figure 1. t-variables entering into the expression (2.3) of s; for m = 3 and different
values of the distance N —j from the end of the chain. The ¢-variables, defined in (2.2),
are the sums of m s-variables (circles) with the convention s; = 0 when ¢ > N. The
second lines are subtracted from the first so that only s; is remaining.

When ¢ = 2, 0; = £1, k = 1 and the Ising multispin Hamiltonian studied in [30] is
recovered, which a posteriori justifies the choice of interaction (b) in (1.3).

The zero-field partition function of the Potts chain with m-site interaction K is
obtained for free BC in section 2 and for periodic BC in section 3. The periodic BC
result allows a determination of the eigenvalues of T where T is the site-to-site transfer-
matrix. The two-site correlation function is calculated in section 4. In section 5 the
system with periodic BC is shown to be self-dual when the external field H is turned on.
In section 6 the system with free BC is mapped onto a standard 2D Potts model with
first-neighbour interactions K and H, length N/m and transverse size m. The mapping
of 1D Potts models with m-site and n-site interactions is discussed in section 7. The
conclusion in section 8 is followed by 4 appendices.

2. Zero-field partition function for free BC

With free BC the zero-field Hamiltonian of a chain with N Potts spins, with m-site
interaction K, takes the following form

—BHY N =K 3 [qaq (Z) —1] (2.1)

1=0
when written in terms of the Potts variables s;. Let us introduce the new Potts variables
t;=0,...,q9— 1 defined as

3

tj = sj+; (mod q), j=1,...,N, (2.2)
!

I
=)

with the convention s; = 0 when ¢ > N in (2.2). Note that the relationship between old
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and new variables is one-to-one with the inverse transformation given by (see figure 1):
p

szz<trm+j_trm+j+l) (mod q), j+pm=N-1, 1=0,....m—1. (2.3)
r=0

Using (2.2) in (2.1) one obtains a system of N —m + 1 non-interacting Potts spins in a
field K with

N—m+1
—BHP{t}] = K Z g0, (t (2.4)
The canonical partition function is easily obtained and reads:
N—m+1 N
20 = Ty e PHYHY = H Tr,, M@= T Ty, 1
j=N—m+2
m— _ _ N—m+1
= ¢" ! [eTVE 4 (g — 1)e K] : (2.5)

Note that although only N — m + 1 new variables enter into the expression of the
transformed Hamiltonian (2.4), one has to trace over the N Potts variables ¢; in (2.5).
When ¢ = 2 the Ising result (equation (2.6) in [30]) is recovered.

The free energy can be decomposed as follows

FIO = _jyTn 20 = Nfy, + Fo(m) (2.6)
where the bulk free energy per site

fo=—kpTln [e“™DE 4 (¢ —1)e ], (2.7)
does not depend on m whereas the surface contribution

expl(q — 1) K] + (¢ — 1) exp(—K) }
. :

Fs(m) = (m — 1)kgT ln{

is m-dependent.

3. Zero-field partition function for periodic BC

Let us now evaluate the partition function for a periodic chain with N sites and m > 1.
To simplify the discussion we consider only the case where N is a multiple of m. Then
the Hamiltonian takes the following form

pm [{s}] =K Z [q5 (Z 3]+l> —1] ; (3.1)

with syy; = s;. Making use of the change of variables (2.2), it can be rewritten as:

N=pm

—BHY ] = K Z g0, (t (3.2)

With periodic BC the correspondence between {s} and {t} Potts configurations
is no longer one-to-one and the new variables have to satisfy a set of m — 1
constraints [30,33-35].
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There are several {s} configurations leading to the same {t}. Omne of these
configurations, {s'}, is obtained by changing s; into

S/j:5j+Aj (mod q), j=1...,N. (3.3)

where the shifts A; = 0,...,¢ — 1 have to satisfy some constraint. Let us first consider
t = Z?:ol s;1 (mod g). One can freely choose the first m — 1 shifts (g™~ choices)
and ¢ keeps its value when A,, is such that Eﬁgl A1 =0 (mod g). Since t; and ;44
have the shifts Ay, (I =1,...,m —1 in common, the value of A, leaving ¢; invariant is
equal to the value of A;,,, leaving ¢, invariant. When N = pm a periodic repetition
with period m of the first m shifts acting on {s} leaves {¢} invariant. Thus there are
q™ ! Potts configurations {s'} leading to the same {t} . When {s} is a ground-state
configuration, ¢! gives the ground-state degeneracy.
In the following we shall make use of the Potts spin variables:

