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Abstract. Graph pyramids are often used for representing irregular
pyramids. Combinatorial pyramids have been recently defined for this
purpose. We define here pyramids of n-dimensional generalized maps.
This is the main contribution of this work: a generic definition in any di-
mension which extend and generalize the previous works. Moreover, such
pyramids explicitly represent more topological information than graph
pyramids. A pyramid can be implemented in several ways, and three
representations are discussed in this paper.

Keywords. Hierarchical data structure, irregular pyramids, generalized
map, n-G-map pyramids, multi-resolution.

1 Introduction

Hierarchical structures are often used for representing a same object with differ-
ent resolutions. The first level of such a structure generally represents the object
with a very fine precision, then the precision decreases as the level increases.
For image processing, pyramids are used for representing different segmentation
levels of an image. It is thus possible to get immediately the segmentation level
suited for a particular process. It is also possible to modify a pyramid level, for
instance when changing the segmentation criteria.

Irregular image pyramids have been studied by many authors, and used for
several applications ([1,2,3,4,5,6,7,8]). An irregular pyramid is defined as a stack
of reduce graphs where each graph is built from the precedent level by a sampling
or decimation process. Brun and Kropatsch have extended this notion by defining
pyramids in which each level is a 2-dimensional combinatorial map ([9,10,11]).
Combinatorial maps represent the topology of any subdivisions of any orientable
surfaces without boundary.

We extend these works for any dimension by defining pyramids of n-dimen-
sional generalized maps (or n-G-maps). This is the main result of this paper.
Generalized maps represent the topology of any subdivisions of any orientable or
not orientable n-dimensional manifolds with or without boundary (see [12,13]).
So, pyramids of n-G-maps can be used in order to process images in 2D, 3D,
as well as 4D (for instance for tracking objects in 3D image sequences). An
other interest of generalized maps is that their definition is homogeneous for any
dimensions. This facilitates the definition of generic operations and algorithms.



Our work follows that of Damiand and Lienhardt who have defined for
n-G-maps a general operation for removing and contracting cells of any di-
mensions [14]. More precisely, each level of a pyramid is a simplification of the
previous one, obtained by applying this operation.

We recall in section 2 the notion of generalized map as well as the opera-
tion of cell contraction and removal. Generalized map pyramids are defined in
section 3. We study in section 4 three different representations of generalized
map pyramids. We discuss in section 5 the construction of a pyramid in the
context of image segmentation. Generalized map pyramids and graph pyramids
are compared in section 6. Further issues are discussed in section 7.

2 Recalls: n-G-map, cell removal and contraction

n-dimensional generalized maps (or n-G-maps) represent the topology of n-
dimensional subdivided objects, and more precisely the topology of quasi-mani-
folds (see [12,15,13]). An n-G-map is a set of abstract elements (darts), together
with applications defined on these darts. Cells are implicitly represented as sets
of darts. (see [13] for more details).

Definition 1 (n-G-map and i-cell (cf. figure 1)). Let n ≥ 0.
An n-dimensional generalized map G is defined by G = (D,α0, . . . , αn) where:

1. D is a finite set of darts;

2. ∀k, 0 ≤ k ≤ n, αk is an involution1 on D;

3. ∀k, j, 0 ≤ k < k + 2 ≤ j ≤ n, αkαj is an involution.

Let d ∈ D, N = {0, 1, . . . , n} and let i be such that 0 ≤ i ≤ n.
The i-cell incident to d is the orbit 2

<>N−{i} (d) =< α0, . . . , αi−1, αi+1, . . . , αn > (d).

In order to define n-G-map pyramids, Damiand and Lienhardt have proposed
an operation for simultaneously removing and contracting cells of any dimensions
[14](cf. figure 2). These cells have to satisfy two preconditions: they are disjoint
two by two3, and their degree is two.

