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Abstract. A one-dimensional (1D) q-state Potts model with N sites, m-site

interaction K in a field H is studied for arbitrary values of m. Exact results for

the partition function and the two-point correlation function are obtained at H = 0.

The system in a field is shown to be self-dual. Using a change of Potts variables, it is

mapped onto a standard 2D Potts model, with first-neighbour interactions K and H ,

on a cylinder with helical boundary conditions (BC). The 2D system has a length N/m

and a transverse size m. Thus the Potts chain with multi-site interactions is expected

to develop a 2D critical singularity along the self-duality line, (eqK − 1)(eqH − 1) = q,

when N/m → ∞ and m → ∞.
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1. Introduction

The standard Potts model is a lattice statistical model with pair interactions between

q-state variables attached to neighbouring sites [1, 2]. Multi-site Potts models can be

constructed by extending to an arbitrary number of states existing multispin Ising

models for which q = 2. In this way, a self-dual three-site Potts model on the triangular

lattice was introduced by Enting [3,4], which corresponds to the Baxter-Wu model [5,6]

when q = 2. Similarly, a 2D self-dual Potts model with m-site interactions in one

direction and n-site interactions in the other [7–9] follows from the Ising version with

n = 1 [10].

Multi-site interactions may be generated from two-site interactions in a position-

space renormalisation group transformation and thus have to be included in the initial

Hamiltonian. In this way Schick and Griffiths have introduced a three-state Potts model

on the triangular lattice with two- and three-site interactions [11]. For any value of q it

can been reformulated as a standard q-state Potts model with two-site interactions on a
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3-12 lattice [12]. When the three-site interactions are restricted to up-pointing triangles,

the model is self-dual [13, 14] and related to a 20-vertex model [13, 15].

Extending the results of Fortuin and Kasteleyn [16] for pair interactions, a

random-cluster representation for Potts models with multi-site interactions has been

introduced [17–19] and exploited in Monte Carlo simulations [20].

Multi-site interactions enter naturally when the site percolation process is

formulated as a Potts model in the limit q → 1 [21–25]. Various Potts multi-site

interactions have also been used to model conformational transitions in polypeptide

chains [26–29].

With sj = 0, 1, . . . , q − 1 denoting a q-state Potts variable attached to site j, a

multi-site interaction can take one of the following forms

(a) −K

m−1∏

j=1

δsj ,sj+1
, (b) −Kδq

(
m−1∑

l=0

sj+l

)
, (1.1)

where δn,n′ is the standard Kronecker delta and δq(n) is a Kronecker delta modulo q.

When K > 0 the ground state is q-times degenerate in the first case (the standard one)

whereas the degeneracy depends on m and is given by qm−1 in the second case. As an

example, when q = m = 3 the degenerate ground states are the following ones:

(a)





000

111

222

, (b)





000 012 210

111 120 021

222 201 102

(1.2)

In the present work we generalize for q-state Potts variables some results recently

obtained for the 1D Ising model with multispin interactions [30]. The Hamiltonian of

the q-state Potts chain takes the following form:

−βHN [{s}] = K
∑

j

[
qδq

(
m−1∑

l=0

sj+l

)
−1

]
+H

∑

j

[qδq (sj)−1] , β = (kBT )
−1. (1.3)

We assume ferromagnetic interactions K ≥ 0 and H ≥ 0, too. The Kronecker delta

modulo q is given by:

δq(s) =
1

q

q−1∑

k=0

exp

(
2iπks

q

)
=

{
1 when s = 0 (mod q)

0 otherwise
. (1.4)

Introducing the Potts spins [31, 32]

σj = exp

(
2iπsj
q

)
, (1.5)

the Hamiltonian in (1.3) can be rewritten as †:

−βHN [{σ}] = K
∑

j

q−1∑

k=1

m−1∏

l=0

σk
j+l +H

∑

j

q−1∑

k=1

σk
j . (1.6)

† One may also express the Potts interaction using clock angular variables (see appendix A).
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Figure 1. t-variables entering into the expression (2.3) of sj for m = 3 and different

values of the distance N−j from the end of the chain. The t-variables, defined in (2.2),

are the sums of m s-variables (circles) with the convention si = 0 when i > N . The

second lines are subtracted from the first so that only sj is remaining.

When q = 2, σj = ±1, k = 1 and the Ising multispin Hamiltonian studied in [30] is

recovered, which a posteriori justifies the choice of interaction (b) in (1.3).

The zero-field partition function of the Potts chain with m-site interaction K is

obtained for free BC in section 2 and for periodic BC in section 3. The periodic BC

result allows a determination of the eigenvalues of Tm where T is the site-to-site transfer-

matrix. The two-site correlation function is calculated in section 4. In section 5 the

system with periodic BC is shown to be self-dual when the external field H is turned on.

In section 6 the system with free BC is mapped onto a standard 2D Potts model with

first-neighbour interactions K and H , length N/m and transverse size m. The mapping

of 1D Potts models with m-site and n-site interactions is discussed in section 7. The

conclusion in section 8 is followed by 4 appendices.