. m—1 .
2irt; 2irt;
Tj = exp ( il J) = H Ojti, Tj = exp (— T ]) = T;’_l, =1 =1. (34)
q 1—0 q
According to (1.4) one has:
q—1 .
2imkt;
Tr,, Tf = Z exp ( ]) = qo,(k) . (3.5)
t;=0 q
For later use, note that the Boltzmann factor
N=pm
N =TT ek + (600 — ) by )] 56)
j=1
can be rewritten as
N=pm K q—1
e—ﬁﬂgg)[{T}] — o NK H 14 X 1 Tf
j=1 q k=0
oK N N=pm q—1
- <—) I e +a-D+ -0 . 7
q j=1 k=1
using (1.4) and (3.4),
Let us consider the product of Potts spins
p—1
Pi=]]mmeiTimeinn.  i=1...m—1. (3.8)
r=0
Making use of
m—1
Trm+i7—:m+i+1 = Orm+i (H O-Tm+i+l0-:m+i+l> O-E;’Jrl)eri = O-Terl'O-Eerrl)eri (39)
=1
and taking into account the periodic BC, one obtains the constraints
p—1
Pi=1]omsiohigme =1,  i=1...,m—1, (3.10)
r=0

I Note that the initial configuration, {s}, corresponding to A; = 0 Vj, is taken into account.
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to be satisfied by the 7-configurations in (3.8). When m > 2 other constraints can be
constructed, for instance from 7,47}, .., but these are automatically satisfied since
they can be written as products of the fundamental ones: Ty, 1i Ty, it Trmtitl Trmgiga-

~~

1
Thus with the new Potts spin variables, taking the constraints into account, the

partition function is given by:

m—1
20 Ty, o= BHY U I1 sr..1- (3.11)

N=pm
i=1

To go further we need an explicit expression for the Kronecker delta, dp, ;. Consider the
geometric series

q—1 _ yq
FX)=> x*= 11 _))(( , (3.12)
k=0

it vanishes when X is a qth root of unity other than 1 and is equal to ¢ when X = 1.
Since P; in (3.8) is a gth root of unity, the constraint can be written as (cf. (1.4))

1 q—1 qg—1 p—1
5Pi71 -~ Z sz Z H rerz rm—l—z—i—l Y (313)
q k=0 k 0 r=0

where (3.4) has been used. The partition function in (3.11) now takes the following
form:

Z](\I;) _ Tl“{ pe ﬁ’H(P)[{T} H <1 + ZPk> H o rm+l+1 (314)

i=1

The first product has the following expansion:

H <1+ZP’“> = 1+ZP’“+ S PEP+ > PIRYPY 4+ [P (3.15)
= i<l kK i< <il" kK K i

The expression of PF in (3.14) is periodic with period m. There are two consecutive
Potts spins contributing to the product for each period and the sum of their exponents
vanishes modulo ¢. Besides 1 the expansion (3.15) generates terms containing from
[ = 2 to m spins for each period with ( ) possible spatial configurations {«;}. These
spatial configurations are labelled by the [ spin exponents, each varying from 1 to ¢ — 1
with a sum which remains vanishing modulo ¢ in the products, due to the Potts spins
properties (3.4). As shown in appendix B, for [ spins the number v; of allowed exponent
distributions is given by:

v — 3 [(g— 1)+ (~1)(g—1)] . (3.16)

Combining these results, the expansion can be written as

H<1+Zpk>_1+zzz~m .17

= =2 o=1 ;=1
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where Egll is a product for each period of [ Potts spins in configuration «; with an
exponent distribution f;.
The partition function in (3.14) splits in two parts:

20y = Trppy e VN Z Z Z Trgpy e PR (3.18)

A 2&[ 1ﬁl1

B

In A, according to (3.5), each of the pm factors in (3.7) contributes to the trace by:

e—K

— Try,
q

e pg—14 (e - ZT ] =e X (e +qg—1). (319

In B, for each period, Egll contains [ supplementary spin terms of the form Tf, with

k' =1,2,...,qg — 1. Thus the trace involves p(m — [) factors given by (3.19) and pl
factors of the form

e—K

— Try,
q

(e g = 1) 7+ (e ZT’””]‘G K (1), (320)

where the non-vanishing contribution comes from the term ¢ — &k’ in the sum over k
according to (3.5). Collecting the different contributions to the partition function, we
finally obtain