For i ∈ N , Ri is the set of removed i-cells, and Ci is the set of contracted
i-cells. Note that Rn = ∅ and C0 = ∅ since it is not possible to remove n-cells
nor to contract 0-cells (see [14] for more details).

1 An involution f on a finite set S is a one to one mapping from S onto S such that
f = f−1.

2 Let {Π0, . . . , Πn} be a set of permutations on D. The orbit of an element d related
to this set of permutations is < Π0, . . . , Πn > (d) = {Φ(d), Φ ∈< Π0, . . . , Πn >},
where < Π0, . . . , Πn > denotes the group of permutations generated by Π0, . . . , Πn.

3 The set of i-cells is a partition of the set of darts of the n-G-map, for each i between
0 and n. Two cells are disjoint if their intersection is empty, i.e. when no dart is
shared by the cells.
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Fig. 1. (a) A subdivision of a surface. (b) The corresponding 2-G-map. Darts are
represented by numbered black segments. Two darts in relation by α0 share a little
vertical segment (ex. darts 1 and 2). Two darts in relation by α1 share a same point
(ex. darts 2 and 3). Two distinct darts in relation by α2 are parallel and close to each
other (ex. darts 3 and 17); otherwise, the dart is its own image by α2 (ex. dart 2). The
vertex incident to dart 2 is < α1, α2 > (2) = {2, 3, 16, 17}, the edge incident to dart 3
is < α0, α2 > (3) = {3, 4, 17, 18}, and the face incident to dart 9 is < α0, α1 > (9) =
{7, 8, 9, 10, 11, 12}.

a b

Fig. 2. An example of simultaneous removal and contraction of cells of different di-
mensions. (a) A 2-G-map where the darts of removed 0-cells, removed 1-cells and
contracted 1-cells are respectively marked by empty squares, circles and gray disks. (b)
The resulting 2-G-map.

3 Definition of n-G-map pyramids

An n-G-map pyramid is a hierarchical structure. Each level is an n-G-map:
the first level represents the initial data; the other levels represent successive
simplifications. A possible bottom-up construction is the following one. Level 0
is an n-G-map which represents the initial data. According to the application,
a process will define two sets for any dimension i (i ∈ N): R0

i (resp. C0
i ) is the

set of i-cells which will be removed (resp. contracted). The cells of these sets
have to satisfy the preconditions of the removal and contraction operation. The
application of this operation gives the level 1 map. This process is reapplied in
order to get the other levels of the pyramid.

The formal definition of an n-G-map pyramid is the following:

Definition 2 (n-G-map pyramid). Let n, m ≥ 0. A m+ 1 level pyramid P
of n-dimensional generalized maps is the set P = {Gk}0≤k≤m where:

1. ∀k, 0 ≤ k ≤ m, Gk is the n-G-map (Dk, αk
0 , . . . , α

k
n),



2. For each k, 0 ≤ k ≤ m, for each i, 0 ≤ i < n, let Rk
i (resp. Ck

i ) be sets of
i-cells such that: cells are disjoint two by two and the degree of each cell is
equal to 2, i.e.:

– ∀C, C ′ ∈
⋃n

i=0(Rk
i ∪ Ck

i ), C ∩ C ′ = ∅,
– ∀i, 0 ≤ i ≤ n− 2, ∀d ∈ Rk

i , dαk
i+1α

k
i+2 = dαk

i+2α
k
i+1,

– ∀i, 2 ≤ i ≤ n, ∀d ∈ Ck
i , dαk

i−1α
k
i−2 = dαk

i−2α
k
i−1,

3. ∀k, 0 < k ≤ m, Gk is obtained from Gk−1 by removing the cells of ∪ni=0R
k−1
i

and contracting the cells of ∪ni=0C
k−1
i .

Examples of 2D and 3D pyramids are provided in figures 3 and 4.

Fig. 3. A 2-G-map pyramid composed
of three levels. The darts of removed
0-cells (resp. 1-cells) are marked by
empty squares (resp. circles).