2. Zero-field partition function for free BC

With free BC the zero-field Hamiltonian of a chain with N Potts spins, with m-site

interaction K, takes the following form

−βH
(f)
N [{s}] = K

N−m+1∑

j=1

[
qδq

(
m−1∑

l=0

sj+l

)
− 1

]
(2.1)

when written in terms of the Potts variables sj . Let us introduce the new Potts variables

tj = 0, . . . , q − 1 defined as

tj =

m−1∑

l=0

sj+l (mod q) , j = 1, . . . , N , (2.2)

with the convention si = 0 when i > N in (2.2). Note that the relationship between old
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and new variables is one-to-one with the inverse transformation given by (see figure 1):

sj =

p∑

r=0

(trm+j − trm+j+1) (mod q) , j + pm = N − l , l = 0, . . . , m− 1 . (2.3)

Using (2.2) in (2.1) one obtains a system of N −m+ 1 non-interacting Potts spins in a

field K with

−βH
(f)
N [{t}] = K

N−m+1∑

j=1

[qδq(tj)− 1] . (2.4)

The canonical partition function is easily obtained and reads:

Z
(f)
N = Tr{t} e

−βH
(f)
N

[{t}] =
N−m+1∏

j=1

Trtj e
K[qδq(tj)−1]

N∏

j=N−m+2

Trtj 1

= qm−1
[
e(q−1)K + (q − 1)e−K

]N−m+1
. (2.5)

Note that although only N − m + 1 new variables enter into the expression of the

transformed Hamiltonian (2.4), one has to trace over the N Potts variables tj in (2.5).

When q = 2 the Ising result (equation (2.6) in [30]) is recovered.

The free energy can be decomposed as follows

F
(f)
N = −kBT lnZ

(f)
N = Nfb + Fs(m) , (2.6)

where the bulk free energy per site

fb = −kBT ln
[
e(q−1)K + (q − 1)e−K

]
, (2.7)

does not depend on m whereas the surface contribution

Fs(m) = (m− 1)kBT ln

{
exp[(q − 1)K] + (q − 1) exp(−K)

q

}
, (2.8)

is m-dependent.

3. Zero-field partition function for periodic BC

Let us now evaluate the partition function for a periodic chain with N sites and m > 1.

To simplify the discussion we consider only the case where N is a multiple of m. Then

the Hamiltonian takes the following form

−βH
(p)
N=pm[{s}] = K

N=pm∑

j=1

[
qδq

(
m−1∑

l=0

sj+l

)
− 1

]
, (3.1)

with sN+j = sj. Making use of the change of variables (2.2), it can be rewritten as:

−βH
(p)
N=pm[{t}] = K

N=pm∑

j=1

[qδq(tj)− 1] . (3.2)

With periodic BC the correspondence between {s} and {t} Potts configurations

is no longer one-to-one and the new variables have to satisfy a set of m − 1

constraints [30, 33–35].
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There are several {s} configurations leading to the same {t}. One of these

configurations, {s′}, is obtained by changing sj into

s′j = sj +∆j (mod q) , j = 1, . . . , N . (3.3)

where the shifts ∆j = 0, . . . , q − 1 have to satisfy some constraint. Let us first consider

t1 =
∑m−1

l=0 sl+1 (mod q). One can freely choose the first m − 1 shifts (qm−1 choices)

and t1 keeps its value when ∆m is such that
∑m−1

l=0 ∆l+1 = 0 (mod q). Since tj and tj+1

have the shifts ∆j+l (l = 1, . . . , m− 1 in common, the value of ∆j leaving tj invariant is

equal to the value of ∆j+m leaving tj+1 invariant. When N = pm a periodic repetition

with period m of the first m shifts acting on {s} leaves {t} invariant. Thus there are

qm−1 Potts configurations {s′} leading to the same {t} ‡. When {s} is a ground-state

configuration, qm−1 gives the ground-state degeneracy.

In the following we shall make use of the Potts spin variables:

τj = exp

(
2iπtj
q

)
=

m−1∏

l=0

σj+l , τ ∗j = exp

(
−
2iπtj
q

)
= τ q−1

j , τjτ
∗
j = τ qj = 1 . (3.4)

According to (1.4) one has:

Trτj τ
k
j =

q−1∑

tj=0

exp

(
2iπktj
q

)
= qδq(k) . (3.5)

For later use, note that the Boltzmann factor

e−βH
(p)
N

[{t}] =

N=pm∏

j=1

[
e−K +

(
e(q−1)K − e−K

)
δq(tj)

]
, (3.6)

can be rewritten as

e−βH
(p)
N

[{τ}] = e−NK

N=pm∏

j=1

[
1 +

eqK − 1

q

q−1∑

k=0

τkj

]

=

(
e−K

q

)N N=pm∏

j=1

[
eqK + q − 1) +

(
eqK− 1

) q−1∑

k=1

τkj

]
, (3.7)

using (1.4) and (3.4),

Let us consider the product of Potts spins

Pi =

p−1∏

r=0

τrm+iτ
∗
rm+i+1 , i = 1, . . . , m− 1 . (3.8)

Making use of

τrm+iτ
∗
rm+i+1 = σrm+i

(
m−1∏

l=1

σrm+i+lσ
∗
rm+i+l

)
σ∗
(r+1)m+i = σrm+iσ

∗
(r+1)m+i (3.9)

and taking into account the periodic BC, one obtains the constraints

Pi =

p−1∏

r=0

σrm+iσ
∗
(r+1)m+i = 1 , i = 1, . . . , m− 1 , (3.10)

‡ Note that the initial configuration, {s}, corresponding to ∆j = 0 ∀j, is taken into account.



Potts model with multi-site interactions 6

to be satisfied by the τ -configurations in (3.8). When m > 2 other constraints can be

constructed, for instance from τrm+iτ
∗
rm+i+2, but these are automatically satisfied since

they can be written as products of the fundamental ones: τrm+i τ
∗
rm+i+1τrm+i+1︸ ︷︷ ︸

1

τ ∗rm+i+2.