" ’'m B eplm=l) ¢ epl
= 3 (7)o
1=0
qu—l pl
1 _ 21
+Z< ) (qu+q_1) ],(3 )

where v, given by (3.16), is such that vy = 1 and v; = 0. For ¢ = 2
{ 1 when [ is even
l pu—

= [e(qil)K—F(q 1

] (3.22)
0 when [ is odd
and the Ising result, equation (3.13) in [30], is recovered.

Let T be the transfer matrix from |0;0;41...04m—2) t0 [0j110j12...0j1m_1). As
discussed in appendix C, its mth power is real and symmetric. The real eigenvalues
of T™, w;, and their degeneracy, ¢g;, can be deduced from the expression (3.21) of the
partition function (see (C.6)).

4. Zero-field correlation function

In this section the zero-field correlation function is obtained for free BC and m > 1.
The correlations between the Potts variables at sites ¢ and ' are evaluated by taking
the thermal average of the following expression:

q04(si —si) — 1
-1

(4.1)
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It is equal to one when the two sites are in the same state and has a vanishing average
in a fully disordered system. Making use of (1.4) and (1.5) the numerator in (4.1) can
be expressed in terms of Potts spins as:

q—1

q6q(si — ex {M—_SZ] Zcrk il (4.2)

k=1

Let us first suppose that ' =i + rm. Taking into account (3.9) one may write

Oivrm = H Totmeti Trmgidd » (4.3)

and the correlation functlon takes the following form:

—ﬁ’H(f)[{T} qg—1 r—1

5 i~ 2i+rm —1
Q%)(i,iqtrm) = <q ol ( Sitrm) >: Trn Z H fm-l—z Tomgir1 - (44)

¢—1) N k=1 r'=0

Following the same steps that led to (3.7), the Boltzmann factor for free BC can be

written as

_ _ N—m+1 N—m+1 —1
st _ [+ (g —De K]

I | s

Z(f) Nomi ak _ 1 ol
N © k (4.5)

+qu+q_1ZTj

j=1 k=1

where the expression of Z](\{) in (2.5) has been used §. Inserting this expression in (4.4),
one obtains:

(f)(

ZTI{T} H Trim4i rm-‘,—z—l—l X

N— erl K 1 q— 1
_ Y
7qu o > o7 ] , (4.6)

<1l
k'=1

The trace over {7} contains r factors with j = r’m + i of the form

i,i+rm) = q—l

!
mai | Trmi qK+q—1k/1rmﬂ Tek tg-1°

’ qu —1
Tr,, * TRtk ] =q—— (4.7)
the only non-vanishing contribution coming from the second term for &’ = g—k according
0 (3.5). The same result is obtained for the r factors with j =r'm+i+ 1 and k' = k.
The trace over the remaining N — 2r Potts spins contributes a factor ¢V ~=2", the sum

over k gives ¢ — 1, so that, finally:

Dt rm) = [L—llr — exp <_@) _ (4.8)

et 4 g —

§ Taking the trace over the N Potts spins in (4.5), all the terms in the product involving 7; vanish and
the trace over 1 gives ¢".
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As expected, this expression can be rewritten in terms of transfer matrix
eigenvalues (C.6) as (wa/wp)". The correlation length, given by

aK _ -1
- ()]

diverges at the zero-temperature critical point when K — oo.
Let us now consider the case where i" — i is not a multiple of m. Using the Potts
spin variables (1.5) and (3.4) the inverse transformation in (2.3) translates into:

P
or= [ romsimimeir i+l=N-—pm, [=0,...,m—1.(4.10)
'=0
In the same way let
p—r
Oy = H T Trmtit1, © 4+ =N—pm+rm, 1'=0,...,m—1,(4.11)
r'=0

with, in both cases, 7; = 1 when j > N. Since ¢/ —i¢ =rm+1—1', we need [ # I'. In the
product o;07, the last factor contributed by o; is either 73,_,,; or 7y when [ = 0 whereas
for oy it is either 7y _p41 or 75 when " = 0. Thus these factors cannot all disappear
in the product when [ # . At least one of them leads to a vanishing trace over {7} in
the correlation function since the product over j in the Boltzmann factor (4.5) ends at
N —m + 1. It follows that:

