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Modeling deformable bodies using discrete
systems with centroid-based propagating
interaction: fracture and crack evolution

Alessandro Della Corte, Antonio Battista, Ivan Giorgio and Francesco dell’Isola

Abstract In this paper we use a simple discrete system in order to model deforma-
tion and fracture within the same theoretical and numerical framework. The model
displays a rich behavior, accounting for different fracture phenomena, and in par-
ticular for crack formation and growth. A comparison with standard Finite Element
simulations and with the basic Griffith theory of fracture is provided. Moreover, an
‘almost steady’ state, i.e. a long apparent equilibrium followed by an abrupt crack
growth, is obtained by suitably parameterizing the system. The model can be easily
generalized to higher order interactions corresponding, in the homogenized limit, to
higher gradient continuum theories.

1 Introduction

1.1 Motivation and basic ideas

Modeling fracture in an effective way has always been a major challenge for solid
mechanics. Many sophisticated theoretical and numerical tools have been devel-
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oped, and considerable progresses have been obtained in recent years in the frame-
work of both classical and generalized continuum models (see [1, 2, 3, 4, 5]). How-
ever, the richness of the phenomenology is leading to theoretical formulations that
are becoming increasingly complex and may be computationally expensive and/or
involve a stochastic approach in order to capture the peculiar characteristics dis-
played by real fractures. The idea behind the present work is to explore a very sim-
ple discrete system characterized by a centroid-based propagating interaction, and
evolving through actual configurations connected by virtual (i.e., not visible) ones;
the system, in its basic version and without including fracture, was introduced in
[6], while some preliminary results on fracture have been shown in [7]. The model
presents some similarities with Molecular Dynamics (MD) but, as it will be shown,
its specific features cannot be recovered within standard MD models.
The potential advantages of the proposed approach are mainly linked to the simplic-
ity of the model. First of all this results in a significantly low computational cost;
moreover, deformation and fracture are covered here within the same simple model;
finally as we will see, more general continuum theories can be easily numerically
investigated by means of slight modifications of the algorithm. Since generalized
continua are one of the most promising and rapidly evolving areas in modern me-
chanics, this last feature of the proposed model may be particularly appealing (for a
theoretical coverage on higher gradient theories, see e.g.: [8, 9, 10, 11], and specif-
ically for an approach combining higher gradient theories with lattice models, see
[12]). A closely related topic is that of micromorphic/microstructured continua (see
[13, 14, 15, 16] for classical references and [17, 18, 19, 20, 21, 22] for interesting
applications), which can be viewed as a generalization of higher gradient theories
and may benefit as well from the development of new discrete approaches. What
is making these subjects critical, in the opinion of the authors, is the advancements
in manufacturing possibilities in the last years, as 3D printing and other computer-
aided manufacturing techniques, which are resulting in new metamaterials requir-
ing a suitable theoretical description (and related numerical techniques) for objects
whose richness at the micro-scale cannot be captured by classical continuum models
(see e.g.: [23] for a review of recent results).
Discrete systems are, of course, very frequently studied in order to address the
aforementioned problems. In particular, Molecular Dynamics (MD) is by now
a very large research area with specific methods and very sound results (see
e.g.:[24, 25, 26, 27]). The model presented herein, while sharing certain basic fea-
tures with MD ones, is characterized by some relevant differences in the approach.
MD is indeed based on the numerical study of systems constituted by a very large
number N of elements. The numerical computation of the trajectories of particles
in the ordinary 6N-dimensional phase space of positions and momenta employs
the classical mechanics laws of motion (for a sample of the numerical method the
reader can see: [28, 29, 30]). The system investigated in the present paper, on the
other hand, does not consider any explicit equation of motion. Instead, in order to
simplify the model to the maximum, the elements of our discrete system move ac-
cording to an interaction law which:

• is purely geometrically based;
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• propagates along square frames centered in special elements (the ‘leaders’ of the
system);

• drives the elements through virtual configurations which are needed for the com-
putation of the evolution, but are not visible in the final output.