Thus with the new Potts spin variables, taking the constraints into account, the

partition function is given by:

Z
(p)
N=pm = qm−1Tr{τ} e

−βH
(p)
N

[{τ}]
m−1∏

i=1

δPi,1 . (3.11)

To go further we need an explicit expression for the Kronecker delta, δPi,1. Consider the

geometric series

f(X) =

q−1∑

k=0

Xk =
1−Xq

1−X
, (3.12)

it vanishes when X is a qth root of unity other than 1 and is equal to q when X = 1.

Since Pi in (3.8) is a qth root of unity, the constraint can be written as (cf. (1.4))

δPi,1 =
1

q

q−1∑

k=0

P k
i =

1

q

q−1∑

k=0

p−1∏

r=0

τkrm+iτ
q−k
rm+i+1 , (3.13)

where (3.4) has been used. The partition function in (3.11) now takes the following

form:

Z
(p)
N=pm = Tr{τ} e

−βH
(p)
N

[{τ}]
m−1∏

i=1

(
1 +

q−1∑

k=1

P k
i

)
, P k

i =

p−1∏

r=0

τkrm+iτ
q−k
rm+i+1 . (3.14)

The first product has the following expansion:

m−1∏

i=1

(
1 +

q−1∑

k=1

P k
i

)
= 1 +

∑

i,k

P k
i +

∑

i<i′,k,k′

P k
i P

k′

i′ +
∑

i<i′<i′′,k,k′,k′′

P k
i P

k′

i′ P
k′′

i′′ + · · ·+
∏

i

P q−1
i . (3.15)

The expression of P k
i in (3.14) is periodic with period m. There are two consecutive

Potts spins contributing to the product for each period and the sum of their exponents

vanishes modulo q. Besides 1 the expansion (3.15) generates terms containing from

l = 2 to m spins for each period with
(
m
l

)
possible spatial configurations {αl}. These

spatial configurations are labelled by the l spin exponents, each varying from 1 to q− 1

with a sum which remains vanishing modulo q in the products, due to the Potts spins

properties (3.4). As shown in appendix B, for l spins the number νl of allowed exponent

distributions is given by:

νl =
1

q

[
(q − 1)l + (−1)l(q − 1)

]
. (3.16)

Combining these results, the expansion can be written as

m−1∏

i=1

(
1 +

q−1∑

k=1

P k
i

)
= 1 +

m∑

l=2

(ml )∑

αl=1

νl∑

βl=1

Ξβl
αl
, (3.17)
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where Ξβl
αl

is a product for each period of l Potts spins in configuration αl with an

exponent distribution βl.

The partition function in (3.14) splits in two parts:

Z
(p)
N=pm = Tr{τ} e

−βH
(p)
N

[{τ}]

︸ ︷︷ ︸
A

+
m∑

l=2

(ml )∑

αl=1

νl∑

βl=1

Tr{τ} e
−βH

(p)
N

[{τ}]Ξβl
αl︸ ︷︷ ︸

B

. (3.18)

In A, according to (3.5), each of the pm factors in (3.7) contributes to the trace by:

e−K

q
Trτj

[
eqK + q − 1 +

(
eqK − 1

) q−1∑

k=1

τkj

]
= e−K

(
eqK + q − 1

)
. (3.19)

In B, for each period, Ξβl
αl

contains l supplementary spin terms of the form τk
′

j with

k′ = 1, 2, . . . , q − 1. Thus the trace involves p(m − l) factors given by (3.19) and pl

factors of the form

e−K

q
Trτj

[
(
eqK+ q − 1

)
τk

′

j +
(
eqK− 1

) q−1∑

k=1

τk+k′

j

]
= e−K

(
eqK− 1

)
, (3.20)

where the non-vanishing contribution comes from the term q − k′ in the sum over k

according to (3.5). Collecting the different contributions to the partition function, we

finally obtain

Z
(p)
N=pm =

m∑

l=0

(
m

l

)
νl
[
e(q−1)K+(q−1) e−K

]p(m−l)[
e(q−1)K− e−K

]pl

=
[
e(q−1)K+(q−1) e−K

]N
[
1+

m∑

l=2

(
m

l

)
νl

(
eqK − 1

eqK+q−1

)pl
]
, (3.21)

where νl, given by (3.16), is such that ν0 = 1 and ν1 = 0. For q = 2

νl =

{
1 when l is even

0 when l is odd
(3.22)

and the Ising result, equation (3.13) in [30], is recovered.

Let T be the transfer matrix from |σjσj+1 . . . σj+m−2〉 to |σj+1σj+2 . . . σj+m−1〉. As

discussed in appendix C, its mth power is real and symmetric. The real eigenvalues

of Tm, ωl, and their degeneracy, gl, can be deduced from the expression (3.21) of the

partition function (see (C.6)).

4. Zero-field correlation function

In this section the zero-field correlation function is obtained for free BC and m > 1.

