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Abstract. Graph pyramids are often used for representing an image
with different levels of details. Generalized pyramids have been recently
defined in order to deal with images in any dimension. In this work, we
show how to use generalized pyramids in order to represent 3D multi-
level segmented images. We show how to construct such a pyramid, by
alternating segmentations and simplifications steps. When the pyramid
is constructed, the main problem consists in retrieving information on
regions, for example in order to compute geometrical or topological fea-
tures. In this work, we show how to retrieve two types of information
concerning regions: the first one is the cells of a low levels that are merged
into a unique cell of a high level, and the second one is the inter-voxel
cells that compose a given region. This second type of information is
particularly interesting in order to retrieve for example the surfels that
composed the boundary of a region.
Keywords. Irregular image pyramid, Inter-voxel elements, Generalized
map, Hierarchical segmentation.

1 Introduction

To segment an image, i.e. partition the image in distinct and homogeneous con-
nected regions given a criterion, the region based methods are the most appropri-
ate. A classical approach to region segmentation is the split-and-merge method
and all its variants: bottom-up approach [1,2] consists in taking small regions and
merging them into bigger and bigger regions; top-down approach [3,4] is the op-
posite one, starting from big regions and cutting them into smaller and smaller
regions; mixed approach [5,6] consists in combining the two previous ones.

For bottom-up approaches, it is important to be able to extract information
on regions (for example mean, variance, . . . ), and to be able to retrieve adjacent
regions of a given region. Graph based structures [7,8,9] allow to retrieve such
information, and this is why they are used in many image processing works. But
such structures have several drawbacks: they do not represent all the topological
information and all the cells.

To solve these problems, structures based on combinatorial maps have been
defined [10,11]. These structures have many advantages:



– they represent topological information, such that multi-adjacency or inclu-
sion relations;

– they represent all the cells of the represented objects, and not only the regions
as in the region adjacency graph;

– they allow to retrieve inter-voxel elements that composed the regions of the
image and thus allow to compute geometrical features on the objects;

– they allow to compute topological characteristics of image regions.

Moreover, it is often necessary to represent a same image with different seg-
mentation level. For that, classical structures are extended in hierarchical struc-
tures in order to be able to represent a same object with different resolutions.
In this work, we use a 3-G-Map pyramid in order to deal with a 3D multi-level
segmented image. Considered images are in grey level, and the segmentation
method is a bottom-up approach based on a very simple criterion that use the
squared error.

3-G-Map pyramid used in this work is based on similar principle to the one
presented in [12]. With this structure, we represent different partitions of a same
image, and links between the levels in order to be able to run through the pyra-
mid. Moreover, each cells and adjacency and incidence relations are represented
for each different level. These information allow multi-level operations, such that
for example a local modification of a region in a given level, with propagations
on neighbor levels in order to keep the coherence of the structure.

In order to compute topological or geometrical features on regions of the
image, it is often necessary to retrieve:

– which regions of a fine segmentation were merged in a unique region of a
partition in an upper level in the pyramid;

– inter-voxels elements in the initial image that composed a given cell of a
given region in the pyramid (for example the voxels of a region or the surfels
of a face).

In this work, we show that these information can be retrieved in the 3-G-Map
pyramid by using the notion of generalized cells (particular cases of generalized
orbits defined in [13]). This is the main result of this work, the definition of the
algorithms which allow to retrieve all the information concerning a given region.

This paper is organized as follows. Section 2 provides some recalls about
pyramids of n-dimensional generalized maps and about the notion of general-
ized cells. In section 3 we examine the construction of the n-G-map pyramid
representing different segmentation levels of a same image in grey level. In sec-
tion 4 we show how to retrieve voxels and inter-voxel elements (or in general
region and inter-region elements) which compose a region or the boundary of a
region in an upper level. Conclusion and further issues are discussed in section 5.

2 Recall: pyramids of n-dimensional generalized maps
and generalized cells

An n-dimensional generalized map (n-G-map) allows to represent the topology
of n-dimensional objects. For example a 3-G-map can represent the topology of



a 3D image. An n-G-map is a set of abstract elements, called darts, together
with n involutions1 defined on these darts, each involution αi representing an
adjacency relation between i-dimensional cells (c.f. figure 1-a and definition in
[14]).

