
HAL Id: hal-01511878
https://hal.science/hal-01511878

Submitted on 21 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

p-leader Multifractal Analysis and Sparse SVM for
Intrapartum Fetal Acidosis Detection

Roberto Leonarduzzi, Jiri Spilka, Jordan Frecon, Herwig Wendt, Nelly
Pustelnik, Stéphane Jaffard, Patrice Abry, Muriel Doret

To cite this version:
Roberto Leonarduzzi, Jiri Spilka, Jordan Frecon, Herwig Wendt, Nelly Pustelnik, et al.. p-leader
Multifractal Analysis and Sparse SVM for Intrapartum Fetal Acidosis Detection. 37th Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015), Aug
2015, Milano, Italy. pp. 1-4. �hal-01511878�

https://hal.science/hal-01511878
https://hal.archives-ouvertes.fr


  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 17043 

The contribution was presented at EMBC 2015:  
http://embc.embs.org/2015/ 

 
 
 

To cite this version : Leonarduzzi, Roberto and Spilka, Jiri and Frecon, Jordan and 
Wendt, Herwig and Pustelnik, Nelly and Jaffard, Stéphane and Abry, Patrice and 
Doret, Muriel p-leader Multifractal Analysis and Sparse SVM for Intrapartum Fetal 
Acidosis Detection. (2015) In: 37th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC 2015), 25 August 2015 - 29 
August 2015 (Milano, Italy). 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



p-leader Multifractal Analysis and Sparse SVM

for Intrapartum Fetal Acidosis Detection

R. Leonarduzzi1, J. Spilka2, J. Frecon1, H. Wendt3, N. Pustelnik1, S. Jaffard4, P. Abry1, M. Doret5,

Abstract— Interpretation and analysis of intrapartum fetal
heart rate, enabling early detection of fetal acidosis, remains a
challenging signal processing task. Among the many strategies
that were used to tackle this problem, scale-invariance and
multifractal analysis stand out. Recently, a new and promising
variant of multifractal analysis, based on p-leaders, has been
proposed. In this contribution, we use sparse support vector
machines applied to p-leader multifractal features with a double
aim: Assessment of the features actually contributing to classi-
fication; Assessment of the contribution of non linear features
(as opposed to linear ones) to classification performance. We
observe and interpret that the classification rate improves when
small values of the tunable parameter p are used.

I. INTRODUCTION

Fetal monitoring. Fetal monitoring is commonly performed

using cardiotocography, the simultaneous recording of fetal

heart rate (FHR) and uterine contractions. It permits clin-

icians to identify fetuses at risk before asphyxia occurs,

potentially inducing severe long term consequences, such as

neuro-development disability, neonatal encephalopathy, and

cerebral palsy. Continuous FHR offers valuable information

about the fetal oxygenation status, and provides insight into

the defense mechanisms fetuses use to adapt to hypoxia [1].

Fetuses reactions to hypoxic events result in a complex be-

haviour governed by multiple chemical and nervous feedback

loops that cause complex FHR dynamics. In clinical practice,

FHR is analyzed by considering short/long term variability

and shifts in baseline FHR and deceleration shapes [2].

Scale invariance and multifractal analysis. Instead of

performing the analysis of variability at pre-defined time

scales, as proposed e.g., in the FIGO clinical guidelines [2],

the scale invariance paradigm measures the relationship be-

tween the data variability across several scales a ∈ [am, aM ].
Variability is measured by the q-th order sample moment

S(q, a) of a well-chosen multiresolution quantity TX . When

data show some form of scale invariance, S follows a power-

law behavior across the scales: S(q, a) ∼ aqH , a→ 0+, with

scaling exponent qH , controlled by the Hurst parameter H .
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Multifractal analysis extends the characterization provided by

self-similar scale-invariant models by allowing the power-law

of S to be controlled by a nonlinear function of q: S(q, a) ∼
aζ(q). ζ(q) is called scaling function. Scale invariance and

multifractal paradigms have already been proven useful for

the analysis of heart rate data, both in adults and during

labour, cf. e.g. [3], [4].

p-leader based multifractal analysis. Classical multireso-

lution quantities for scale invariance and multifractal analysis

are wavelet coefficients and wavelet leaders, cf., e.g., [5].