An important class of discrete systems for continuous deformable bodies, and in
fact a particular case of MD models, is given by masses-springs or beads-springs
models, which can be characterized in different ways by changing the geometry
of the springs and their type (extensional, torsional). The mass-spring systems are
common tools in Computer Graphics for the simulation of soft bodies[31, 32].
There are several relevant differences between these systems and the proposed
model. The two probably most important ones are the following:

i. In case of mass-spring system, a uniform motion of the leaders results in a global
motion r(t) = r∗(t) + r∗∗(t), with r∗∗(t) being a periodic function and r∗(t) a
transient term such that ||r∗(t)|| → 0 as t → ∞ [33]. As we will see, no such
decomposition makes sense in case of the proposed system. For instance, it can
be proven that a uniform motion imposed to a leader results, asymptotically, in a
rigid motion of the system.

ii. It can also be proven that uniformly accelerated motion of a set of leaders results
in our case in a disaggregation of the system (i.e. there is no R ∈ R such that for
every t ∈ [0,∞[ the system is contained in BR(x,y) for some x,y ∈ R2).

The characteristics of our model have, as we will see, several advantages, but at
the same time make harder a standard variational formulation. As we will show,
energy-based investigations are possible in the discrete context here considered, but
the identification of an explicit Lagrangian whose minimization leads to the exact
dynamics displayed by the discrete system is far from trivial, and will be one of the
main objectives of future investigations. One of the main checks we will perform
will concern the systematyc comparison with Finite Element simulations. Nowadays
FE analysis is indeed probably the most reliable tool for the numerical simulation
of the behavior of deformable bodies, also thanks to the possibility of adapting it to
the features of the problem studied. Isogeometric analysis (see for instance [34, 35,
36, 37]), in particular, can be especially convenient for shape optimization problems
that easily arise in the study of multi-agent systems moving in unbounded domains
and starting form arbitrary configurations, as is the case in our context.

1.2 A summary of the algorithm and of the formalism employed

In this section, we will briefly describe the model studied in the present paper. The
algorithm and the formalism will be summarized in their most relevant features; the
reader can find a fully detailed description in [6].
Let us consider a discrete system S constituted by a finite number of points which
are characterized by their position in the real plane; we will call them the ‘elements’
of S. The elements are set, in the initial configuration C0, in the nodes of a squared
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grid sized L×L. We consider a set of discrete time steps Tm = {0, t1, ..., tm, ...} and
an orthonormal reference system with axes parallel to the sides of the system, the
unit length being equal to the cell side in C0. Each Lagrangian element (i, j) of S,
placed in (x1

i j,x
2
i j)(tm), has a set of neighbors

Nn(ī, j̄) :=
{
(i, j) ∈C0 : ρ[(ī, j̄),(i, j)] = n

}
where ρ is the R2-Chebyshev distance, i.e. the distance in R2 given by ρ((x1,x2),(y1,y2))=
max

{
|x1− y1|, |x2− y2|

}
. With this definition, selecting n = 1 and n = 2, we have

respectively the first and second neighbors as shown in Fig. 1.

Fig. 1 Graphical representation of neighbors: the first and second neighbors of the red element are
the ones respectively in yellow and green.

Let us select a leader element L whose actual position is defined by a prescribed
motion M : tm ∈Tm −→ (x1

ī j̄,x
2
ī j̄)(tm)∈R

2. We are now ready to describe the inter-
actions between the elements. We will consider virtual steps in between two actual
states, i.e. states that are invisible in the real displacements of the system but are
necessary for computing its evolution. Let us consider a configuration V t1

0 such that
the leader L is positioned in M (t1): this is defined as the first virtual configuration.
Then, recalling that by centroid of a set of points P1(x1

1, ...,x
1
n), ...,Pm(xm

1 , ...,x
m
n ) ∈

Rn one means the point P(∑m
i=1

xi
1

m ,∑n
i=1

xi
2

m , ...∑n
i=1

xi
n

m ), the next virtual configuration
V t1

1 will be defined as the on in which:

1. the leader L remains in V t1
0 ;

2. every one of its first neighbors N1(ī, j̄) moves to the centroid of its own first
neighbors in V t1

0 ;
3. all others elements remain in the position they had in V t1

0 .