D=0, i'—i#rm. (4.12)

When m = 2 and ¢ = 2 this argument no longer applies. With m = 2 the 7; and the 7}
always appear twice in the product ;07 for values of j > ¢'. Accordingly, the correlation
function does not vanish since Tj2 = 7‘}2 = 1 when ¢ = 2. The difference between ¢ = 2
and ¢ > 2 when m = 2 can be understood by looking at the behaviour of the correlations
in the ground state. For ¢ = 2 there are 2 degenerate ground states which, using Potts
variables, are given by 00000... and 11111... so that (2,(s; — si#) —1) = 1. When
qg = 3, for example, there are 3 degenerate ground states, 00000..., 12121... and

21212 .., leading to (30,(s; — si7) — 1) = 0 when ¢’ — i is odd.

5. Self-duality under external field

In this section standard methods [4,7,36] are used to show that the Potts chain with
multi-site interactions and periodic BC is self-dual under external field.
According to (1.3), the partition function is given by:

N m—1
Z](\’,’)(K, H) = ¢ NUE+H) Trig) Hexp [qKéq (Z 5j+l>] exp [qHd4(s;5)] - (5.1)
1=0

J=1

Introducing the auxiliary function

C(X,z) = e — 14 ¢d,(z), (5.2)
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Sivi Siv3n
] ]
O O O O
S; Siv1 Sit2 S; i1 Sit2 Sit3
Si_g S; i1 Siczn Sicip Sz Sivan
) {} ] W ', ', {1
o (@)
S, s,
m=3 m=4

Figure 2. Position of the dual Potts variables (squares) entering in the definitions (5.6)
of u; and v; relative to the original ones (circles) for odd and even values of m.

one obtains the identity:

15 2i
0 =14 (1)) = LS otenen (BY) Gy
s q
Thus the partition function can be rewritten as:
(K+H) N qg—1 g—-1
Z](\I;)(K,H) TI"{S}HZ CKu] H,Uj)
j=1u;=0v;=0
. m—1
1 2im
X geXp [7 ('Uij + 'U/] Z S]’+l>] . (54)
1=0

Regrouping the factors containing s; in the last exponential and reordering the sums,

one obtains

o N(K+H) N 1 2imsiwi
2 (K H) = = Trgun J IO w) O ) TT Z ( )
j=1 =10
o~ N(K+H) N -
= T [] ) Ct ) T oyw), )

where w; stands for v; + Z?:ol Wiy

Non-vanishing contributions to the partition function correspond to configurations
of {u} and {v} such that w; = 0 (mod ¢) Vi. Introducing dual g-state Potts variables
{5}, this condition is automatically satisfied when u; and v; take the following forms

U; = _§i+(m—1)/2 (mod q) ) Uy = Z §i+l—(m—1)/2 (mod Q) ) (5-6)
such that:

m—1 m—1
w; = Z Siti—(m-1)/2 — Z 8i_t4(m-1)/2 (mod q)
1=0 1=0
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m—1 m—1
= Z Siti—(m-1)/2 — Z i (m-1-1)+(m-1)/2 = 0 (mod ¢q) . (5.7)
1=0 =0

The dual lattice coincides with the original lattice when m is odd. It is shifted by half
a lattice spacing when m is even (see figure 2).
Introducing the dual Potts variables in (5.5), one obtains:

—N(K+H)

e
Z](\I;)(K,H): TTY{S}HC K 8]+(m 1/2 <H ZSJH (m—1)/ ) . (58)

J=1
Let us rewrite the auxiliary function C' as:

O(X,z) = D(X) exp [Yf(q(sq(x) - 1)] — D(X)e Y [1 + (e — 1)@@)} . (5.9)
A comparison with (5.2) leads to

D(X)=¢" (e =1), (X =1)(e” —1)=gq. (5.10)
Making use of these relations, with Y = H when X = K and Y = K when X = H, the
following duality relations for the couplings are obtained:

@ — D™ —1)=¢q, (e —1)(e*-1)=q. (5.11)
The partition function (5.8) is now given by:

o~ N(K+H) N(K+H)

ZP(K H)= (e 1) (e 1) 2P(K, H). (5.12)

qN

Using (5.11), this can be put in the more symmetric form:
eV (K+H) ®) oN(K+H) )
e =D = = ) = oy s (- 69

Taking the product of the duality relations in (5.11) and separating the original and

dual parts gives
aK _ 1) (e?H — 1
@Dty a _
q (edK — 1)(e?H — 1)
so that the line (qu — 1) (eqH — 1) = ¢ in the (K, H)-plane, which is invariant in the
duality transformation, is a self-duality line.