The different cells of an image such that pointel, linel, surfel and voxel (or in
general vertex, edge, face and volume corresponding to 0, 1, 2, and 3-dimensional
cells) are implicitly represented as subset of darts by using the orbit notion2.
Intuitively, an orbit < f1, . . . fk > (d) is the set of darts that we can reach by a
breath first search algorithm starting from d and using any application fi or f−1i .
Each i-cell is defined by a particular orbit in n-G-maps, using all the involutions
except αi (see [14] for definition of i-cells).

The degree of an i-cell is the number of distinct (i+ 1)-cells incident to this
cell. For example, the degree of a vertex is the number of edges incident to it.
The local degree of an i-cell c is similar to the degree but computed locally to c
without to run through the (i+1)-cells incident to c. So if an incident (i+1)-cell
is incident to c twice, it is considered as two (i+ 1)-cells when we compute the
local degree of c.

The operation of cell removal (defined in [15]) removes simultaneously differ-
ent cells of same dimension in an n-G-map. These cells can be removed if they
respect two preconditions: they have to be disjoint, and their local degree is two.
For removing an i-cell c, we delete the darts which form this cell and for each
surviving neighbor dart of c, we redefine the involution αi (see figure 1-b) in
order to jump over the removed cell.

A pyramid of n-G-maps (or n-G-map pyramid) is a hierarchical data struc-
ture composed of several n-G-map, where each map is a reduction deduced from
the previous map (cf. definition in [12]). In the particular case of a region growing
segmentation method, each n-G-map is deduced from this one of the previous
level by applying the general operation of cells removal. The choice of cells to
remove depends on the application and is the result of an external process. Fig-
ure 1-a illustrates an example of a 3-G-map pyramid composed of 4 levels. An
interesting property of this pyramid is a one to one mapping exists between the
surviving darts of a level (the darts which are not marked to remove) and the
darts of the following level.

With an n-G-map pyramid it is possible to represent topological and geomet-
rical information by adding attributes on cells such that coordinates of vertices,
or colors of regions, . . . Then, it is necessary to be able to retrieve information
generally kept in the initial level.

The notion of generalized cell (particular case of generalized orbit defined
in [13]) allows to retrieve the set of the i-cells of a level which have had an
incidence over the formation of an i-cell c given at an upper level. This set of
i-cells is composed of (see figure 1-c):

1 An involution f on a finite set S is a one to one mapping from S onto S such that
f = f−1.

2 Let {Π0, . . . , Πn} be a set of permutations on D. The orbit of an element d related
to this set of permutations is < Π0, . . . , Πn > (d) = {Φ(d), Φ ∈< Π0, . . . , Πn >},
where < Π0, . . . , Πn > denotes the group of permutations generated by Π0, . . . , Πn.
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Fig. 1. (a) Example of a 3-G-map pyramid composed of four levels (level 0 at the bot-
tom to level 3). At each level darts are represented by black segments. In this pyramid,
level 0 is composed of 2 volumes, level 1 is obtained by removing the face between the
two volumes, level 2 is obtained by removing edges e1, e2, e3 and e4, and level 3 is
obtained by removing degree two vertices v1, v2, v3 and v4. (b) Edges incident to d1
and d2 are adjacent and so linked by α1 in level 2. This link is deduced from thus of
level 1 which allow to go from d1 to d2 by jumping removed edge e3. This principle
is recursive. (c) Generalized face Cg(2,0,3)(d) (resp. Cg(2,1,3)(d) and Cg(2,2,3)(d)) cor-
responding to the grey face incident to dart d at level 3 corresponds to the set of grey
faces at levels 0 (resp.1 and 2).

– i-cells which have merged into c by removing incident (i− 1)-cells;
– i-cells incident to these (i− 1)-cells, which have been removed.

We note Cg(i,l′,l)(d) the generalized i-cell at level l′ that corresponds to the i-cell
incident to dart d at level l. This generalized cell is an union of i-cells at level l′.