Iterating and generalizing to the n-th virtual step, V t1
n will be the virtual configuration

in which:
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1. the leader L together with its first n−1-th neighbors are in the same position they
had in V t1

(n−1);
2. every one of the n-th neighbors of L has moved to the centroid of its own first

neighbors in V t1
(n−1);

3. all others elements are in the same position they had in V t1
(n−1).

We will get the actual configuration Ct1 when n equals the maximum Lagrangian
Chebyshev distance of the elements from the leader (see Fig. 2).

Fig. 2 Graphical representation of the virtual configurations. In red the elements which are already
in the position they will have in Ct1 .

It is easy to see that in the model so described edge effects will arise, since spon-
taneous shrinking will concern boundary elements because of the non-symmetric
placement of their neighbors. In order to overcome this problem several standard
possibilities can be considered. Choosing probably the most simple one, we intro-
duce a ‘fictitious’ boundary constituted by an external frame of elements which sim-
ply follow, at a fixed distance and always in the same direction, their closest ‘true’
element. The fictitious elements move only in a specific virtual time step which fol-
lows the other ones. In this way, every true element will have a complete set of 8
neighbors (see Fig. 3 for a graphical representation. An explicit description of the
motion of the fictitious elements is in [6]). The distance at which the fictitious ele-
ments are positioned represents a key characteristic length, determining the lattice
step of the system in the equilibrium configuration. In the following numerical sim-
ulations, unless differently specified, this length is equal to 1 length unit for all the
fictitious elements.
The previous algorithm can be easily generalized to the case of second and, in gen-
eral, n-th neighbors interaction, by simply computing the centroid of sets of points
having maximum Lagrangian Chebyshev distance of 2 (in general, n). In this case,
additional sets of fictitious elements have also to be introduced in order to have, for
every element of the system, a full set of neighbors. In [6] the system is also gen-
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Fig. 3 Graphical representation of fictitious elements. Every fictitious element (empty red dots)
moves in rigid translation with the closest true one (blue dots); every vertex true element carries in
rigid translation the vertex fictitious one and also its two fictitious neighbors.

eralized to the case of multiple leaders, which will be used throughout the present
paper.
The geometric centroid of a given set of points P1, ...,Pn minimizes the sum of the
squared distances, i.e. the function:

f (P) =
n

∑
i=1
||Pi−P||2 (1)

It is therefore possible to see that for a first-(second-)neighbor interaction, a natural
deformation energy density can be written as a function of first-(second-)order finite
differences of the placement χ for a given point, and therefore, as the step length
goes to zero, a second gradient homogenized energy E [∇χ(P),∇∇χ(P)] can be
conjectured for second neighbors interaction systems (for more details see again
[6]).
The algorithm described before has much in common with theoretical models con-
ceived for describing collective behaviors (e.g. the evolution of swarms, flocks etc.).
Such models have already been used for mechanical investigations, in cases in which
the potential energy of a mechanical system is minimal in correspondence with sta-
ble equilibrium positions of a swarm system [38, 39]. However, in the present work
we prefer not to use the name ‘swarm’ system, since one usually associates that
name, and in particular the expression Particle Swarm Optimization (PSO), to cases
in which each particle of the swarm represents a potential solution of a given (a
priori formulated) optimization problem [40, 41, 42]. Our aim, in fact, is not the
study of numerical tools for the solution of well defined optimization problems, but
rather the development of a new model directly accounting for the description of
the phenomenology; other features distinguishing the proposed discrete model from
PSO ones is the presence of leaders (whereas PSO models are usually anarchic) and
the absence of any randomness.
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It should also be pointed out that some basic features of our model (in particular the
Lagrangian character of the neighborhood) are quite different from standard swarm
robotic modeling. In modeling swarms, flocks and schools dynamics, a topologi-
cal concept of neighborhood (rather than a metric one) is emerging as one of the
most promising in order to account for the observed phenomenology (see [43, 44]).
The model proposed in the present paper mixes these two ideas, since it is based
on a concept of neighborhood which depends on the topological distance between
the elements, while the way in which the interaction works depends on the met-
ric (Euclidean) distance in the actual configuration. Finally, another feature of the
proposed model which is often met in swarm modeling is that the elements, due
to the presence of the fictitious boundary, do not behave all in the same way; this
has been proposed as one of the possible discriminating factors between crowds
and swarms/flocks/schools models (see e.g. [45, 46]), but also in this case it can be
pointed out that the property of being (or not) a boundary element, in the model
considered herein, is Lagrangian, i.e. it is preserved during the time evolution of the
system.