Fig. 4. A 3-G-map pyramid composed
of three levels. The second level is ob-
tained by removing 2 faces, and the
third level is obtained by removing 4
edges (the two upper edges and the two
edges in the background which are ad-
jacent to the first ones).

Two major properties of n-G-map pyramids are:

– each dart which belongs to a removed or a contracted cell of level k does not
belong to another removed or contracted cell in the same level or in another
level.

– Let k, 0 ≤ k < m. Note that a one to one mapping ϕk exists between the
surviving darts of Gk (i.e. the darts which are not removed nor contracted),
and the darts of Gk+1 (ϕk : Dk −

⋃n
i=0(Rk

i ∪ Ck
i ) −→ Dk+1). In order to

simplify, we will denote a dart of Gk and its image in Gk+1 by the same
name. So, we have: Dk+1 = Dk −

⋃n
i=0(Rk

i ∪ Ck
i ).



More formally:

Proposition 1.

1. ∀i, j ∈ N , ∀k, l ∈ [0..m− 1] we have:


Rk

i ∩ Cl
j = ∅,

Rk
i ∩Rl

j = ∅, with i 6= j or k 6= l,
Ck

i ∩ Cl
j = ∅, with i 6= j or k 6= l.

2. ∀k, 0 ≤ k < m, Dk+1 ⊆ Dk.

These properties can be easily deduced from the definition of the removing
and contracting operation [14], and from the definition of n-G-map pyramids.
Moreover these properties are useful for the definition of representations of n-G-
map pyramids, and more precisely for the implicit and hierarchical representa-
tions.

4 Different representations of n-G-map pyramids

An n-G-map pyramid can be represented more or less explicitly according to the
performance expected in space and in time. We present in this section three pos-
sible representations: explicit, hierarchical and implicit (see figure 5). Note that
each representation has to satisfy the constraints of the definition of n-G-map
pyramids, which can be easily expressed for each representation. Note also that
these three representations contain the same information, but each of them has
different advantages and drawbacks (explain in the following).

Explicit n-G-map pyramid : each level k (i.e. Gk) and each bijection ϕk are
explicitly represented (see figure 5-a). The representation contains thus m + 1
n-G-maps, and each dart is linked with its predecessor (except the darts of level
0) and with its successor4 (except the darts of the last level and the darts which
belong to a removed or contracted cell). Moreover, for each level, a dart which
belongs to a removed or contracted cell in this level is marked by the type of the
operation (contraction or removal) and the dimension of the cell.

Hierarchical n-G-map pyramid : Dk −
⋃n

i=0(Rk
i ∪Ck

i ) is identified with Dk+1

for each k (0 ≤ k < m) but each involution αi is explicitly represented (∀i,
0 ≤ i ≤ n). This representation (see figure 5-b) contains a single set of darts,
and for each dart one table which represents involutions α for all levels (the size
of this table is the product of the number of involutions by the number of levels
for each dart). If a dart disappears at level k, its images by involutions α are only
defined from level 0 to level k. A possible optimization is the following: when
dαk

i = dαk+1
i , the image of d is represented only once. More precisely, given i

(0 ≤ i ≤ n) and a dart d, we only memorize distinct images of d by αi, and for
each dart, the last level at which it belongs.

4 The predecessor relation corresponds to (ϕk−1)−1 and the successor relation ϕk.



Implicit n-G-map pyramid : this representation contains only the first level
(i.e. G0) and three marks are associated with each dart. The first one corre-
sponds to the type of operation (removal or contraction) which suppresses the
dart (if the case arises). The second one corresponds to the dimension of the
removed or contracted incident cell. The third one indicates the level at which
the cell disappears.
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Fig. 5. Three representations of a same pyramid. For each representation, the corre-
sponding array shows images by involutions α for the two darts 1 and 2. (a) Explicit.
Removed 0-cells (resp. removed 1-cells) are marked by empty squares (resp. circles).
(b) Hierarchical. Each dart is drawn in the last pyramid level where it exists. When
two darts linked by αi are drawn in the same level, their link αi is drawn in the usual
way. Otherwise, the links α1

0 and α0
0 between two darts of two different levels are rep-

resented by lines with empty lozenge and the link α0
1 by line with filled lozenge. (c)

Implicit. Removed 0-cells of level 0 (resp. removed 1-cells of level 1) are marked by
empty squares (resp. circles).