3 Presentation of the pyramid

3.1 Choice of the structure

In this work, we use a pyramid of 3-G-maps in order to realize a multi-level
segmentation of a 3D image. Indeed this structure have several advantages.

First, n-G-maps are defined for all dimension n of the space, their definition
is homogeneous and so the operations defined above them are generic (in partic-
ular cell removals). It allows to represent all the cells of an image and not only
the regions and their boundaries. Moreover, adjacency, incidence and inclusion
relations are represented too. So it is possible to compute efficiently topologi-
cal features in order to realize, for example, a segmentation with a topological
criterion.



Second, a pyramidal structure allows to keep in memory different segmenta-
tion levels of a same image and so to work at the best level according to each
operation. Moreover, in such a structure the levels are linked between them, and
this can be useful in order to work simultaneously at different levels or to retrieve
for example the set of regions of a fine segmentation which have been merged
into a region of a coarse segmentation.

In order to define efficient processings and to facilitate the retrieval of in-
formation in the pyramid, it is important to simplify each segmentation level.
This type of simplification is often used in 2D with dual graph pyramids [16]
and combinatorial pyramids [17]. In order to add a new segmentation level in
the pyramid, we propose to use three different steps:

– first, the merge of similar adjacent regions of the previous level. This is
realized by removing the faces which are between them;

– second, a first simplification of the boundary of each region by merging the
adjacent faces incident to two same regions. This is achieved by removing
the edges which separate such faces;

– third, the second simplification of the boundary of each region by merging
the adjacent edges incident to two same faces. This is achieved by removing
the vertices separating these edges.

In the pyramid, these three steps are applied successively. So in order to
represent a new segmentation level, three pyramid levels are constructed and in
the following, we denote level 0, 1, 2 (mod 3) the levels of the pyramid obtained
by applying respectively these three steps.

3.2 Construction of the pyramid

The construction of the 3-G-map representing a new segmentation level of the
image is achieved by using the operation of cell removal. The merge of two similar
adjacent regions is realized by removing the face which is in-between them. The
two steps of boundary simplification, the merge of faces and edges respectively
separating two same regions and two same faces are achieved by removing edges
and vertices.

Each new level is added to the pyramid by applying a removal kernel based
on the following principle:

– first, the cells to remove are marked. The choice of these cells depends on
the level we want to add. For example, in order to construct a level 0
(mod 3), we mark faces which separate two regions homogeneous according
to a criterion;

– second, the new G-map is constructed by copying each surviving dart of the
previous level and by linking them by taking into account disappeared darts.

For all the levels, the method used in order to add a new level is the same.
The unique difference which exists between the levels concerns the criterion used
to mark the cells.



Marking faces to remove Two adjacent regions have to be merged if their
union is homogeneous according to a criterion. In our application we measure
the homogeneity of a region R with the squared error. The squared error EQ of
a region R corresponds to the sum of squared distance of each grey level to the
mean grey level ν of R. This criterion can be formulated with moments of order
zero, one and two of a region:

EQ(R) = M2(R)−M0(R)ν(R)2

where M0(R) is the number of voxels contained in R, M1(R) is the sum of
voxel grey levels of R, M2(R) is the sum of squared voxel grey levels of R,

and ν(R) = M1(R)
M0(R) . By considering this second formula, the squared error of a

region resulting from the merge of regions can be determined efficiently since
the moments of a region can be computed incrementally:

∀i ∈ {0, 1, 2},Mi(R1 ∪R2) = Mi(R1) +Mi(R2).

So, in order to know if two regions have to be merged it is enough to compute
the square error of their union and to compare it with a threshold T fixed by the
user or computed. If the squared error of the union of two regions is inferior to
threshold T , then this union is homogeneous and the two regions can be merged,
otherwise, the union is non-homogeneous and the two regions cannot be merged.

In order to obtain segmentation levels more and more coarse, the threshold
have to increase with the levels (T l > T l−1). If the user does not change it, it is
possible to compute a new threshold (for example T l = T l−1 ∗ l or T l = (T l−1)2

(if T l−1 > 1) with l the level we want to add).
In order to merge all the homogeneous regions, the algorithm scans twice the

3-G-map:

– it considers each face of the G-map and marks it to remove if it separates
two similar regions according to the homogeneity criterion;

– it considers each face non marked and marks it if it separates two regions
which will be merged in the next level. This step is necessary to avoid inner
faces (i.e. faces inside a region).