However, it has recently been proposed to base multifractal

estimations on p-leaders [6], which provide a number of

benefits over the traditional wavelet leaders. First, they allow

to estimate a scaling function ζ(q) that is negative for large q;

this behavior is related to the presence of negative regularity,

typically present in heart rate data [4], [7]. Second, the

potential dependence on the parameter p provides refined and

detailed analysis in the regularity of FHR fluctuations along

time. Finally, estimations based on p-leaders show improved

statistical performance compared to others based on more

classical quantities [6].

Goals and contributions. p-leader multifractal analysis has

already been explored for acidosis detection in intrapartum

FHR in [4], yet leaving two issues unaddressed: i) to what

extent does the information encoded in the scaling function

(a nonlinear feature) improves acidosis detection compared

to using only the Hurst parameter (a linear feature) ii) Does

acidosis detection performance depend on parameter p? To

address these issues, we propose here to make use of sparse

support vector machines [8], a method recently introduced

for supervised classification that aims to achieve jointly both

feature selection and efficient classification.

Outline. The large size database used here is described in

Sec. II. Brief introductions to p-leader multifractal analysis

and Sparse-SVM are given in Sec. III. Results and conclu-

sions are discussed in Sec. IV and Sec. V, respectively.

II. DATABASE

Data. The large database of FHR signals was collected

in routine clinical practice at the French public academic

Hospital Femme-Mère-Enfant in Bron, between 2000 and

2010. In total, the database consists of 3049 intrapartum

cardiotocogram (CTG) signals – all acquired using a scalp

electrode system STAN S21 or S31, with 12-bit resolution,

500 Hz sampling frequency (STAN, Neoventa Medical,

Moelndal, Sweden). Clinical information for women and

neonates was systematically collected by obstetricians in

charge of the delivery, cf. [9] for details.



Dilation Stage. In regular delivery, two stages of labour

are identified: the dilation and the active pushing stages.

Because the temporal dynamics of both stages are different

[10], focus is here on the end of the dilation stage. Thus,

subjects that fulfilled the following criteria were used: i) had

active pushing stage shorter than 20 minutes, or underwent

a c-section, and ii) had umbilical artery pH measurement

immediately after birth. This leads to selecting 1288 records,

amongst which 37 fetuses have neonatal acidosis (umbilical

artery pH ≤ 7.05). Hereafter, we refer to this latter group as

nonhealthy, as opposed to healthy. The last 25 minutes of

FHR at the end of the dilation stage are analyzed (disregard-

ing the very last 5 minutes for data quality issues).

Preprocessing. FHR data consists of time intervals between

consecutive R peaks {ti, i = 1, . . . , N}. Classically, in FHR

variability analysis, beat to beat time series are interpolated

and resampled into regularly sampled signals, here at 10
Hz using cubic spline interpolation, to produce the beat-per-

minute (bpm) signal X(t).

III. METHODS

Wavelet coefficients. Let ψ denote the mother wavelet, char-

acterized by its number of vanishing moments Nψ , a strictly

positive integer such that
∫
R
tkψ(t)dt = 0, ∀k = 0, . . . , Nψ−

1, and
∫
R
tNψψ(t)dt 6= 0. Let {ψj,k(t) = 2−jψ(2−jt −

k)}(j,k)∈N2 be the orthonormal basis of L2(R) formed by

dilations and translations of ψ. The (L1-normalized) dis-

crete wavelet transform coefficients are defined as cj,k =
2−j〈ψj,k|X〉 (cf. e.g. [11], for details on wavelet transforms).

Hurst exponent. Wavelet coefficients permit a simple,

robust and efficient estimation of the Hurst parameter [3],

[5]. The sample moment estimate of the variance of wavelet

coefficients is computed: S(j) = 1/nj
∑nj
k=1 c

2
j,k (with nj

the number of wavelet coefficients available at scale j).
It behaves as S(j) = K22jH for self-similar processes.