The choice of one representation depends on the particular needs of the
application, since these representations offer different advantages and drawbacks.



The explicit representation is characterized by an important redundancy of
information, and thus an heavy cost in memory space. On the other hand, each
pyramid level can be directly accessed. So, the extraction of a particular level or
the modification of the pyramid can be easily achieved.

The hierarchical representation is less costly in memory space, since there
are less redundant informations. Any level can be directly extracted by using
involutions of this level. Moreover, given a cell, one can directly access to the set
of cells of a lower level which are “merged” into this cell. This can be useful for
example for the representation of different levels of details (see [16] where a data
structure, based upon a similar principle, is proposed in order to model complex
architectural environments). On the other hand, it is usually difficult to modify
the pyramid, since all levels are not explicitly represented. More precisely, it is
difficult to propagate modifications between the pyramid levels.

The implicit representation has an optimal complexity in memory space since
there is no redundant information. Moreover, the pyramid can be directly modi-
fied, avoiding the problem related to the information propagation. A similar rep-
resentation is proposed by Brun and Kropatsch [17] for representing a 2D com-
binatorial pyramid. The main drawback of this representation is that a pyramid
level can not be directly accessed: it is necessary to compute it when required.

5 Construction of a pyramid for image segmentation

For image processing, pyramids are used in particular in order to keep in memory
different segmentations of a same image. In order to construct an n-G-map
pyramid associated with a multi-level segmented image, level 0 is associated
with the initial image. A new level is constructed through two steps: first, the
cells of the “previous segmentation” corresponding to homogeneous regions are
“merged” into one cell; second, the resulting n-G-map is simplified.

An example is the following. We want to segment a 3D gray level image by
using a simple gray level distance as homogeneity criterion. The initialization
consists in associating a 3-G-map with the initial image (cubic volumes are
associated with voxels). A label representing the gray level of the corresponding
voxel is associated with each volume. The voxels corresponding to a homogeneous
region are merged. This is achieved by removing the faces which are between the
corresponding volumes. More precisely, a process based upon the homogeneity
criterion marks level 0 faces, then the 3-G-map is duplicated and the removal
and contraction operation is applied, producing level 1 map. The same principle
is applied in order to compute the following levels. It is possible to modify the
marking process in order to control the topology of the 3-G-maps, for instance
for avoiding disconnections. In order to reduce the required memory space, the
representation of the boundary between two regions can be simplified, by merging
the boundary faces into one face. This simplification can be achieved by removing
the degree 2 edges and then the degree 2 vertices. Other simplifications can be
made in order to obtain a minimal representation (see [18,19]). A new level is



constructed by the same two phases: first marking, duplication and removal of
faces; then simplifications by removing degree 2 edges and vertices.

For 2D images, pixels which make a homogeneous region (i.e. faces of the
2-G-map) are merged by removing the edges between these faces. The 2-G-map
is then simplified by removing the degree 2 vertices. For 4D images, 4D cells
are merged by removing the volumes which lie between them. The boundary
between two regions can be simplified by removing the degree 2 faces, then the
degree 2 edges and then the degree 2 vertices. More simplifications can be done
depending on the particular needs for each application.