6. Mapping on a 2D g-state Potts model when H # 0

Let us consider a Potts chain with IV spins, m > 1 and free BC. According to (1.6), the
Hamiltonian of the system in an external field H is given by:

N—m+1 ¢g—1 m—1 N q—1
—BHN{o =K Y > [[otn+HD D of. (6.1)
j=1 k=1 1=0 j=1 k=1

Let us define new Potts spins {(} and Potts variables {z} such that:

2
gj:exp(mzﬂ) Ho—z, % =0,....q—1. (6.2)
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S1o

K

K 10 1, 12

///KEA 7 8 9 10
H

QY// S, 4 5 6 7

C"I z;z §3 C] I(/ 2 3 4

(a) (b) !

Figure 3. (a) Under the change of spin variables (6.2) the 1D Potts model with m-
spin interactions in an external field is mapped onto a 2D standard Potts model on a
cylinder with helical BC. H and K are the first-neighbour interactions along the helix
and parallel to its axis, respectively. The helix has a length N/m and m spins per
turn. The helicity factor is 1/m. (b) The same lattice in a rectangular representation.

Using (3.4) one obtains
GCiy1r J<N s GChms J<N-m+1
0j = . ) H Oj+1 = )
Cju ]:N =0 C], j:N—m+1

and the correspondence with the original variables is one-to-one. The Hamiltonian (6.1)

: (6.3)

now takes the following form:

N—m q—1 N—-1qg—1
—BHN{CH=K > D ke, +H ¢i¢ ]+1+KZCN m+1+HZcN. (6.4)
j=1 k=1 j=1 k=1

Alternatively, using

g ik —
ch = exp ()| S 1=a0s, 1 Z @0.0—1, (6.5)
k=

k=0

the following standard form is recovered:

N—-1
_BHN {Z} Z Z]7Zj+m - _'_ H Z q Zj,2i41 )
7=1

+ K (¢6.y_pi0—1)+H(goy0—1). (6.6)

Thus the 1D Potts model with m-site interaction K in a field H is mapped onto an
anisotropic 2D Potts model, with standard first-neighbour interactions, on a cylinder
with helical BC (see figure 3). The interaction is K parallel to the cylinder axis and H
along the helix. Local fields K and H are acting on two of the end spins. The length
of the system is £ = N/m, there are m spins per turn and the helicity factor is equal to
1/m.

In the limit £ = N/m — oo the free energy of the 1D Potts chain with multi-site
interactions K under external field H develops a 2D Potts critical singularity along



Potts model with multi-site interactions 13

the self-duality line, (e?® — 1)(e?” — 1) = ¢, when m — oo ||. Exact expressions for
the bulk free energy per site have been obtained for the 2D Potts model on its critical
line [13,37,38]. Taking into account the difference in the form of the interactions, the
critical free energy per site is given by [38]

InZ 1
Bf(K, H) = lim lim ——X — K H4p, = —=Ing—o(zx) — d(wu)(6.7)
m—00 N/m—00 2
where
= ¢ /2 (qu — 1) , xy = q V2 (eqH — 1) , (6.8)

and rxxy = 1 for the critical system. The transition is second-order when ¢ < 4 and
first-order when ¢ > 4 [37]. The expression of the function ¢(x) in the different regimes
can be found in [38].

Note that successive derivatives of the free energy with respect to H, leading to
the magnetization and the susceptibility for the Potts chain, give the contributions of
one type of bonds to the internal energy and the specific heat of the 2D Potts model.
The derivatives with respect to K are of the same nature for both systems. It follows
that along the critical line, in the thermodynamic limit (¢ — oo, m — 00), the thermal
and magnetic critical behaviours of the 1D Potts model with multi-site interactions in
a field, are both governed by the thermal sector of 2D Potts model. When ¢ > 4 the
discontinuities of the magnetization and the internal energy add up to give the latent
heat of the 2D system. When ¢ < 4 the thermal and magnetic critical exponents of the
second-order phase transition are the 2D thermal Potts exponents [39-41].