Therefore, H can be estimated by a simple linear regression

of log2 S(j) against j.
Wavelet p-leaders. The p-leaders are defined as local Lp-

norms of scaled wavelet coefficients [6], [12]

ℓ
(p)
j,k ,

( ∑

λ′⊂3λ

|2j
′γcλ′ |p 2j

′−j
) 1

p

, (1)

with λ = λj,k = [k2j , (k + 1)2j), cλ = cj,k and 3λ =⋃
m∈{−1,0,1} λj,k+m. That is, the local norm considers all

wavelet coefficients in a narrow time neighbourhood of t =
2jk, and for all finer scales j′ ≤ j. The parameter γ ≥ 0
must be chosen to ensure a minimal regularity constraint

(cf. [12] for details). The parameter p can be freely chosen

such that p ∈ (0, p0), where p0 is implicitly defined by

η(p0) + γp0 = 0, (2)

where 1/nj
∑nj
k=1 |cj,k|

p ∼ 2jη(p), j → 0. The p-leaders

allow to measure the p-exponent, which quantifies the local

regularity fluctuations of X (cf. [12] for details, outside

of the scope of this contribution). Also, note that classical

wavelet leaders are given for p = +∞, in which case (1)

reduces to ℓ∞j,k , supλ′⊂3λ |cλ′ |.

Log-cumulants. Instead of computing the function ζ(q)
directly from the mesurement of the q-th moments of the

p-leaders, we will follow [13] and compute a polynomial

approximation instead: ζ(q) =
∑∞
m=1 cmq

m/m!. The co-

efficients cm, which are called log-cumulants, are related

to the decay across the scales of the cumulants C
(p)
m (j) =

Cumm ln ℓ
(p)
j,· of the random variables ln ℓ

(p)
j,k

C(p)
m (j) = C

(p)
0 + c(p)m ln 2j . (3)

Therefore, c
(p)
m can be estimated by linear regressions of

C
(p)
m (j) against ln 2j . The coefficient c1 measures the second

order (or correlation) properties of X , whereas c
(p)
m , m ≥ 2,

characterize the higher order statistical behavior of X . For

self-similar processes, ζ is a linear function: ζ(q) = qH .

Thus, c
(p)
1 = H and the non linear features are all equal

to zero: c
(p)
m = 0, m ≥ 2. In general, if the regularity

condition (2) holds, then c
(p)
1 and H provide essentially the

same information and are thus linear features. An example

of the correlation coefficient between H and c
(p)
m is given

in Table I, for p = 0.25; it confirms that H and c1 are

strongly correlated. The same behavior is observed for other

values of p. Thus, in the remainder of this work, only H

and not c1 is used. Coefficients c
(p)
m are related to the shape

of the multifractal spectrum of X , which provides a global

description of the regularity fluctuations of X , they are

hence non linear features. The interested reader is referred

to e.g. [5], [12] for more details on multifractal analysis.

Sparse SVM. Support vector machines (SVM) search a

decision function D(x) = sgn(w⊤
x + b) which provides

an optimal separation between two classes using a d-

dimensional feature vector x. To achieve jointly optimal

classification and feature selection, it has been proposed to

introduce sparsity into classical SVM formulations by use

of L1-norm soft regularization (cf. e.g., [8]). The resulting

Sparse-SVM minimization problem reads

(ŵ, b̂) ∈ arg min
w∈RN , b∈R

C

N∑

i=1

max(0, 1−yi(w
⊤
xi+b))

2+‖w‖1,

(4)

where yi ∈ {+1,−1} and the regularization constant C
controls the tradeoff between sparsity and data fidelity, for-

mulated with the square hinge loss function [8]: Decreasing

C favors sparsity. However, the nonsmooth nature of the L1-

norm sparsity term significantly complicates the resolution of

the optimization problem (4), which then requires the use of a

Forward-Backward Splitting Algorithm involving proximity

operators to handle the nonsmoothness [14].

IV. RESULTS

Setup. Daubechies’ wavelet with Nψ = 3 vanishing mo-

ments are used. Linear regressions for the estimation of H

and c
(p)
m , m ∈ {2, 3, 4}, are performed in the same scaling

range j ∈ [6, 10], corresponding to time scales ranging from

6 to 102.4 s. Inspection of the database leads to choose γ = 1
to ensure that the minimum regularity condition in eq. (2)

holds for all records. The following representative values of



TABLE I

FEATURE CORRELATIONS (p = 0.25).

H c
(0.25)
1 c

(0.25)
2 c

(0.25)
3 c

(0.25)
4

H 1.00 0.82 0.02 0.11 0.07

c
(0.25)
1 0.82 1.00 −0.23 0.02 0.16

c
(0.25)
2 0.02 −0.23 1.00 0.16 −0.47

c
(0.25)
3 0.11 0.02 0.16 1.00 0.18

c
(0.25)
4 0.07 0.16 −0.47 0.18 1.00

TABLE II

UNIVARIATE PERFORMANCE.

