

EXPERIMENTAL BENCH DESIGN FOR HEAT PUMP USING CO2 BASED MIXTURES

Paul Bouteiller, Pascal Tobaly, Marie-France Terrier, Cyril Toublanc

▶ To cite this version:

Paul Bouteiller, Pascal Tobaly, Marie-France Terrier, Cyril Toublanc. EXPERIMENTAL BENCH DESIGN FOR HEAT PUMP USING CO2 BASED MIXTURES. 24th IIR International Congress of Refrigeration:, Aug 2015, Yokohama, Japan. , Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015., paper n°43, Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015., paper n°43, Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015. 10.18462/iir.icr.2015.0043. hal-01511693

HAL Id: hal-01511693 https://hal.science/hal-01511693

Submitted on 21 Apr 2017 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Experimental bench design for heat pump using CO₂ based refrigerants mixtures Paul BOUTEILLER, Pascal TOBALY, Marie-France TERRIER, Cyril TOUBLANC CNAM Laboratory CMGPCE – 292 rue Saint Martin, 75003 Paris – FRANCE

CO_2 based CO_{2} Additives mixture Alcohols **Esters A+** Light $C_x H_y$...

General approach

P/bar

Design of an experimental heat pump that is able to use pseudo- Addition of components to CO₂ moves equilibrium lines: condensation for central heating (secondary fluid ΔT about 5K) and transcritical cycle for domestic hot water production (ΔT about 50K).

Critical lines for CO₂ + ethanol mixtures (data from Galicia-Luna and Ortega Rodriguez, 2000) and CO₂ + propane mixtures (data from Niesen and Rainwater, 1990)

Addition of volatile less components induce temperature glides in the evaporator. Such glides might result in having liquid left in the evaporator. That liquid needs to be treated separately and reinserted on the high pressure side, or vaporized using an internal heat exchanger.

[kJ/kg)]

Example of a potential Ph diagram designed for two working modes.

			0.0	0.0	2
	Mole fractions of CO ₂				
1: : -1					. •

Vapor liquid equilibria for CO2 + ethanol mixtures (Secuianu et Al., 2008)

Experimental bench / measurements

Performances evaluations				
Temperatures	2 Mass flow rates			
6 Pressures	Electric power			

 \succ Coefficient of performance (COP) measured, to compare efficiency of the heat pump with different mixtures.

Real-time measurement of circulating fluid composition Pressure, temperature NIR spectrum acquisition Known mixtures chromatograms T, density, mass fractions

Conclusion and perspectives

Assembly of the bench has been carried out, but the first tests have lead to modifications that are about to be implemented. Now, the spectrum database for composition monitoring needs to be done along with the first mixture tests. Evaluation of the mixtures will be carried out until May 2016.

References

•(1) Meunier F, Terrier M F, Toublanc C, 2005, Etude expérimentale de mélanges de fluides frigorigènes à base de dioxyde de carbone pour la climatisation automobile, rapport final concernant le contrat passé entre l'ADEME et le CNAM, convention n°02.66.021 (Mars 2005), Paris, France. • (2) Kim J H, Cho J M, Kim M S, 2008, Cooling performance of several CO2/propane mixtures and glide matching with secondary heat transfer fluid, Int. J. Refrig. 31: 800-806. • (3) Warmusa K, Filzmoser P. 2012, Introduction to multivariate statistical analysis in chemometrics, CRC Press • (4) Secuianu C, Feroiu V, Geana D. 2008, Phase behavior for carbon dioxide+ethanol system, Journal of Supercritical Fluids (2008): 109-116