According to (6.3) the two-spin correlation function of the original 1D system

1 &

(f)(z i') = = kl(akaik) : (6.9)

becomes a four-spin correlation function in 2D:

G (i, = —Z ckerhcRch ), i<i < N. (6.10)

When H = 0, the 2D lattlce breaks into m independent spin chains and when
i = i+ rm a four-spin average becomes a product of two-spin averages on two

neigbouring chains (see figure 3):

<§ g z+rm z+rm+1> <§ Cz+rm>< i+1 z*frm+1>* . (611)

Actually these averages do not depend on k£ and each factor corresponds to the
correlation function for two spins at a distance r on a Potts chain with standard first-
neighbour interactions
et —1 1\
(GiCivrm) = (m) ; (6.12)
from which (4.8) is recovered. When i’ # i 4+ rm, provided m and ¢ are not both equal
to two, the four-spin average in (6.10) always involve some vanishing factor.

|| The external fields acting on end spins do not affect the bulk behaviour.
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(3,2) (5,3)
o : o
7 9 ‘ 11 13 61 9 ‘ 12‘ 15 ‘ 18 21
4 6 ‘ 8 10 ] 4 7l 10‘ 13 16
1 3 5 7 2 5 8 11
O—— O——
2 4 3 6
IO ]O

(a) (b)

Figure 4. Examples in the rectangular representation of 2D lattices associated with
the transformed Hamiltonian (7.2) when m and n are mutually primes. The helicity
factor is n/m.

7. Other multi-site Potts models

We consider now a 1D Potts model with free BC and two types of multi-site
interactions . In this (m,n) Hamiltonian, with m > n > 1, the external field term
is replaced by a n-site interaction:

N—m+1 q—1 m—1 N—n+1q-1 n—1
—BHN{ol =K > > J[eot+L > ZH ok (7.1)
j=1 k=1 1=0 j=1 k=1 (=0
The change of variables (6.2) leads to the following transformed Hamiltonian:
N-m g—1 N—n g—1 q—1 q—1
—BUN{CH=K Y D Gt L G¢ J+H+KZ<N . ZCN wir (72)
j=1 k=1 j=1 k=1

For the (m,n) Hamiltonian, in the rectangular lattice representation (figure 4), the
horizontal interaction L couples spins (; and (j, thus generating n chains of connected
sites with 7 =0,1,...,n—1 (mod n). When m and n are mutually primes these chains
are connected by vertical interactions between spins ¢(; and (jy,,. Starting from site j
one reaches site 7 + mn via either m horizontal steps or n vertical steps. Thus the 2D
lattice has helical BC, m steps per turn and the helicity factor is n/m.

Let us now consider the case where m and n have a greatest common factor f so
that m = fm/, n = fn/, with m’ and n’ mutually primes (figure 5). Then among the
n horizontal chains of connected spins with j = 0,1,...,n — 1 (mod n) the f chains
with j = 0,1,...,f — 1 (mod f) belong to f distinct 2D lattices since with m = 0
(mod f) there are no vertical interconnections. Starting from site j one can reach site
j + fn/m’ through either m’ horizontal steps or n’ vertical steps on the same lattice.

9 This type of Hamiltonian is also self-dual as shown more generally in [4] for a simple hypercubic
lattice.
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(9,6)

. . . : . . . : . :
19 25 ‘ 31 37 20 26 ‘ 32 38 21 27 ‘ 33 39
10 16 ‘ 22 28 11 17 ‘ 23 29 12 18 ‘ 24 30
1 7 13 19 2 8 14 20 3 9 15 21
o—— o—— o——

4 10 5 11 6 12
) ) )

1 2 3

Figure 5. When m = fm’ and n = fn/, with m’ and n’ mutually primes,

the Hamiltonian (7.2) splits into f non-interacting parts to which correspond f
independent 2D lattices with helical BC and m’ spins per turn. The expressions of the
lattice length, £ = N/m, and the helicity factor, n/m = n'/m’, remain unchanged.