The correlations between the Potts variables at sites i and i′ are evaluated by taking

the thermal average of the following expression:

qδq(si − si′)− 1

(q − 1)
. (4.1)
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It is equal to one when the two sites are in the same state and has a vanishing average

in a fully disordered system. Making use of (1.4) and (1.5) the numerator in (4.1) can

be expressed in terms of Potts spins as:

qδq(si − si′)− 1 =

q−1∑

k=1

exp

[
2iπk(si − si′)

q

]
=

q−1∑

k=1

σk
i σ

∗k
i′ . (4.2)

Let us first suppose that i′ = i+ rm. Taking into account (3.9) one may write

σiσ
∗
i+rm =

r−1∏

r′=0

τr′m+iτ
∗
r′m+i+1 , (4.3)

and the correlation function takes the following form:

G
(f)
N (i, i+rm) =

〈
qδq(si − si+rm)− 1

(q − 1)

〉
= Tr{τ}

e−βH
(f)
N

[{τ}]

(q−1)Z
(f)
N

q−1∑

k=1

r−1∏

r′=0

τkr′m+iτ
∗k
r′m+i+1 . (4.4)

Following the same steps that led to (3.7), the Boltzmann factor for free BC can be

written as

e−βH
(f)
N

[{τ}] =

[
e(q−1)K + (q − 1)e−K

q

]N−m+1 N−m+1∏

j=1

[
1 +

eqK − 1

eqK + q − 1

q−1∑

k′=1

τk
′

j

]

=
Z

(f)
N

qN

N−m+1∏

j=1

[
1 +

eqK − 1

eqK + q − 1

q−1∑

k′=1

τk
′

j

]
(4.5)

where the expression of Z
(f)
N in (2.5) has been used §. Inserting this expression in (4.4),

one obtains:

G
(f)
N (i, i+ rm) =

1

qN(q − 1)

q−1∑

k=1

Tr{τ}

r−1∏

r′=0

τkr′m+iτ
∗k
r′m+i+1 ×

×
N−m+1∏

j=1

[
1 +

eqK − 1

eqK + q − 1

q−1∑

k′=1

τk
′

j

]
, (4.6)

The trace over {τ} contains r factors with j = r′m+ i of the form

Trτr′m+i

[
τkr′m+i +

eqK − 1

eqK + q − 1

q−1∑

k′=1

τk+k′

r′m+i

]
= q

eqK − 1

eqK + q − 1
, (4.7)

the only non-vanishing contribution coming from the second term for k′ = q−k according

to (3.5). The same result is obtained for the r factors with j = r′m+ i+ 1 and k′ = k.

The trace over the remaining N − 2r Potts spins contributes a factor qN−2r, the sum

over k gives q − 1, so that, finally:

G
(f)
N (i, i+ rm) =

[
eqK − 1

eqK + q − 1

]2r
= exp

(
−
rm

ξ

)
. (4.8)

§ Taking the trace over the N Potts spins in (4.5), all the terms in the product involving τj vanish and

the trace over 1 gives qN .
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As expected, this expression can be rewritten in terms of transfer matrix

eigenvalues (C.6) as (ω2/ω0)
r. The correlation length, given by

ξ =
m

2

[
ln

(
eqK + q − 1

eqK − 1

)]−1

, (4.9)

diverges at the zero-temperature critical point when K → ∞.

Let us now consider the case where i′ − i is not a multiple of m. Using the Potts

spin variables (1.5) and (3.4) the inverse transformation in (2.3) translates into:

σi =

p∏

r′=0

τr′m+iτ
∗
r′m+i+1 , i+ l = N − pm , l = 0, . . . , m− 1 .(4.10)

In the same way let

σ∗
i′ =

p−r∏

r′=0

τ ∗r′m+i′τr′m+i′+1 , i′+ l′ = N−pm+rm , l′ = 0, . . . , m−1 ,(4.11)

with, in both cases, τj = 1 when j > N . Since i′− i = rm+ l− l′, we need l 6= l′. In the

product σiσ
∗
i′ , the last factor contributed by σi is either τ

∗
N−l+1 or τN when l = 0 whereas

for σ∗
j′ it is either τN−l′+1 or τ ∗N when l′ = 0. Thus these factors cannot all disappear

in the product when l 6= l′. At least one of them leads to a vanishing trace over {τ} in

the correlation function since the product over j in the Boltzmann factor (4.5) ends at

N −m+ 1. It follows that:

G
(f)
N (i, i′) = 0 , i′ − i 6= rm . (4.12)

When m = 2 and q = 2 this argument no longer applies. With m = 2 the τj and the τ ∗j
always appear twice in the product σiσ

∗
i′ for values of j ≥ i′. Accordingly, the correlation

function does not vanish since τ 2j = τ ∗2j = 1 when q = 2. The difference between q = 2

and q > 2 when m = 2 can be understood by looking at the behaviour of the correlations

in the ground state. For q = 2 there are 2 degenerate ground states which, using Potts

variables, are given by 00000 . . . and 11111 . . . so that 〈2δq(si − si′) − 1〉 = 1. When

q = 3, for example, there are 3 degenerate ground states, 00000 . . ., 12121 . . . and

21212 . . ., leading to 〈3δq(si − si′)− 1〉 = 0 when i′ − i is odd.

5. Self-duality under external field

In this section standard methods [4, 7, 36] are used to show that the Potts chain with

multi-site interactions and periodic BC is self-dual under external field.