Feature AUC SP SE #TP #FP

H 0.71 0.70 0.62 26 464

c
(0.25)
2 0.63 0.70 0.46 26 663

c
(0.25)
3 0.63 0.70 0.43 26 696

c
(0.25)
4 0.57 0.70 0.46 26 663

c
(1)
2 0.62 0.70 0.38 26 763

c
(1)
3 0.59 0.70 0.41 26 730

c
(1)
4 0.62 0.70 0.43 26 696

c
(2)
2 0.62 0.70 0.46 26 663

c
(2)
3 0.59 0.70 0.43 26 696

c
(2)
4 0.62 0.70 0.46 26 663

c
(∞)
2 0.62 0.70 0.43 26 696

c
(∞)
3 0.60 0.70 0.43 26 696

c
(∞)
4 0.58 0.70 0.43 26 696

p in p-leader analysis are chosen: p ∈ {0.25, 1, 2, 4,∞}.

Training and classification performance measurements are

done using a 37-fold stratified cross-validation scheme.

Performance metrics. Receiver operating characteristic

(ROC) curves [15] are constructed by shifting the classifier

threshold computing the performance in each case. Then,

the area under the ROC curve (AUC) is computed, with a

simple numeric integral, as an indicator of classifier quality.

Further, an operation point on the ROC curve is selected for

a fixed sensitivity (SE) of 0.70, corresponding to the correct

detection (TP) of 26 nonhealthy fetuses. The corresponding

specificity (SP) and number of false positives (FP) are

computed.

Univariate classification. As a first step, we perform uni-

variate classification for each feature independently, using

SVM classifier with univariate feature vector input. Table II

reports the AUC, SP, SE and number of TP and FP. It

shows that (linear) feature H outperforms all (nonlinear)

multifractal features c
(p)
m : with AUC and SE larger by 0.1,

and the lowest number of FP for TP= 26. Moreover, when

compared across the different values of p, the univariate

performance of c
(p)
m are observed to be roughly equivalent.

Multivariate classification. Table I shows the correlation

coefficient between features H, c
(p)
1 , c

(p)
2 , c

(p)
3 , c

(p)
4 for p =

0.25 (as an example). It indicates weak correlations amongst

used features, with the slight exception of c2 and c4 being

weakly (anti-)correlated. Identical conclusions hold for all

values of p. This suggests that multivariate classification

can be successful. To evaluate the benefit of multivariate

classification, with the combined use of linear and non linear

p = 0 .25 p = 1 p = 2 p = 4 p = ∞

0 . 78

0 . 76

0 . 74

0 . 72

0 . 7
− 4− 5− 6− 7− 8− 9

l og2( C )

AUC

Fig. 1. Area under the ROC curve (AUC) as a function of the
regularization parameter C, for several values of p (left).

Fig. 2. Selected features (p = 0.25). Absolute values of the weights

associated to features
(

H, c
(0.25)
2 , c

(0.25)
3 , c

(0.25)
4

)

as functions of the

regularization constant C.

features, Sparse-SVM is used with feature vectors of the

form x =
(
H, c

(p)
2 , c

(p)
3 , c

(p)
4

)
, for fixed p, as inputs.

Impact of p. Fig. 1 shows the classification performance

measured by AUC as a function of the regularization constant

C, for the five different values of p. It shows clearly that, irre-

spective of C, the AUC increases when p is decreased. This is

in agreement with results in [6], reporting that p-leader based

estimates yield improved classification performance in FHR

compared to classical leader based ones (p = ∞). From

now on, we therefore focus the analysis on performance

obtained with x =
(
H, c

(0.25)
2 , c

(0.25)
3 , c

(0.25)
4

)
. Note that

linear feature H does not depend on p.

Feature selection. Fig. 2 reports the (absolute) values of

the weights quantifying the contribution to classification

of features
(
H, c

(0.25)
2 , c

(0.25)
3 , c

(0.25)
4

)
, as functions of the

regularization constant C, for p = 0.25. For the lowest

C, Sparse-SVM maximizes sparsity (as expected) and se-

lects mostly linear feature H , ignoring nonlinear features

c
(0.25)
2 , c

(0.25)
3 , c

(0.25)
4 . When C is increased, features c

(0.25)
2

and c
(0.25)
3 are included, yet with smaller weights than that of

H . Both features show similar weights and are thus granted

similar importance by Sparse-SVM. This is consistent with

univariate classification: The most discriminant univariate

feature H is selected first. When sparsity is relaxed, c2
and c3, the second most discriminant univariate features, are

involved. Feature c4, with lowest univariate performance,

is barely selected in multivariate classification. Equivalent

conclusions are drawn when using any other p.