The f distinct 2D lattices, with length N/m, have helical BC, m' steps per turn and
their helicity factor remains equal to n/m =n'/m/’.

Note that Potts chains with more complex multi-site interactions can be mapped
onto triangular or honeycomb lattices as shown in appendix D.

8. Conclusion

In this work we have used some spin transformation to obtain exact results for the zero-
field partition functions and the two-spin correlation function of a g-state Potts chain
with multi-site interactions. We have shown that the model is self-dual under external
field. With another spin transformation, the Potts chain with m-site interaction K in a
field H has been mapped onto a standard 2D ¢-state Potts model with first-neighbour
interactions K and H. The 2D system with N spins has a length ¢ = N/m, a transverse
size m and helical BC in the transverse direction.

Thus the Potts chain in a field develops a critical singularity on the self-duality
line, (e?® — 1)(e? — 1) = ¢, as £ — oo and m — o0, i.e., in the thermodynamic limit
for the 2D system. Along this line the thermal and magnetic critical behaviours of the
Potts chain are both governed by the thermal critical behaviour of the 2D Potts model.
The transition is first-order when ¢ > 4 and second-order when ¢ < 4.

A numerical exploration of the finite-size scaling behaviour on the self-duality line
would be of interest. The development of the critical singularities with increasing values
of N and m should be studied for some fixed values of the aspect ratio £/m = N/m?.
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Appendix A. Clock angular variables
Using (1.4) the Potts multi-site interaction in (1.3) can be rewritten as

= — ik 1 ik
qdq (Z sj+l> —-1= Zexp ( . Z sj+l> =3 Z [exp ( . Z sj+l> + c.c.

=0 k=1 =0

— icos <# i Sj+l> (Al)

=0

or, introducing the clock angular variable ; = 27s;/q = 0,27 /q,...,27(q¢ — 1) /q,

Similarly for the field term ¢d, (s;) — 1 = S27_] cos (k6;).

Appendix B. Calculation of y;

Let us consider a term in the expansion (3.15) with [ spins per period:

p—1 [

H HTfrZﬁ+ji : <B.1)

r=0i=1
For the number of distinct distributions of the exponents k; = 1,...,¢ — 1, such that
Zlizl ki =0 (mod q), we find:

q—1 ! -1 1 q-1 . ' q—1
n=Y 4 (Zk):é [T e (275 = 1 10,00 - f

Eika,.k=1 \i=1 =0 i=1 k;=1 1=

J

~~

q0q(k)—1
3 (-1 + (~1)(g - 1)] . (B.2)

Thus vy = 1 and v; = 0, independent of q. For ¢ = 2, due to the fact that k; = 1 for
Ising spins, one obtains vo, 1 = 0 and vy, = 1.

Note that the value of v in (B.2) leads to a total number of terms in (3.15) given
by

= (m I~ (m 1= [m —
Y (G m==> [(a= D'+ (=D'a=D]==>_(, )e=1)' =¢""(B3)

l q l q [
1=2 1=0 1=0
as required.

As an illustration let us look for the form of the expansion when m = 3 and ¢ = 4.
With z, y, z standing for the product of p spins, Hf;é Trm+j, With respectively, j = 1,2, 3,
so that 29 = y? = 29 = 1, we obtain:

(1 + a2y’ + 2%y* + 2°y) (1 +y2° +y°2" +y°2) = 1
+H(ay® + 22y + 2%y) + (y2° + P2+ yP2) + (22 + 222 + 2P

+(zy2? +yza® + zoy® + 2%yP 2% P+ Paty?) . (B.4)
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On the right-hand side the terms in brackets correspond to the different exponent
distributions for the same spin configuration. The values v» = 3 and 3 = 6 are in
agreement with (B.2).

Appendix C. Transfer matrix at H = 0

Before considering general values of ¢ and m, let us study the properties of the transfer
matrix of a 3-state Potts model with 3-site interactions at H = 0.