1.3 Short summary of previous numerical results

We summarize in this section the numerical results obtained in [6]. With the aim
of comparing the discrete models characterized by (respectively) first and second
neighbor interaction (FNI and SNI) with first and second gradient continuum theo-
ries, some simple cases were investigated.
Two squared systems FNI and SNI were considered, in which the leaders L, situ-
ated in a vertex of the square, were pulled outside (or pushed inside) in the diagonal
direction at 45 degrees with respect to the sides of the system in C∗ with a uni-
form motion. The numerical results obtained were compared with Finite Element
simulations of a 2D continuous squared body, at the vertex of which a prescribed
displacement was imposed. Two cases were considered: a standard energy (for the
first gradient case) and the Mindlin general form [15] for the second gradient case.
In Fig. 4 we can appreciate one of the similarities between the continuum models
and the discrete system here described (for other features see [6]). As we can see,
in the FNI/first gradient continuum cases a loss of boundary convexity around the
vertex is observed, whereas this behavior is not present in SNI/second gradient con-
tinuum cases; this is highlighted in Fig. 5. Releasing the vertex at a certain time step,
i.e. letting the system evolve while the leader is stopped, one observes the return to
the original configuration, in agreement with the behavior expected in elastically
deformed bodies. As can be seen in Fig. 6, the return to the initial configuration is
not instantaneous, which implies the presence of inertia effects even if no explicit
variable accounting for the elements mass was introduced. It is possible to prove
that actually we have an asymptotic convergence, which means that some viscous
effect has to be considered if one want to identify the Lagrangian system exactly
corresponding to the evolution of the proposed system ([6]).
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(a) (b)

(c) (d)

Fig. 4 A comparison between FE simulation of first (a) or second (b) gradient continua and first
(c) or second (d) neighbors interaction with a similar external action.

(a) (b)

Fig. 5 Zoom on the loss of convexity in first gradient (a) and first neighbors interaction (b) cases.
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(h) t = 700

Fig. 6 Imposing a stop to the leader (at t = 150) the system tends to return to the original configu-
ration.

These results (among others) suggest that the evolution of the presented discrete
system resembles that of elastic deformable bodies, and that varying the order of the
interaction, specific characteristics of higher gradient theories are also recovered. In
the following we will see a more direct comparison with 2D continuum simulations
performed with COMSOL.
Finally, we want to devote a few words to the nonlinear character of the evolution
of the system. In the following sections, a fracture algorithm (obviously entailing
nonlinearities) will be introduced, but even the basic form of the model as described
up to this point exhibits a nonlinear behavior. In Fig. 7, we compare two identical
systems in which different actions are imposed to one single leader. In the left panel,
a speed of 1 length units per unit time is imposed for a total of 10 time steps; in the
right panel, we imposed a speed of 0.001 length units per unit time for a total of
10000 time steps. As one can see, the resulting configurations are clearly different,
thus implying the nonlinearity with respect to the imposed external action.
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(a) (b)

Fig. 7 Nonlinearity of the system: in (a), a speed s = 1 length units per time step is imposed to
the leader for an interval I of 10 time steps; in (b), the s = 0.001 and I = 10000. The two resulting
configurations are different.

1.4 Further comparison with Finite Element simulations

In this section we want to directly compare the results of our discrete model with
the ones obtained by standard Finite Element simulations.
In Fig. 8 we show the superposition of:

• a simulation with an imposed external action consisting in pulling in opposite
directions two opposed vertexes of our system;

• a standard FE simulation (performed with COMSOL) in which a similar action
(imposed displacement) is applied on a squared 2D continuum.