Face removal can leads to volume disconnection and so the lost of inclusion
relations In order to solve this problem we have chosen to add to the G-map an
inclusion tree representing this inclusion relations (see [18,10] for more details on
disconnection and possible solutions). Note that the inclusion tree not allowed
to represent the interlacing information, but this is a well known problem for
combinatorial structures.

Marking edges to remove In the first step of boundary simplification, two
faces separating two same regions have to be merged. This is realized by removing
the edge separating them. This type of edge is characterized by its local degree
equal to two.

Edges removal can leads to face disconnection and object disappearance (for
example in figure 2-c the removal of edge e3 leads to a face disconnection, and the



removal of edge e5 remove the representation of the cube). A way to solve this
problem is to not allow to mark an edge if its removal leads to a disconnection
or a disappearance.

Edges are marked by using algorithm 1. Each edge is considered successively
and marked if:

– its local degree is two;
– its removing not leads to disappearance.
– its removing not leads to disconnection;

The two first points are realized by a direct test (achieved in O(1)), and the third
point is realized by running through an orbit (coast O(f) with f the number of
dart of the face). Note that this last test can be optimized by using a union-find
tree.

Algorithm 1: Edge marking.

Input: G: a 3-G-map.
Output: G in which edges to remove are marked.
e← an edge of G ;
while e 6= null do

// processing of edge e
if the local degree of e is 2 then

if the removing of e leads neither disconnection nor disappearance then
mark e to remove ;
foreach vertex v incident to e do

if it exists only one non marked edge e′ incident to v then
add e′ in list edge to treat ;

// choice of the next edge to treat
if list edge to treat is not empty then

e← the first of list edge to treat ;

else e← an edge of G not yet treated ;

When an edge is marked to remove, the algorithm reconsiders eventually
incident edges. Let we take the example of figure 2 where we want to simplify
the boundary of the region represented by this cube. If we consider edge e3 before
e4, we cannot mark it since its removal leads to a face disconnection. Then, when
we consider e4, it is marked to remove, and we can see that edge e3 can now be
removed without leads to face disconnection. This is the reason why e3 needs
now to be reconsidered by the algorithm. Note that this case occurs only when
the marked edge is adjacent to a unique non marked edge. To solve this case in
algorithm 1, we just test both extremities of current edge after it was marked to
remove, and push the incident edges in a list of edges to reconsider when they
are only the unique non marked edge. Note that an edge can be treated at most
twice since an edge yet treated can be reconsidered only when it becomes the
unique edge incident to a vertex.
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Fig. 2. Example of boundary simplification for a cube. (a) The initial 3-G-map rep-
resenting a cube with a boundary composed of six faces. (b) The 3-G-map obtained
if we remove local degree two edges e1, e6, e7, e8 and e9 from the G-map of (a). (c)
The 3-G-map obtained if we remove edge e4 from the G-map of (b). (d) The 3-G-map
obtained after simplification of the boundary. This representation is composed of two
vertices, one edge and one face.

Marking vertices to remove In the second step of boundary simplification,
two edges separating two same faces have to be merged. This is realized by
removing the vertex which separates them, that is to say removing a degree two
vertex.

In this step it is important to test the degree and not the local degree like
for edges since the removal of a degree two vertex does not lead to topological
modification while the removal of a local degree two vertex can lead to the
disappearance of the object (in the case where the vertex is only incident to a
loop). Note that the vertex removal cannot leads to a disconnection. This step
is achieved directly without problem. Each vertex is considered successively and
marked to remove if its degree is two.

3.3 The first level

The whole pyramid is built starting from a first level, and thus the question
concerning the definition of this first level is important. There are mainly two
possibilities:

– to represent each voxels of the image,
– to represent a fine segmentation of this image.

Note that, in the first case, the best adapted structure in order to represent a
regular subdivision seems to be a matrix. For our application, we have chosen the
second possibility since the initial image is not the reality but a discretization
of this one, and so it can be contain noise. Moreover, in image analysis it is
common to use a pre-segmentation before to realize treatments.

