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Approximation ratio

Approximation ratio of an approximation algorithm A

ρ(A, I,S) =
value of the solution S computed by A on I

optimal value

The closer the ratio to 1, the better the performance of A
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Inapproximability

Inapproximability result

A statement that a problem is not approximable within ratios
better than some approximability level unless something very
unlikely happens in complexity theory

P = NP

Disproval of the ETH

. . .

ETH
SAT or one of its mates cannot be solved to optimality in
subexponential time
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Examples of inapproximability

MAX INDEPENDENT SET or MAX CLIQUE inapproximable
within ratios Ω

(

n−1
)

MIN VERTEX COVER within ratios smaller than 2

MIN SET COVER within ratios o(log n)

MIN TSP within better than exponential ratios

MIN COLORING within ratios o(n)

. . .
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Guiding thread of the talk

The MAX INDEPENDENT SET problem

MAX INDEPENDENT SET

Given a graph G(V ,E) we look for a maximum size V ′ ⊆ V
such that ∀(vi , vj ) ∈ V ′ × V ′, (vi , vj) /∈ E
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Exact computation with worst-case bounds (1)

Determine an optimal solution for an NP-hard problem with
provably non trivial worst-case time-complexity

For MAX INDEPENDENT SET

Exhaustively generate any subset of V and get a maximum
one among those that are independent sets: O (2n) (trivial
exact complexity)

Find all the maximal independent sets of the input
graph: O (1.4422n) (Moon & Moser (1965))
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Exact computation with worst-case bounds (2):
pruning the search tree

(a) 1 vertex fixed (b) > 4 vertices
fixed

T (n) 6 T (n − 1) + T (n − 4) + p(n) ≃ O (1.385n)

→ Numerous subsequent improvements
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A basic question (goal = max)

ratio

polynomial
algorithmsalgorithms

ρ

exact

1

GAP

What about GAP?

Why not taking advantage of the power of modern
computers?

For realistic values of n, 1.1n is not so “worse” than, say, n5
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The key issue

Approximate optimal solutions of NP-hard problems within
ratios “forbidden” to polynomial algorithms and with
worst-case complexity provably better than the complexity
of an exact computation

Do it

For some forbidden ratio

For any forbidden ratio
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Generate a small number of candidates (1)

The key-idea

Generate a small number of candidate solutions (polynomially
complete them, if necessary and possible) and return the best
among them
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Generate a small number of candidates (2): MAX

INDEPENDENT SET

Generate all the
√

n-subsets of V

If one of them is independent, then return it

Else return a vertex at random

Approximation ratio: n−1/2 (impossible in polynomial time)

Worst-case complexity: O
(

( n√
n

)

)

6 O
(

2
√

n log n
)

Subexponential
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Generate a small number of candidates (2): works
also for . . .

MIN INDEPENDENT DOMINATING SET (Bourgeois,
Escoffier & P (2010))

CAPACITATED DOMINATING SET (Cygan, Pilipczuk &
Wojtaszczyk (2010))
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Divide & approximate (1)

The key-idea

Optimally solve a problem in a series of (small) sub-instances
of the initial instance

Appropriately split the instance in a set of sub-instances
(whose sizes are functions of the ratio that is to be
achieved)

Solve the problem in this set

Compose a solution for the initial instance using the
solutions of the sub-instances
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Divide & approximate (2): MAX INDEPENDENT SET

Theorem

Assume that an optimal solution for MAX INDEPENDENT SET

can be found in O (γn)

Then, for any fixed p,q, p < q, a (p/q)-approximation can be

computed in O
(

γ
p
q n
)

It works for any problem defined upon a hereditary property
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Divide & approximate (3)

Build the unions of all the p subgraphs in {G1, . . . ,Gq}

among q

Take the best among these
(q

p

)

solutions

p

q

G

Gi
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Divide & approximate (4): example for p/q = r = 1/2

G1 G2 G

S∗
1

S∗
2

S∗

|S∗| 6 |S∗
1 |+ |S∗

2 | 6 2 max {|S∗
1 | , |S

∗
2 |} =⇒

max
{∣
∣S∗

1

∣

∣ ,
∣

∣S∗
2

∣

∣

}

|S∗|
>

1
2

Complexity: O
(

γn/2
)
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Divide & approximate (5): works also for . . .

If O (γn) the complexity for MAX INDEPENDENT SET

MIN VERTEX COVER: (2 − r)-approximation in O (γrn), for
any r (Bourgeois, Escoffier & P (2011))

MAX CLIQUE: r -approximation in O
(

γr∆
)

(∆ the maximum
degree of the input-graph), for any r (Bourgeois,
Escoffier & P (2011))

MAX SET PACKING: r -approximation in O (γrn), for any r
(Bourgeois, Escoffier & P (2011))

MAX BIPARTITE SUBGRAPH: r -approximation in O
(

γ2rn
)

, for
any r (Bourgeois, Escoffier & P (2011))
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Approximately pruning the search tree (1)

The key idea

Perform a branch-and-cut by allowing a “bounded error” in
order to accelerate the algorithm (i.e., make the instance-size
decreasing quicker than in exact computation by keeping the
produced error “small”)
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Approximately pruning the search tree (2): MAX

INDEPENDENT SET

1 If ∆(G) 6 7, then approximate MAX INDEPENDENT SET

polynomially;

2 else, branch on a vertex v with d(v) > 8 and either take it,
remove its neighbors and two more vertices vi , vj such that
(vi , vj ) ∈ E , or do not take it
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Approximately pruning the search tree (3): MAX

INDEPENDENT SET (cont.)

Theorem

The above algorithm computes an 1
2-approximation for MAX

INDEPENDENT SET in time O (1.185n)
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Approximately pruning the search tree (4): MAX

INDEPENDENT SET (cont.)

If ∆(G) 6 7, approximation ratio 1
2 (ratio 5

∆(G)+3 , (Berman &
Fujito (1985)))

If ∆(G) > 8, we make an “error” of at most 1 vertex per
vertex introduced in the solution (ratio 1

2 )

Complexity

T (n) 6 T (n − 1) + T (n − 11) + p(n) = O (1.185n)
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Approximately pruning the search tree (5): works also
for . . .

MIN SET COVER (Bourgeois, Escoffier & P (2009))

BANDWIDTH (Cygan & Pilipczuk (2010))

MIN and MAX SAT (Escoffier, P & Tourniaire (2011))
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Randomization

The key idea

Achieving ratio r with complexity better than O (γrn)

Randomly split the graph into subgraphs in such a way that
the problem at hand is to be solved in graphs G ′

i of
order r ′n with r ′ < r

Compute the probability Pr[r ] of an r -approximation

Repeat splitting N(r) times to bet r-approximation with
probability ∼ 1 (in time N(r)γr ′n)

It works for MAX INDEPENDENT SET, MIN VERTEX COVER, MIN

SET COVER, . . .
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Is subexponential approximation possible?

MIN COLORING

polynomially inapproximable within χ(G)+1
χ(G)

(Garey &
Johnson (1979)) but exponentially approximable
within χ(G)+1

χ(G)
((Björklund, Husfeldt & Koivisto (2006)),

(Bourgeois, Escoffier & P (2009)))

If it is subexponentially approximable within better than χ(G)+1
χ(G)

,
then MIN COLORING is solvable in subexponential time!!!

DISPROVAL OF THE ETH FOR MIN COLORING!!!!
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Further questions: structure of moderately exponential
approximation

More tools proper to moderately exponential approximation

Moderately exponential approximation preserving
reductions?

Is it possible to get inapproximability results?

Of what kind?
Under what complexity conditions?
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