Linear vs. nonlinear features. Figs. 1, 2 and 3 combined



TABLE III

SPARSE-SVM PERFORMANCE (p = 0.25)

log2(C) AUC SP SE #TP #FP

−9 0.70 0.70 0.59 26 497
−8 0.75 0.70 0.68 26 398
−7 0.77 0.70 0.68 26 398
−6 0.77 0.70 0.70 26 365
−5 0.77 0.70 0.70 26 365
−4 0.77 0.70 0.70 26 365
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Fig. 3. ROC curves for Sparse-SVM (p = 0.25).

show that optimal performance is achieved for a level of

sparsity quantified by log2 C = −6. This corresponds to the

combined use of features H , c
(0.25)
2 and c

(0.25)
3 and hence

clearly shows that: i) Multivariate classification outperforms

any univariate classifications; ii) The linear feature H is the

one contributing most to classification, but nonlinear features

do contribute to classification and improve performance.

Fig. 3 notably shows that nonlinear features improve the

entire ROC curve shape and thus contribute at all levels of

specificity and sensitivity. For the lowest C, Sparse-SVM

selects mostly H and the performance is equivalent for all

p. When sparsity decreases, more weight is given to c2
and c3 and the AUC increases significantly and reaches a

plateau around log2 C = −6. The same behavior is observed

for all values of p. Table III reports the improvement in

sensitivity obtained for a fixed specificity of 0.70. Comparing

the number of FP in the first row (which is equivalent to

the use of only H and hence to the first row in Table II)

against the four last rows (which correspond to the use of

H , c2 and c3) clearly shows that the incorporation of the

nonlinear features permits a decrease of more than 100 FP.

Linear parameter H essentially quantifies the distribution of

energy across frequencies in the Fourier spectrum (thus the

correlation or second order statistics). H is observed to be

larger for nonhealthy subjects (cf. Table IV) corresponding to

less power at high frequency and hence to weaker variability

in the temporal frequencies of intrapartum FHR. Non linear

parameters c2 and c3 quantify the dependence structure

beyond correlation: Large values of |c2| indicate a significant

burstiness in temporal dynamics; c3 departing from 0 points

to an asymmetry in the upwards and downwards fluctuations.

Nonhealthy subjects are found to have larger values of |c2|
and a positive c3 (cf. Table IV), thus their temporal dynamics

are characterized by stronger burstiness and a preponderance

of upward fluctuations.

TABLE IV

MULTIFRACTAL ATTRIBUTES: MEAN (STANDARD DEVIATION) AND

P-VALUE OF WILCOXON RANK SUM TEST.

Healthy Nonhealthy p-value

H 1.50 (0.481) 1.87 (0.423) 9.27E-6

c
(0.25)
2 -0.08 (0.051) -0.10 (0.053) 7.19E-3

c
(0.25)
3 -1.50E-2 (3.50E-2) 2.03E-3 (2.80E-2) 1.47E-2

c
(0.25)
4 6.17E-3 (3.91E-2) 9.30E-3 (3.43E-2) 1.65E-2

V. CONCLUSIONS

Sparse-SVM was used here to jointly optimize classifi-

cation of healthy and nonhealthy FHR and select features

amongst multifractal parameters that most significantly con-

tribute to performance. Results clearly indicate that: i) mul-

tivariate classification outperforms univariate classification;

ii) nonlinear multifractal features improve performance upon

classification based on linear feature only ; iii) the use of a

small values of p yields the best performance.
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regularizations for feature selection in ranking with sparse svm,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 25, no. 6,
pp. 1118–1130, 2014.

[9] M. Doret, M. Massoud, A. Constans, and P. Gaucherand, “Use
of peripartum ST analysis of fetal electrocardiogram without blood
sampling: a large prospective cohort study,” European Journal of

Obstetrics & Gynecology and Reproductive Biology, vol. 156, no. 1,
pp. 35–40, 2011.
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