6 Comparison with graph pyramids

Irregular image pyramids are often represented by adjacency graph pyramids. A
vertex of such an adjacency graph corresponds to a region of the image and an
edge symbolizes the adjacency relation between the two regions associated with
the extremity vertices. Figure 6 shows different representations of a segmented
image. Note that one region is included into an other one, and that two regions
are adjacent several times to each other. An adjacency graph represents all types
of adjacency in the same way (figure 6-b), leading to a loss of information.

Dual graph pyramids [3] are an extension of adjacency graph pyramids, de-
signed in order to take into account multi-adjacency and inclusion (see figure 6-c).
A dual graph is defined as a multi-graph together with its dual graph (these two
graphs have to be connected). However, dual graphs as well as adjacency graphs
can not represent the topological order information for all cases (i.e. for instance
the order of faces around a vertex or the order of volumes around an edge or a
vertex). For example, figure 7 shows a gray level image representing a clover. It
is composed by six parts: the background, the stem, three leaves and the roots
(see figure 7-a). The corresponding dual graph is shown in figure 7-b. Due to
the self-loop, the edge orientation around vertices is loss and it is not possible
to know which leaf lies between the two others. On the other hand, n-G-maps,
and so n-G-map pyramids, represent inclusion, multi-adjacency and order, for
any dimension (cf. figure 6-d and figure 7-c).

An other drawback of adjacency graphs is the fact that all cells are not
represented. For instance in 2D (resp. 3D), vertices (resp. edges and vertices)
are not represented. More generally, adjacency graphs only represent n-cells and
n − 1-cells. n-G-maps represent all cells of any dimension, and all incidence
and adjacency relations between these cells. Figure 8 shows the example of a 3D
pipe, which extremities share only one edge. The corresponding adjacency graph
contains only two vertices (the pipe and the surrounding region) linked by one
edge. So, it is not possible to retrieve the information about the two extremities
of the pipe. This can be done using a 3-G-map.
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Fig. 6. Representation of a segmented image. (a) An image. (b) The corresponding
adjacency graph. (c) The corresponding dual graphs (primal graph in black and its
dual in gray). (d) The corresponding 2-G-map.
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Fig. 7. A 2D image of a clover. (a) The image. (b) The
corresponding dual graphs. (c) The corresponding 2-G-
map.

Fig. 8. A 3D image rep-
resenting a pipe.

7 Conclusion and Perspectives

Pyramids of n-dimensional generalized maps are here defined as stacks of reduce
n-G-maps where each n-G-map is built from the previous level by contracting or
removing cells. n-G-maps unambiguously represent the topology of subdivided n-
dimensional objects (for instance n-dimensional images). So, n-G-map pyramids
can be used in order to process 2D, 3D and 4D images. n-G-map pyramids can
be very useful for applications in which it is necessary to check or to control the
(evolution of the) topology of an object, for example when tracking objects in
video sequences.

n-G-map pyramids can be represented in different ways. We have discussed
three generic representations: explicit, hierarchical and implicit, and their advan-
tages and drawbacks which are important for choosing an efficient representation
according to the needs of the application (complexity in memory space and/or
in time). But we need to compare more precisely these three representations in
practical applications to list advantages, drawbacks and complexities.

n-G-map pyramids have several advantages, compared with adjacency graph
pyramids. Mainly, n-G-maps pyramids represent the whole topological informa-



tion about n-dimensional multi-level subdivided objects. It is important since the
reduction between levels (achieved by the applications of removal and contrac-
tion operation) leads to particular cases (for instance multi-adjacency of cells)
which are usually not well handled by graphs.

We intend now to define and generalize the notion of receptive field for n-G-
map pyramids. This classical notion, defined for graph pyramids and 2D combi-
natorial map pyramids, establishes a relation between a cell at a given level and
the set of cells of lower levels which are contracted or removed into this cell.

It is also necessary to conceive operations for handling this structure: for
instance, for modifying any level of the pyramid by contracting or removing
a cell, by adding a new cell, etc. An important problem is the fact that it is
necessary to efficiently propagate these modifications for the other levels.
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