According to (1.3), the partition function is given by:

Z
(p)
N (K,H) = e−N(K+H)Tr{s}

N∏

j=1

exp

[
qKδq

(
m−1∑

l=0

sj+l

)]
exp [qHδq(sj)] . (5.1)

Introducing the auxiliary function

C(X, x) = eqX − 1 + qδq(x) , (5.2)
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Figure 2. Position of the dual Potts variables (squares) entering in the definitions (5.6)

of ui and vi relative to the original ones (circles) for odd and even values of m.

one obtains the identity:

eqXδq(y) = 1 +
(
eqX − 1

)
δq(y) =

1

q

q−1∑

x=0

C(X, x) exp

(
2iπxy

q

)
. (5.3)

Thus the partition function can be rewritten as:

Z
(p)
N (K,H) =

e−N(K+H)

qN
Tr{s}

N∏

j=1

q−1∑

uj=0

q−1∑

vj=0

C(K, uj)C(H, vj)

×
1

q
exp

[
2iπ

q

(
vjsj + uj

m−1∑

l=0

sj+l

)]
. (5.4)

Regrouping the factors containing si in the last exponential and reordering the sums,

one obtains

Z
(p)
N (K,H) =

e−N(K+H)

qN
Tr{u,v}

N∏

j=1

C(K, uj)C(H, vj)

N∏

i=1

1

q

q−1∑

si=0

exp

(
2iπsiwi

q

)

=
e−N(K+H)

qN
Tr{u,v}

N∏

j=1

C(K, uj)C(H, vj)
N∏

i=1

δq(wi) , (5.5)

where wi stands for vi +
∑m−1

l=0 ui−l.

Non-vanishing contributions to the partition function correspond to configurations

of {u} and {v} such that wi = 0 (mod q) ∀i. Introducing dual q-state Potts variables

{s̃}, this condition is automatically satisfied when ui and vi take the following forms

ui = −s̃i+(m−1)/2 (mod q) , vi =
m−1∑

l=0

s̃i+l−(m−1)/2 (mod q) , (5.6)

such that:

wi =
m−1∑

l=0

s̃i+l−(m−1)/2 −
m−1∑

l=0

s̃i−l+(m−1)/2 (mod q)
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=
m−1∑

l=0

s̃i+l−(m−1)/2 −
m−1∑

l′=0

s̃i−(m−1−l′)+(m−1)/2 = 0 (mod q) . (5.7)

The dual lattice coincides with the original lattice when m is odd. It is shifted by half

a lattice spacing when m is even (see figure 2).

Introducing the dual Potts variables in (5.5), one obtains:

Z
(p)
N (K,H) =

e−N(K+H)

qN
Tr{s̃}

N∏

j=1

C(K, s̃j+(m−1)/2)C

(
H,

m−1∑

l=0

s̃j+l−(m−1)/2

)
. (5.8)

Let us rewrite the auxiliary function C as:

C(X, x) = D(X) exp
[
Ỹ (qδq(x)− 1)

]
= D(X) e−Ỹ

[
1 + (eqỸ − 1)δq(x)

]
. (5.9)

A comparison with (5.2) leads to

D(X) = eỸ
(
eqX − 1

)
, (eqX − 1)(eqỸ − 1) = q . (5.10)

Making use of these relations, with Ỹ = H̃ when X = K and Ỹ = K̃ when X = H , the

following duality relations for the couplings are obtained:

(eqK − 1)(eqH̃ − 1) = q , (eqH − 1)(eqK̃ − 1) = q . (5.11)

The partition function (5.8) is now given by:

Z
(p)
N (K,H)=

e−N(K+H)eN(K̃+H̃)

qN
(
eqK−1

)N(
eqH−1

)N
Z

(p)
N (K̃, H̃) . (5.12)

Using (5.11), this can be put in the more symmetric form:

eN(K+H)

[(eqK − 1)(eqH − 1)]N/2
Z

(p)
N (K,H) =

eN(K̃+H̃)

[(eqK̃ − 1)(eqH̃ − 1)]N/2
Z

(p)
N (K̃, H̃) . (5.13)

Taking the product of the duality relations in (5.11) and separating the original and

dual parts gives

(eqK − 1)(eqH − 1)

q
=

q

(eqK̃ − 1)(eqH̃ − 1)
, (5.14)

so that the line
(
eqK − 1

) (
eqH − 1

)
= q in the (K,H)-plane, which is invariant in the

duality transformation, is a self-duality line.

6. Mapping on a 2D q-state Potts model when H 6= 0

Let us consider a Potts chain with N spins, m > 1 and free BC. According to (1.6), the

Hamiltonian of the system in an external field H is given by:

−βHN [{σ}] = K
N−m+1∑

j=1

q−1∑

k=1

m−1∏

l=0

σk
j+l +H

N∑

j=1

q−1∑

k=1

σk
j . (6.1)

Let us define new Potts spins {ζ} and Potts variables {z} such that:

ζj = exp

(
2iπzj
q

)
=

N∏

i=j

σi , zj = 0, . . . , q − 1 . (6.2)
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Figure 3. (a) Under the change of spin variables (6.2) the 1D Potts model with m-

spin interactions in an external field is mapped onto a 2D standard Potts model on a

cylinder with helical BC. H and K are the first-neighbour interactions along the helix

and parallel to its axis, respectively. The helix has a length N/m and m spins per

turn. The helicity factor is 1/m. (b) The same lattice in a rectangular representation.

Using (3.4) one obtains

σj =

{
ζjζ

∗
j+1 , j < N

ζj , j = N
,

m−1∏

l=0

σj+l =

{
ζjζ

∗
j+m , j < N −m+ 1

ζj , j = N −m+ 1
, (6.3)

and the correspondence with the original variables is one-to-one. The Hamiltonian (6.1)

now takes the following form:

−βHN [{ζ}]=K
N−m∑

j=1

q−1∑

k=1

ζkj ζ
∗k
j+m+H

N−1∑

j=1

q−1∑

k=1

ζkj ζ
∗k
j+1+K

q−1∑

k=1

ζkN−m+1+H

q−1∑

k=1

ζkN . (6.4)

Alternatively, using

q−1∑

k=1

ζkj ζ
∗k
j′ =

q−1∑

k=0

exp

[
2iπk

q
(zj − zj′)

]
− 1 = qδzj ,zj′ − 1 ,

q−1∑

k=1

ζkj = qδzj ,0 − 1 , (6.5)

the following standard form is recovered:

−βHN [{z}] = K

N−m∑

j=1

(
qδzj ,zj+m

− 1
)
+H

N−1∑

j=1

(
qδzj ,zj+1

− 1
)

+K
(
qδzN−m+1,0 − 1

)
+H (qδzN ,0 − 1) . (6.6)

Thus the 1D Potts model with m-site interaction K in a field H is mapped onto an

anisotropic 2D Potts model, with standard first-neighbour interactions, on a cylinder

with helical BC (see figure 3). The interaction is K parallel to the cylinder axis and H

along the helix. Local fields K and H are acting on two of the end spins. The length

of the system is ℓ = N/m, there are m spins per turn and the helicity factor is equal to

1/m.