For the continuous simulation, we considered both a classical Cauchy continuum
(left) and a second gradient one (right). In color map the modulus of the dis-
placement is shown. The corresponding discrete simulation involve first- (left) and
second-neighbors (right) interaction. As it can be seen, in both cases the shape of the
sample is accurately approximated by the discrete system, in the specific case em-
ploying only a very limited number of elements (12× 12 = 144 elements in total).
This means that our system produces reliable results with a very limited computa-
tional cost, at least with this kind of external action.

2 Spontaneous evolution and Discrete Energy Equivalent

The previously described algorithm can be adapted to the case of a spontaneously
evolving system, i.e. systems in which we do not impose a particular motion to any
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(a) (b)

Fig. 8 Superposition of the discrete system with a standard FE continuum simulation involving
first gradient/first-neighbors (left) and second gradient/second neighbors models (right).

of the elements. To do so, we start from an arbitrary initial configuration C0, in
which in general the elements do not lie in the centroid of their neighbors. We apply
the algorithm starting from a selected element P (which we will call the ‘pseudo-
leader’) and then proceeding through concentric square frames. The only difference
with the case of a ‘true’ leader is that the pseudo-leader P does not obey to an
imposed motion, but simply goes, in the first virtual step, in the centroid of its first
neighbors as all other elements do.
The observations made at the end of section 1.2 suggest the introduction of a quan-
tity E D(t), which we will call Discrete Energy Equivalent (DEE), defined on a geo-
metrical basis. The DEE will represent a measure of the deformation energy stored
in the actual configuration of the system in case of first neighbors interaction. Due
to the minimum property of the centroid above recalled (see Eq.(1)), and consider-
ing that an (Euclidean) distance equal to 1 or to

√
2 corresponds to the pairs of first

neighbors elements in the equilibrium configuration C∗, it is natural to define E D as
follows:

E D = ∑
S1

(dt −1)2 +∑
S2

(dt −
√

2)2

2
(2)

Here the sums are extended over all the pairs of first neighbors ‘true’ elements. The
sets S1 and S2 contain the pairs that in C∗ lie respectively orthogonally or diagonally
with respect to the sides. A unit length is subtracted from dt (

√
2 in case of diag-

onal pairs) because the step length is unitary; more precisely, because the fictitious
elements are at a fixed unitary distance from the true boundary. Since the sums have
the dimension of an area, a coefficient α having the dimension of a force unit over
a length unit has to be introduced to define the energy of the system: E = αE D.
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The first set of numerical simulations will concern the study of the DEE decay in
systems evolving without leaders, and since in our simulations E D(C0) 6= 0, C0 can
be seen as a pre-stressed configuration. A basic case, in which the center element is
selected as the pseudo-leader, is represented in Fig. 9. A sharper case in which the
initial configuration is more stressed is shown in Fig. 10. In both cases, the energy
decay is well interpolated by an exponential behavior; in Fig. 11 the interpolation of
the form eaxb

, with a≈−0.59 and b≈ 0.52 is shown. This behavior is well known
for several elastic systems in which viscous dissipation occurs in both linear and
nonlinear cases (see e.g. [47, 48, 49, 50]).
One may wonder whether the system always asymptotically converges to the same
limit configuration (i.e., the one with E D = 0) independently on the choice of the
pseudo-leader. This seems a rather natural request if the system is intended to model
the behavior of a deformable body. In the Appendix (see 4) we prove that in the 1D
case the answer is yes. In 2D, the conjecture that the asymptotic configuration is in-
dependent on the pseudo-leader choice remains more than reasonable, but the proof
is more difficult, since in this case it is not true anymore that the total discrete en-
ergy decreases in every virtual step. Numerical evidence of this somewhat surprising
statement is shown in Fig. 12, where one can observe that, after a first approximately
exponential phase, the energy increases slightly before its eventual decay.
We want now to perform some quantitative analysis in order to evaluate some mag-
nitudes concerning the evolution of our system on the basis of the DEE above de-
fined. Let us first consider a very simple case in which uniaxial motion is imposed
to a set of leaders constituted by the elements belonging to two opposite sides of
the system. In particular, the fictitious elements relative to the left side are treated
as leaders, as they are motionless by definition (from a mechanical point of view,
the side has an imposed displacement equal to zero). Moreover, we impose a mo-
tion to the elements belonging to the right side; the motion is uniform and directed
along the x axis up to a certain time ts, after which they stop. The system is then left
evolving until equilibrium is achieved. The result, with relative energy versus time
plotting, is shown in Fig. 13 (here and in all the following simulations, the leaders
are represented by red dots). Since our external action is an imposed motion, it is
not immediate to derive from it a discrete version of the applied uniaxial force σD.
We can however reasonably define it in various equivalent ways; for instance, we
can use the identity

