Moderately exponential approximation

Bridging the gap between exact computation and polynomial approximation

Vangelis Th. Paschos

BALCOR 2011

< ロ > < 同 > < 三 >

2 Moderately exponential approximation

3 Techniques for moderately exponential approximation

- 2 Moderately exponential approximation
- 3 Techniques for moderately exponential approximation
- One questions

ъ

くロト (得) (目) (日)

Approximation ratio

Approximation ratio of an approximation algorithm A

 $\rho(A, I, S) = \frac{\text{value of the solution } S \text{ computed by } A \text{ on } I}{\text{optimal value}}$

The closer the ratio to 1, the better the performance of A

Inapproximability

Inapproximability result

A statement that a problem is not approximable within ratios better than some approximability level unless something very unlikely happens in complexity theory

- **P** = **NP**
- Disproval of the ETH
- ...

ETH

SAT or one of its mates cannot be solved to optimality in subexponential time

Examples of inapproximability

- MAX INDEPENDENT SET OF MAX CLIQUE inapproximable within ratios $\Omega\left(n^{-1}\right)$
- MIN VERTEX COVER within ratios smaller than 2
- MIN SET COVER within ratios $o(\log n)$
- MIN TSP within better than exponential ratios
- MIN COLORING within ratios o(n)
- ...

Guiding thread of the talk

The MAX INDEPENDENT SET problem

MAX INDEPENDENT SET

Given a graph G(V, E) we look for a maximum size $V' \subseteq V$ such that $\forall (v_i, v_j) \in V' \times V', (v_i, v_j) \notin E$

Exact computation with worst-case bounds (1)

Determine an optimal solution for an **NP**-hard problem with provably non trivial worst-case time-complexity

For MAX INDEPENDENT SET

- Exhaustively generate any subset of V and get a maximum one among those that are independent sets: O (2ⁿ) (trivial exact complexity)
- Find all the maximal independent sets of the input graph: O (1.4422ⁿ) (Moon & Moser (1965))

Exact computation with worst-case bounds (2): pruning the search tree

 $T(n) \leq T(n-1) + T(n-4) + p(n) \simeq O(1.385^n)$

\rightarrow Numerous subsequent improvements

2 Moderately exponential approximation

3 Techniques for moderately exponential approximation

Some questions

э

A basic question (goal = max)

- What about GAP?
- Why not taking advantage of the power of modern computers?
- For realistic values of n, 1.1^n is not so "worse" than, say, n^5

(日)

The key issue

Approximate optimal solutions of NP-hard problems within ratios "forbidden" to polynomial algorithms and with worst-case complexity provably better than the complexity of an exact computation

Do it

- For some forbidden ratio
- For any forbidden ratio

・ 同 ト ・ ヨ ト ・ ヨ ト

2 Moderately exponential approximation

Techniques for moderately exponential approximation

Some questions

э

Generate a small number of candidates (1)

The key-idea

Generate a small number of candidate solutions (polynomially complete them, if necessary and possible) and return the best among them

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

Generate a small number of candidates (2): MAX INDEPENDENT SET

- Generate all the \sqrt{n} -subsets of V
- If one of them is independent, then return it
- Else return a vertex at random

Approximation ratio: $n^{-1/2}$ (impossible in polynomial time) Worst-case complexity: $O\left(\binom{n}{\sqrt{n}}\right) \leq O\left(2^{\sqrt{n}\log n}\right)$ Subexponential

ヘロン 人間 とくほ とくほ とう

Generate a small number of candidates (2): works also for ...

- MIN INDEPENDENT DOMINATING SET (Bourgeois, Escoffier & P (2010))
- CAPACITATED DOMINATING SET (Cygan, Pilipczuk & Wojtaszczyk (2010))

イロト 不得 トイヨト イヨト

Divide & approximate (1)

The key-idea

Optimally solve a problem in a series of (small) sub-instances of the initial instance

- Appropriately split the instance in a set of sub-instances (whose sizes are functions of the ratio that is to be achieved)
- Solve the problem in this set
- Compose a solution for the initial instance using the solutions of the sub-instances

Divide & approximate (2): MAX INDEPENDENT SET

Theorem

Assume that an optimal solution for MAX INDEPENDENT SET can be found in O (γ^n) Then, for any fixed p, q, p < q, a (p/q)-approximation can be computed in O $(\gamma^{\frac{p}{q}n})$

It works for any problem defined upon a hereditary property

18/31

Divide & approximate (3)

- Build the unions of all the *p* subgraphs in {*G*₁,..., *G_q*} among *q*
- Take the best among these $\binom{q}{p}$ solutions

э.