To compute the first segmentation starting from the image, we have used
here a semi-supervised classification based under an histogram analysis, but any
method can be used. This first level is build in two scans of the image:

– a first scan, in order to construct the histogram, and then the classes,
– a second scan, in order to construct incrementally the 3-G-map of the first

pyramid level. In this step, the voxels are added one by one to the G-map and
merged with these neighbor voxels if they are similar and yet constructed.



After to have constructed this first pyramid level, the construction of the
next levels follows the principle explained before: add both simplification level
and eventually other segmentation levels until obtain the wanted result (or an
image composed of a unique region).

4 Retrieving regions and inter-region elements

When we keep in memory different segmentation levels of a same image, we
often want to work simultaneously at different levels, or we want to run through
a same object at different levels. For a given cell c at a level, two types of
informations are necessary to retrieve: the cells of a lower level which have been
merged into c, and the inter-voxels element which represent c in the image. With
these information, we are for example able to:

– modify the segmentation of a part of the image (at a given level) without
reconstruct all the level. For that we modify a given region and propagate
the modifications in all the pyramid but only for concerned regions;

– compute geometric criteria, for example characteristics of face curvature by
using the surfels which compose it.

The notions of cells and generalized cell defined in an n-G-map pyramid allow
to retrieve these information.

4.1 Retrieve the cells

Given a cell c at a particular level l, we want to retrieve all the cells in a lower
level that are merged into c in the higher levels.

Volumes In order to retrieve the set of volumes at a level which have been
merged into a volume at a given level, the idea is to use generalized volumes.
Where there is no disconnection, the result is directly given by the generalized
volume computed between the two considered levels. Otherwise, we need to make
the union of generalized volumes for each boundary of each volume obtained
by the initial generalized volume (each voolume is represented by an external
boundary and eventually several internal boundaries, one for each cavity).

Algorithm 2 gives the set of volumes of a given level which have been merged
into a volume V at an upper level. In a first time, it computes the generalized
volume representing V at the lower level. The obtained set corresponds to the
external boundary of V. In a second time, the generalized volumes are computed
for all the internal boundaries.

Faces For a given face F , we want to retrieve the faces of a lower level which
have been merged into F . By using generalized faces, we obtain by definition,
the faces which have took a part in the formation of F : the faces which have
been merged by removing edges and the faces incident to these edges which



Algorithm 2: Retrieve the volumes(d, b, b′).

Input: d: a dart of a volume V ;
l: the level containing V ;
l′: the level where we want to retrieve the volumes merged into V .

Output: Res: the set of volumes of level l′ which have been merged in order to
form volume V at level b ;

Res← the volumes incident to Cg(3,l′,l)(d) ;
foreach volume V ′ ∈ Res do

foreach internal boundary B of V ′ do
d′′ ← a dart of B ;
Res← Res ∪ OG(<0,1,2>,l,l′)(d

′′) ;

return Res ;

d d d

a b c

Fig. 3. Comparison between generalized face of a face and faces merged into this face.
(a) Level 3 of the pyramid of figure 1. The grey face is face F . (b) Level 0 of the
pyramid where grey faces corespond to Cg(2,0,3)(d). (c) Level 0 of the pyramid where
grey faces corresponds to these ones merged into face F .

have been removed. As we can see in figure 3, this does not give imediately the
wanted result since we obtain too much faces. To solve this problem, we need to
progressively go down in the pyramid and add different cells depending on the
current level. The principle of algorithm 3 which computes the set of faces of a
given level l′ which have been merged into the face F incident to dart d at level
l is the following:

– if l ≡ 1 or 2 (mod 3), the set of faces which have been merged at the previous
level in order to form F is the set of faces given by Cg(2,b−1,b)(d). Indeed, the
unique operations used to construct the levels 1 or 2 (mod 3) are the edges
and vertices removal but not faces removal. So by definition, the generalized
face gives us directly the set of faces which have been merged into face F ;

– otherwise, l ≡ 0 (mod 3). In this case, we must not use the generalized face
since this level is obtained from the previous one by removing faces. Since
between both levels, only faces have disappeared, the surviving faces not
have been modified. Thus we obtain the set of faces corresponding to F ,
we only use the existing links between the darts of F and the darts of the
previous level in order to directly obtain the face at the previous level.