(σD)
2A

2E
= E = αE D

where A is the area of the system at the equilibrium, E is Young’s modulus and α

the previously introduced constant. We will not lose generality by selecting the unit
for σD so as to have 2E = 1, and therefore we get (σD)2 = αE D

A . The numerical data
for A and E D give:

(σD)2 =
αE D

A
≈ 12.5α

382
≈ 0.03α (3)

Using the reasonable assumption that a certain imposed motion will approximately
correspond to the same σD if only small and local changes are considered in C∗, we
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(a) t = 1 (b) t = 30

(c) t = 60 (d) t = 100
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0.15

(e)

Fig. 9 (a-d): spontaneuos evolution of the system from a prestressed configuration; the pseu-
doleader is the central element. (e): time history of the Discrete Energy Equivalent
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(a) t = 1 (b) t = 30

(c) t = 60 (d) t = 100
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(e)

Fig. 10 (a-d): the same simulation of Fig. 9 with a more stressed initial configuration. (e): time
history of the Discrete Energy Equivalent
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Fig. 11 Exponential energy decay: in red it is represented the curve e−0,5912x0,5155
.

will employ the value now obtained in the simulations on the crack formation and
growth considered below.

3 Fracture and crack formation and evolution

3.1 Introduction of the fracture

In the proposed model, the fracture is intended as a loss of interaction between
neighboring elements. Specifically, when the Euclidean distance (evaluated in ac-
tual configurations) between two interacting elements overcomes a certain thresh-
old s f , the two elements do not interact anymore. Obviously, when this happens, the
computation of the centroid relative to the considered elements is ill defined, in the
same sense as intended for what concerns boundary elements, as seen in section 1.2.
We solve the problem in a similar way as done before. Indeed, we introduce for ev-
ery bond break a new pair of fictitious elements evolving in the same way as the
fictitious boundary elements introduced above, i.e. each of them following one of
the two elements whose bond has been broken. In this way, the two elements among
which the fracture occurred become boundary elements in the same sense as the
preexisting ones.
The fracture algorithm works as follows: we introduce a prescribed order in the n-th
neighbors of a given non-fictitious element starting, for example, from the neigh-
bors in the left upper corner of the frame square centered in the considered element
and proceeding clockwise. The labeling of neighbor elements allows the introduc-
tion of an adjacency matrix J, that in this case is a tensor of boolean variables Ji jk,
the first two indexes determining the particle (i, j) of the system, and the third one
k, ranging from 1 to 8 in FNI, identifying one of its neighbors. When the distance
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(a) t = 1 (b) t = 30

(c) t = 60 (d) t = 100
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(e)

Fig. 12 Spontaneous evolution starting from a severely prestressed configuration: the energy is not
a monotonically decreasing function.
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(a) t = 1 (b) t = 330

(c) t = 660 (d) t = 1000
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(e)

Fig. 13 Uniaxial imposed motion to the leaders. The leaders (solid red dots) have a uniform motion
parallel to the x axis and then are stopped at t = 180. An equilibrium configuration is reached
around t = 450. We use empty red dots to indicate that the fictitious elements relative to the left
side have an imposed null velocity, i.e. the left side has an imposed displacement equal to zero.