くロト (得) (目) (日)

Divide & approximate (4): example for p/q = r = 1/2

$$|S^*| \leqslant |S_1^*| + |S_2^*| \leqslant 2\max\{|S_1^*|, |S_2^*|\} \Longrightarrow \frac{\max\{|S_1^*|, |S_2^*|\}}{|S^*|} \ge \frac{1}{2}$$

Complexity: $O(\gamma^{n/2})$

ъ

Divide & approximate (5): works also for ...

If $O(\gamma^n)$ the complexity for MAX INDEPENDENT SET

- MIN VERTEX COVER: (2 r)-approximation in O (γ^{rn}), for any r (Bourgeois, Escoffier & P (2011))
- MAX CLIQUE: *r*-approximation in O (γ^{rΔ}) (Δ the maximum degree of the input-graph), for any *r* (Bourgeois, Escoffier & P (2011))
- MAX SET PACKING: *r*-approximation in O (γ^{rn}), for any r (Bourgeois, Escoffier & P (2011))
- MAX BIPARTITE SUBGRAPH: *r*-approximation in O (γ^{2rn}), for any *r* (Bourgeois, Escoffier & P (2011))

・ロン・(理)・・ ヨン・ ヨン・

Approximately pruning the search tree (1)

The key idea

Perform a branch-and-cut by allowing a "bounded error" in order to accelerate the algorithm (i.e., make the instance-size decreasing quicker than in exact computation by keeping the produced error "small")

< □ > < 同 > < 回 > < 回 > < 回 > < 回

Approximately pruning the search tree (2): MAX INDEPENDENT SET

- If $\Delta(G) \leq 7$, then approximate MAX INDEPENDENT SET polynomially;
- else, branch on a vertex *v* with $d(v) \ge 8$ and either take it, remove its neighbors and two more vertices v_i, v_j such that $(v_i, v_j) \in E$, or do not take it

くロン く得と くほと くほとう

Approximately pruning the search tree (3): MAX INDEPENDENT SET (cont.)

Theorem

The above algorithm computes an $\frac{1}{2}$ -approximation for MAX INDEPENDENT SET in time O (1.185^{*n*})

Approximately pruning the search tree (4): MAX INDEPENDENT SET (cont.)

- If Δ(G) ≤ 7, approximation ratio ¹/₂ (ratio ⁵/_{Δ(G)+3}, (Berman & Fujito (1985)))
- If Δ(G) ≥ 8, we make an "error" of at most 1 vertex per vertex introduced in the solution (ratio ¹/₂)

Complexity

$$T(n) \leq T(n-1) + T(n-11) + p(n) = O(1.185^n)$$

イロト 不得 トイヨト イヨト

25/31

Approximately pruning the search tree (5): works also for ...

- MIN SET COVER (Bourgeois, Escoffier & P (2009))
- BANDWIDTH (Cygan & Pilipczuk (2010))
- MIN and MAX SAT (Escoffier, P & Tourniaire (2011))

Randomization

The key idea

Achieving ratio *r* with complexity better than $O(\gamma^{rn})$

- Randomly split the graph into subgraphs in such a way that the problem at hand is to be solved in graphs G_i of order r'n with r' < r
- Compute the probability $\Pr[r]$ of an *r*-approximation
- Repeat splitting N(r) times to bet r-approximation with probability ~ 1 (in time N(r)γ^{r'n})

It works for MAX INDEPENDENT SET, MIN VERTEX COVER, MIN SET COVER, ...

э.

ヘロン 人間 とくほ とくほ とう

Quick recalls

2 Moderately exponential approximation

3 Techniques for moderately exponential approximation

Is subexponential approximation possible?

MIN COLORING

polynomially inapproximable within $\frac{\chi(G)+1}{\chi(G)}$ (Garey & Johnson (1979)) but **exponentially approximable** within $\frac{\chi(G)+1}{\chi(G)}$ ((Björklund, Husfeldt & Koivisto (2006)), (Bourgeois, Escoffier & P (2009)))

If it is subexponentially approximable within better than $\frac{\chi(G)+1}{\chi(G)}$, then MIN COLORING is solvable in subexponential time!!!

DISPROVAL OF THE ETH FOR MIN COLORING!!!!

ヘロン 人間 とくほ とくほ とう

Further questions: structure of moderately exponential approximation

- More tools proper to moderately exponential approximation
- Moderately exponential approximation preserving reductions?
- Is it possible to get inapproximability results?
 - Of what kind?
 - Under what complexity conditions?

ΕΥΧΑΡΙΣΤΩ

Vangelis Th. Paschos Moderately exponential approximation

ヘロト 人間 とくほ とくほ とう