The algorithm stops when the current level is l′ and in this case the face incident
to dart d is directly given by the face orbit.



Algorithm 3: Retrieve faces(d, l, l′).

Input: d: a dart of a face F ;
l: the level containing F ;
l′: the level where we retrieve the faces merged into F .

Output: Res: the set of faces of level b′ which have been merged in order to
form face F at level l.

if l = l′ then return < 0, 1, 3 > (d);
if l ≡ 1 or 2 (mod 3) then

F ′ = set of faces incident to Cg(2,l−1,l)(d) ;

else F ′ ← {the face at level (l − 1) which corresponds to face F} ;
foreach face f ′ ∈ F ′ do

d′ ← a dart of f ′ ;
Res← Res ∪ Retrieve faces(d′, l − 1, l′) ;

return Res ;

Edges In order to retrieve the set of edges of a given level which have been
merged into an edge of an upper level, we use exactly the same principle than
for faces. We use the generalized edge when the current level is 0 or 2 (mod 3)
since the unique operation used is the face removal or vertex removal, and we
use the links existing in the pyramid level 1 (mod 3) in order to directly retrieve
the corresponding edge in the previous level.

Vertices Since, vertices cannot be merged in G-map pyramids, to retrieve the
set of vertices of a given level l′ which have been merged into a vertex of an upper
level l, comes down to take the unique vertex V ′ at level l′ which corresponds to
vertex V at level l. In order to do that we only use the bijective links allowing to
go down directly to level l′ and then use the classical orbit notion in this level.

4.2 Retrieve the inter-voxel elements

In order to retrieve the voxels of the image which have been merged into a given
region, or to retrieve the inter-voxel elements of an image which represent the
boundary of a given region, we use the previous algorithms.

To retrieve the surfels, linels and pointels which respectively represent the
faces, edges and vertices of the boundary of a region, it is enough to directly
apply algorithms of the previous section between the level l of the region and
level 0. Indeed surfels, linels and pointels are directly represented in our level 0
G-map.

To retrieve the voxels which have been merged into a given region R, we
need to:

– retrieve the regions of level 0 which have been merged into R by using Algo. 2,
– retrieve the surfels composing these regions by using Algo. 3,
– then to use a classical flood-fill algorithm in order to reconstruct the voxels.



Retrieving voxels is more complex than for inter-voxels elements since voxels are
not represented explicitly in the first pyramid level.

5 Conclusion and Perspectives

In this paper, we have presented the construction of a 3-G-map pyramid in
the framework of multi-level segmentation of a 3D grey level image. Each new
segmentation level is deduced from the previous level in the pyramid by applying
a particular removal kernel which uses a criterion based on the squared error. In
order to facilitate the information retrieval, this level is simplified, and thus each
new segmentation is represented by three successive levels in the pyramid. The
first level is the new segmentation. The second level is obtained by removing
all the degree two edges, and the third level is obtained by removing all the
degree two vertices. Additional constraints are added in order to guaranty that
no adjacency or incidence relation are lost during the simplification.

Then, we have shown how information can be retrieved in such a pyramid.
We have given algorithms that allow to retrieve, given a region of a particular
level, any cells that composed this region in a lower level. The methods used
in these algorithms use the generalized orbit notion [13] plus the links between
successive levels of the pyramid. When we are able to retrieve any cells between
any both levels, it is then easy to retrieve inter-voxels elements since it is just a
particular case where the base level is the first level of the pyramid.

Now, we want to study if it is possible to optimize our construction in order
to keep only one pyramid level for each segmentation level. This construction is
theoretically possible since the operation which remove simultaneously cells of
different dimension is defined in [15]. But we need to study how the generalized
orbits can be used in such a case. Moreover, we are working to conceive operations
for handling this pyramid. A first interesting operation consists to locally modify
a region in a given level without to re-compute all the levels.
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