between two elements is larger than s f , the value of the corresponding element of
J is set to FALSE= 0 (otherwise it is TRUE= 1). When the centroid is computed,
each neighbor coordinate is multiplied by the relative element of J. Moreover, an-
other term is considered in the centroid computation, consisting in the coordinate
of fictitious elements, each multiplied by J̄ (where the bar indicates logical comple-
ment). It is clear that in this way, when the centroid is evaluated, a true or a fictitious
element enters the calculation according to the fact that the interaction is present or
broken. The irreversibility of the fracture, which is a desirable feature when model-
ing solid bodies, is verified since once an element of J is set to 0, it can not become
1 anymore.
Another degree of freedom of the model, concerning the fictitious elements appear-
ing after the fracture, naturally emerges form the described algorithm. Indeed, one
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can choose to place the new fictitious elements at a distance ρ f that does not cor-
respond to the lattice step in C∗ (more precisely, we should say that it would not
correspond to the fixed distance at which the fictitious boundary is from the true
elements. It is indeed this last distance that determines the lattice step at which the
system is in equilibrium). In this way, as we will see in the following, relevant fea-
tures of fracture phenomena can be modeled.

3.2 Basic fracture and crack evolution

A well known variational approach to the fracture was developed by Griffith in the
’20. From Griffith’s model (in 2D case), we have at the equilibrium:

ETOT = 2γa+
σ2

2E
A− σ2

2E
βa2 (4)

where γ represents the energy per unit line required to break atomic bonds, E the
Young Modulus, A the area of the sample, a is the crack length, σ the stress and β

an non-dimensional parameter accounting for the measure of the part of the surface
relaxing as a consequence of the crack opening. The most relevant qualitative aspect
of Griffith’s theory is that the dependence of the energy on the crack length forecasts
that below a critical value of a the system is stable, and a crack growth is possible
only providing additional energy to the system. If this critical value is reached, the
system becomes unstable and the crack evolves spontaneously. In the next groups of
simulations we selected two leaders belonging to the bottom side (red elements) and
imposed to them a uniform velocity, with components (0.03,0.03) and (−003,0.03)
respectively. The leaders were stopped at t = 80. In Fig. 14 we set the fracture
threshold s f = 1.17 length units; we can see that the crack keeps growing even after
the leaders have stopped, that means that the crack length is reaching the equilibrium
value for the given imposed action. The crack length equilibrium value is reached
around t = 160, after which the cracks remain stable while the system keeps relaxing
and releasing deformation energy.
In Fig. 15 the same simulation was performed with the fracture threshold set at
s f = 1.12. It can be seen that the crack growth does not stop and indeed goes up to
the complete split of the system, which is reached around t = 250. This means that
stopping the motion at t = 80 is sufficient for furnishing to the system the energy
needed to reach the length threshold after which the crack grows spontaneously.

3.3 Uniaxial external action

The previous results indicate that qualitative features of Griffith’s theory are recov-
ered through our discrete model. However, in order to be able to compare quan-
titatively our numerical results with Griffith’s theory, we need to apply a simpler
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(a) t = 1 (b) t = 80

(c) t = 160 (d) t = 240

(e) t = 1000 (f) t = 2000
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Fig. 14 Crack growth as a consequence of two leaders pushing from inside at 45 degrees with
uniform velocity; with s f = 1.17 the crack length stabilizes around t = 160.
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(a) t = 1 (b) t = 100

(c) t = 200 (d) t = 300
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Fig. 15 The same simulation of Fig. 15 is performed with s f = 1.12; in this case, the critical length
is overcome and the crack growth keeps up to the complete split of the system.
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external action, i.e. a uniaxial one, as done in the simulation shown in Fig. 13. Let
us first formulate Eq.(4) by means of the discrete variables considered here. In our
model, the energy can be written as:

ETOT = 3α(se f f )
2l +(σD)2A− (σD)2

β l2 (5)

where se f f = s f −1 is the DEE lost when a single bond is broken, A represents the
area of the system (in squared unit lengths) and l is the number of broken pairs of
elements in the crack.