In the limit ℓ = N/m → ∞ the free energy of the 1D Potts chain with multi-site

interactions K under external field H develops a 2D Potts critical singularity along
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the self-duality line, (eqK − 1)(eqH − 1) = q, when m → ∞ ‖. Exact expressions for

the bulk free energy per site have been obtained for the 2D Potts model on its critical

line [13, 37, 38]. Taking into account the difference in the form of the interactions, the

critical free energy per site is given by [38]

βfb(K,H) = lim
m→∞

lim
N/m→∞

−
lnZN

N
= K +H + ψ , ψ = −

1

2
ln q − φ(xK)− φ(xH) ,(6.7)

where

xK = q−1/2
(
eqK − 1

)
, xH = q−1/2

(
eqH − 1

)
, (6.8)

and xKxH = 1 for the critical system. The transition is second-order when q ≤ 4 and

first-order when q > 4 [37]. The expression of the function φ(x) in the different regimes

can be found in [38].

Note that successive derivatives of the free energy with respect to H , leading to

the magnetization and the susceptibility for the Potts chain, give the contributions of

one type of bonds to the internal energy and the specific heat of the 2D Potts model.

The derivatives with respect to K are of the same nature for both systems. It follows

that along the critical line, in the thermodynamic limit (ℓ→ ∞, m→ ∞), the thermal

and magnetic critical behaviours of the 1D Potts model with multi-site interactions in

a field, are both governed by the thermal sector of 2D Potts model. When q > 4 the

discontinuities of the magnetization and the internal energy add up to give the latent

heat of the 2D system. When q ≤ 4 the thermal and magnetic critical exponents of the

second-order phase transition are the 2D thermal Potts exponents [39–41].

According to (6.3) the two-spin correlation function of the original 1D system

G
(f)
N (i, i′) =

1

q − 1

q−1∑

k=1

〈σk
i σ

∗k
i′ 〉 , (6.9)

becomes a four-spin correlation function in 2D:

G
(f)
N (i, i′) =

1

q − 1

q−1∑

k=1

〈ζki ζ
∗k
i+1ζ

∗k
i′ ζ

k
i′+1〉 , i < i′ < N . (6.10)

When H = 0, the 2D lattice breaks into m independent spin chains and when

i′ = i + rm a four-spin average becomes a product of two-spin averages on two

neigbouring chains (see figure 3):

〈ζki ζ
∗k
i+1ζ

∗k
i+rmζ

k
i+rm+1〉 = 〈ζki ζ

∗k
i+rm〉〈ζ

k
i+1ζ

∗k
i+rm+1〉

∗ . (6.11)

Actually these averages do not depend on k and each factor corresponds to the

correlation function for two spins at a distance r on a Potts chain with standard first-

neighbour interactions

〈ζiζ
∗
i+rm〉 =

(
eqK − 1

eqK + q − 1

)r

, (6.12)

from which (4.8) is recovered. When i′ 6= i+ rm, provided m and q are not both equal

to two, the four-spin average in (6.10) always involve some vanishing factor.

‖ The external fields acting on end spins do not affect the bulk behaviour.
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Figure 4. Examples in the rectangular representation of 2D lattices associated with

the transformed Hamiltonian (7.2) when m and n are mutually primes. The helicity

factor is n/m.

7. Other multi-site Potts models

We consider now a 1D Potts model with free BC and two types of multi-site

interactions ¶. In this (m,n) Hamiltonian, with m > n > 1, the external field term

is replaced by a n-site interaction:

−βHN [{σ}] = K
N−m+1∑

j=1

q−1∑

k=1

m−1∏

l=0

σk
j+l + L

N−n+1∑

j=1

q−1∑

k=1

n−1∏

l=0

σk
j+l . (7.1)

The change of variables (6.2) leads to the following transformed Hamiltonian:

−βHN [{ζ}]=K

N−m∑

j=1

q−1∑

k=1

ζkj ζ
∗k
j+m+L

N−n∑

j=1

q−1∑

k=1

ζkj ζ
∗k
j+n+K

q−1∑

k=1

ζkN−m+1+L

q−1∑

k=1

ζkN−n+1. (7.2)

For the (m,n) Hamiltonian, in the rectangular lattice representation (figure 4), the

horizontal interaction L couples spins ζj and ζj+n thus generating n chains of connected

sites with j = 0, 1, . . . , n− 1 (mod n). When m and n are mutually primes these chains

are connected by vertical interactions between spins ζj and ζj+m. Starting from site j

one reaches site j +mn via either m horizontal steps or n vertical steps. Thus the 2D

lattice has helical BC, m steps per turn and the helicity factor is n/m.