In the basis {]|00),]01),]02),|10), |11}, [12),]20),]21),|22)}, the transfer matrix of
the Hamiltonian (3.1) from |[s;s;4+1) to |S;j415;42), takes the following form:

2l oK =K 0 0 0 0 0
0 0 0 e K K 2K 0 0

0 0 0 0 0 0 e oK 2
It is asymmetric and has complex eigenvalues:

Ao = Q2K 4 Qe’K, )\M _ [(62K + 267K)(82K . e’K)Q} 1/3 e2um/3’ k=0,1,2,

Ay = el —e i (C.2)
Both Ao and A3 are doubly degenerate. The oscillating behaviour is linked to the
periodicity of the degenerate ground states. With a = €55 4 2e73K = 35K f 73K 11,

the cube of T, corresponding to a transfer by one period from s; to s;;3, leads to the
symmetric matrix

a bbb 3 bbb 3
b a b b b 3 3 b b
b b a3 bbb 30
b b3 a bbb 30
T=|3b0bbabdbbd3|, (C.3)
b 3 b b b a3 b b
b 3 b b b 3 a b b
b b3 3 0b0b VDb ayb
3 bbb 3 bbb oa
with real eigenvalues
wo = (e + 275wy = (K 4207 (P —e )2, wy = (2 —eT ) (C4)

wp is non degenerate and the two last eigenvalues are, respectively, six times and two
times degenerate.
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(5,3,8) (4,2,6)

(a) (b)

Figure D1. Rectangular representation of 2D lattices associated with the transformed
Hamiltonian (D.2) when (a) m and n are mutually primes and (b) m and n have a
greatest common factor f. The first-neighbour interactions are K, L and M in the
vertical, horizontal and diagonal directions, respectively.

(5,1)

. . :

16 17 18 ‘ 19 20 ‘ 21
11 12 13 14 15 ]6,)

& |

O

6 7 8‘ 9 10 ‘ 11
1 2 3 4 5 6,)

H < H,

o

1

Figure D2. Rectangular representation of the honeycomb lattice associated with the
transformed Hamiltonian (D.4).

For any value of m and ¢, the ¢! eigenvalues of T™, w;, and their degeneracy, g,
can be extracted from the expression of the partition function with periodic BC. Since

20 =TT =3"guf (C.5)
l

it follows from (3.21) that

— _K1m qu—l : m
wp = [e(q 1)K—|—(q—1)e K:| {m} s gl:( )Vl, l:O,Q,...,m, (C6)

with v, given by (B.2).
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Appendix D. Triangular and honeycomb lattices

With the (m,n, m + n) Hamiltonian (m > n) such that

N—-—m+1 g—1 N—-n+1qg—1 n—-1 N—m—n+1 ¢g—1 m+n—1

—BHN[{o}] = KZ Haerl—i—LZ ZH +l+MZ Z Ha]H, (D.1)

j=1 k=1 j=1 k=1 1=0 j=1 k=1

the change of variables (6.2) leads to the following transformed Hamiltonian:

N—m q—1 N—-—n qg—1 N—m—n qg—1

—BHN{O =KD Y G+ LYY GGl + MY ZCCHW

j=1 k=1 j=1 k=1 Jj=1
q—1 qg—1
_'_KZC]I%ferI_'_LZglliffnJrl_'_MZC]]fffmfnJrl' (D2)
k=1 k=1 k=1

As shown in figure D1-a when m and n are mutually primes it corresponds to a triangular
lattice Potts model with first-neighbour interactions on a cylinder with helical BC, an
external fields acting on three end spins. When m and n have a greatest common factor
f, as in figure D1-b, f independent triangular lattices are obtained.

Finally let us consider a 1D Potts model with m-spin interaction K (m > 1) starting
on odd sites only, and two external fields, H; and H,, acting on odd and even sites.
When N — m is even the Hamiltonian can be written as:

(N—m)/241 ¢—1 m—1 [(N+1)/2] ¢q—1 [N/2| g—1
SLCCIEES DD S | CSRETTD S SERERT ) SENNTE
p=1 k=1 1=0 p=1 p=1 k=1

The transformed Hamiltonian then takes the following form

(N—m)/2 ¢—1 IN/2] g—1
- BHN {C} K Z ZCQp 1C2p+m 1 +KZCN m+1 + Hl Z Z CZp 1C;];
p=1 k=1 p=1 k=1

N/2 1
+{ Z Z CzpC2p+1 +H2E 1 Na N even (DA)

Hy Y0 Ch + Hy VP Sl chcsh ), N oodd

which corresponds to a Potts model with first-neighbour interactions on the honeycomb

lattice as shown in figure D2.
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