Let us now consider the case where m and n have a greatest common factor f so

that m = fm′, n = fn′, with m′ and n′ mutually primes (figure 5). Then among the

n horizontal chains of connected spins with j = 0, 1, . . . , n − 1 (mod n) the f chains

with j = 0, 1, . . . , f − 1 (mod f) belong to f distinct 2D lattices since with m = 0

(mod f) there are no vertical interconnections. Starting from site j one can reach site

j + fn′m′ through either m′ horizontal steps or n′ vertical steps on the same lattice.

¶ This type of Hamiltonian is also self-dual as shown more generally in [4] for a simple hypercubic

lattice.
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Figure 5. When m = fm′ and n = fn′, with m′ and n′ mutually primes,

the Hamiltonian (7.2) splits into f non-interacting parts to which correspond f

independent 2D lattices with helical BC and m′ spins per turn. The expressions of the

lattice length, ℓ = N/m, and the helicity factor, n/m = n′/m′, remain unchanged.

The f distinct 2D lattices, with length N/m, have helical BC, m′ steps per turn and

their helicity factor remains equal to n/m = n′/m′.

Note that Potts chains with more complex multi-site interactions can be mapped

onto triangular or honeycomb lattices as shown in appendix D.

8. Conclusion

In this work we have used some spin transformation to obtain exact results for the zero-

field partition functions and the two-spin correlation function of a q-state Potts chain

with multi-site interactions. We have shown that the model is self-dual under external

field. With another spin transformation, the Potts chain with m-site interaction K in a

field H has been mapped onto a standard 2D q-state Potts model with first-neighbour

interactions K and H . The 2D system with N spins has a length ℓ = N/m, a transverse

size m and helical BC in the transverse direction.

Thus the Potts chain in a field develops a critical singularity on the self-duality

line, (eqK − 1)(eqH − 1) = q, as ℓ → ∞ and m → ∞, i.e., in the thermodynamic limit

for the 2D system. Along this line the thermal and magnetic critical behaviours of the

Potts chain are both governed by the thermal critical behaviour of the 2D Potts model.

The transition is first-order when q > 4 and second-order when q ≤ 4.

A numerical exploration of the finite-size scaling behaviour on the self-duality line

would be of interest. The development of the critical singularities with increasing values

of N and m should be studied for some fixed values of the aspect ratio ℓ/m = N/m2.
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Appendix A. Clock angular variables

Using (1.4) the Potts multi-site interaction in (1.3) can be rewritten as

qδq

(
m−1∑

l=0

sj+l

)
− 1 =

q−1∑

k=1

exp

(
2iπk

q

m−1∑

l=0

sj+l

)
=

1

2

q−1∑

k=1

[
exp

(
2iπk

q

m−1∑

l=0

sj+l

)
+ c.c.

]

=

q−1∑

k=1

cos

(
2πk

q

m−1∑

l=0

sj+l

)
(A.1)

or, introducing the clock angular variable θj = 2πsj/q = 0, 2π/q, . . . , 2π(q − 1)/q,

qδq

(
m−1∑

l=0

sj+l

)
− 1 =

q−1∑

k=1

cos

(
k

m−1∑

l=0

θj+l

)
. (A.2)

Similarly for the field term qδq (sj)− 1 =
∑q−1

k=1 cos (kθj).

Appendix B. Calculation of νl

Let us consider a term in the expansion (3.15) with l spins per period:

p−1∏

r=0

l∏

i=1

τkirm+ji
. (B.1)

For the number of distinct distributions of the exponents ki = 1, . . . , q − 1, such that∑l
i=1 ki = 0 (mod q), we find:

νl =

q−1∑

k1,k2,...,kl=1

δq

(
l∑

i=1

ki

)
=

1

q

q−1∑

k=0

l∏

i=1

q−1∑

ki=1

exp

(
2iπkki
q

)

︸ ︷︷ ︸
qδq(k)−1

=
1

q

q−1∑

k=0

[ qδq(k)− 1]l

=
1

q

[
(q − 1)l + (−1)l(q − 1)

]
. (B.2)

Thus ν0 = 1 and ν1 = 0, independent of q. For q = 2, due to the fact that ki = 1 for

Ising spins, one obtains ν2k+1 = 0 and ν2k = 1.

Note that the value of νl in (B.2) leads to a total number of terms in (3.15) given

by

1+
m∑

l=2

(
m

l

)
νl =

1

q

m∑

l=0

(
m

l

)[
(q − 1)l + (−1)l(q − 1)

]
=

1

q

m∑

l=0

(
m

l

)
(q−1)l = qm−1(B.3)

as required.

As an illustration let us look for the form of the expansion when m = 3 and q = 4.

With x, y, z standing for the product of p spins,
∏p−1

r=0 τrm+j , with respectively, j = 1, 2, 3,

so that xq = yq = zq = 1, we obtain:

(1 + xy3 + x2y2 + x3y)(1 + yz3 + y2z2 + y3z) = 1

+(xy3 + x2y2 + x3y) + (yz3 + y2z2 + y3z) + (zx3 + z2x2 + z3x)

+(xyz2 + yzx2 + zxy2 + x3y3z2 + y3z3x2 + z3x3y2) . (B.4)
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On the right-hand side the terms in brackets correspond to the different exponent

distributions for the same spin configuration. The values ν2 = 3 and ν3 = 6 are in

agreement with (B.2).

Appendix C. Transfer matrix at H = 0

Before considering general values of q and m, let us study the properties of the transfer

matrix of a 3-state Potts model with 3-site interactions at H = 0.

In the basis {|00〉, |01〉, |02〉, |10〉, |11〉, |12〉, |20〉, |21〉, |22〉}, the transfer matrix of

the Hamiltonian (3.1) from |sjsj+1〉 to |sj+1sj+2〉, takes the following form:

T =




e2K e−K e−K 0 0 0 0 0 0

0 0 0 e−K e−K e2K 0 0 0

0 0 0 0 0 0 e−K e2K e−K

e−K e−K e2K 0 0 0 0 0 0

0 0 0 e−K e2K e−K 0 0 0

0 0 0 0 0 0 e2K e−K e−K

e−K e2K e−K 0 0 0 0 0 0

0 0 0 e2K e−K e−K 0 0 0

0 0 0 0 0 0 e−K e−K e2K




. (C.1)

It is asymmetric and has complex eigenvalues:

λ0 = e2K + 2e−K , λ2,k =
[
(e2K + 2e−K)(e2K − e−K)2

]1/3
e2ikπ/3 , k = 0, 1, 2 ,

λ3 = e2K − e−K . (C.2)

Both λ2,k and λ3 are doubly degenerate. The oscillating behaviour is linked to the

periodicity of the degenerate ground states. With a = e6K +2e−3K , b = e3K +e−3K +1,

the cube of T, corresponding to a transfer by one period from sj to sj+3, leads to the

symmetric matrix

T
3 =




a b b b 3 b b b 3

b a b b b 3 3 b b

b b a 3 b b b 3 b

b b 3 a b b b 3 b

3 b b b a b b b 3

b 3 b b b a 3 b b

b 3 b b b 3 a b b

b b 3 3 b b b a b

3 b b b 3 b b b a




, (C.3)

with real eigenvalues

ω0 = (e2K + 2e−K)3 , ω2 = (e2K + 2e−K)(e2K − e−K)2 , ω3 = (e2K − e−K)3 . (C.4)

ω0 is non degenerate and the two last eigenvalues are, respectively, six times and two

times degenerate.
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Figure D1. Rectangular representation of 2D lattices associated with the transformed

Hamiltonian (D.2) when (a) m and n are mutually primes and (b) m and n have a

greatest common factor f . The first-neighbour interactions are K, L and M in the

vertical, horizontal and diagonal directions, respectively.
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Figure D2. Rectangular representation of the honeycomb lattice associated with the

transformed Hamiltonian (D.4).

For any value of m and q, the qm−1 eigenvalues of Tm, ωl, and their degeneracy, gl,

can be extracted from the expression of the partition function with periodic BC. Since

Z
(p)
N=mp = Tr(Tm)p =

∑

l

gl ω
p
l (C.5)

it follows from (3.21) that

ωl =
[
e(q−1)K+ (q − 1)e−K

]m
[

eqK− 1

eqK+ q − 1

]l
, gl =

(
m

l

)
νl , l = 0, 2, . . . , m , (C.6)

with νl given by (B.2).
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Appendix D. Triangular and honeycomb lattices

With the (m,n,m+ n) Hamiltonian (m > n) such that

−βHN [{σ}] = K
N−m+1∑

j=1

q−1∑

k=1

m−1∏

l=0

σk
j+l + L

N−n+1∑

j=1

q−1∑

k=1

n−1∏

l=0

σk
j+l +M

N−m−n+1∑

j=1

q−1∑

k=1

m+n−1∏

l=0

σk
j+l , (D.1)

the change of variables (6.2) leads to the following transformed Hamiltonian:

−βHN [{ζ}] = K

N−m∑

j=1

q−1∑

k=1

ζkj ζ
∗k
j+m + L

N−n∑

j=1

q−1∑

k=1

ζkj ζ
∗k
j+n +M

N−m−n∑

j=1

q−1∑

k=1

ζkj ζ
∗k
j+m+n

+K

q−1∑

k=1

ζkN−m+1+L

q−1∑

k=1

ζkN−n+1+M

q−1∑

k=1

ζkN−m−n+1. (D.2)

As shown in figure D1-a whenm and n are mutually primes it corresponds to a triangular

lattice Potts model with first-neighbour interactions on a cylinder with helical BC, an

external fields acting on three end spins. When m and n have a greatest common factor

f , as in figure D1-b, f independent triangular lattices are obtained.

Finally let us consider a 1D Potts model withm-spin interaction K (m > 1) starting

on odd sites only, and two external fields, H1 and H2, acting on odd and even sites.

When N −m is even the Hamiltonian can be written as:

−βHN [{σ}] = K

(N−m)/2+1∑

p=1

q−1∑

k=1

m−1∏

l=0

σk
2p+l−1 +H1

⌊(N+1)/2⌋∑

p=1

q−1∑

k=1

σk
2p−1 +H2

⌊N/2⌋∑

p=1

q−1∑

k=1

σk
2p . (D.3)

The transformed Hamiltonian then takes the following form

− βHN [{ζ}] = K

(N−m)/2∑

p=1

q−1∑

k=1

ζk2p−1ζ
∗k
2p+m−1 +K

q−1∑

k=1

ζkN−m+1 +H1

⌊N/2⌋∑

p=1

q−1∑

k=1

ζk2p−1ζ
∗k
2p

+

{
H2

∑N/2−1
p=1

∑q−1
k=1 ζ

k
2pζ

∗k
2p+1 +H2

∑q−1
k=1ζ

k
N , N even

H1

∑q−1
k=1ζ

k
N +H2

∑⌊N/2⌋
p=1

∑q−1
k=1 ζ

k
2pζ

∗k
2p+1 , N odd

, (D.4)

which corresponds to a Potts model with first-neighbour interactions on the honeycomb

lattice as shown in figure D2.
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