In the simulation shown in Fig. 16 we imposed to the leaders the same external
action used in the simulation of Fig. 13, i.e. we imposed an uniaxial displacement
of the leaders in the x direction up to 180 time steps followed by a stop, and a zero
displacement to the fictitious elements relative to the left vertical side. In order to
see a crack formation and evolution we created a ‘defect’ by removing 6 bonds
close to the middle points of the bottom side. We can observe that a crack indeed
opens in correspondence with the defect, and that it reaches a stable length already
at t = 1000.
The DEE E D that we obtained as an output (≈ 5) times the dimensional constant
α is the discrete estimate of the deformation energy of the system, and therefore
represents the quantity given by the last two terms in the right hand side of Eq.(5).
This allows us to provide an estimate for β . Indeed, substituting the value for σD

taken from the simulation shown in Fig. 13, we have:

β =
(σD)2µn2−αE D

(σD)2l2 ≈ 25.7 (6)

According to the standard interpretation in Griffith’s fracture theory, this means that
an area measuring approximately β × l2 = 25.7×9 is relaxed as a consequence of
the crack formation; this area corresponds to a fraction of approximately 0.58 of the
total area.
Let us now consider the first term in the right hand side of Eq.(5). The numerical
output tells us that a total of 9 bonds, in Fig. 16, are stretched beyond the fracture
threshold (see Fig. 17 for a graphical representation). As we recall, we introduced a
‘defect’ consisting in removing six interactions close to the edge; this means that a
total of three elementary bonds were broken by applying the external action. Since
the threshold was set at s f = 2.62, the corresponding DEE, i.e. the energy Eb re-
quired to break the bonds can be estimated by:

Eb = α(s f −1)2×6 = 7.68α (7)

The sum Eb+αE D≈ 12.68α is an estimate of the total energy in the system. As one
can see, it is very close to the total deformation energy (≈ 12.5α , see Eq.(3)) with
the same external action in case no fracture threshold is considered. This is con-
sistent since, in the proposed model, no additional dissipated energy is associated
to the break of the interactions, and therefore the total energy should coincide with
the deformation energy. The small difference has to be related with the fact that we
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(a) t = 1
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Fig. 16 Uniaxial external action imposed to a set of boundary leaders with a defect consisting in
the removal of six bounds around the middle elements of the bottom side (s f = 2.62). The leadres
stop at t = 180; a crack opens in correspondence with the defect and reaches a stable length (as
before, we use empty red dots to indicate that the fictitious elements relative to the left side have
an imposed null velocity, i.e. the left side has an imposed displacement equal to zero).
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introduced a local defect in the simulation shown in Fig. 16; since we imposed an
external action consisting in imposed displacements, this means that, assuming the
same value for σD as the one measured in the simulation of Fig. 13, we are slightly
overestimating it. Actually, the ratio 12.68−12.5

12.68 ≈ 0.014 is very close to the ratio
between the number of removed bonds over the total bonds present in the system
( 6

520 ≈ 0.012).

Fig. 17 Graphical representation of the bonds broken in the simulation shown in Fig. 16.

3.4 Almost-steady state

In the next simulation we want to underline a peculiar behavior shown by the model
which can be called as an ‘almost steady’ state followed by a catastrophic evolution
of the crack. We considered the same system of the previous one, making only a
small change in the fracture threshold s f . Tuning very finely the threshold (i.e. set-
ting s f = 2.5741), one can obtain that a significantly long almost steady phase is
followed by a nearly spontaneous crack opening around 1000 time steps (Fig. 18).
We recall that the leaders were stopped at t = 180, which means that the abrupt
opening of the crack around t = 900 is a consequence of an internal evolution of the
system, though it is hardly visible since only very tiny changes in the positions of the
elements (virtually invisible at the ‘macro’ level) occur for a long time. In the opin-
ion of the authors, this behavior, which is experimentally well known [51], is quite
interesting, especially considering the simplicity of the discrete model employed.
The sensitivity of the model with respect to very fine changes in the parameters sug-
gests that non trivial instability issues may arise from the study of its homogenized
form. This can be a very interesting aspect to be investigated, useful theoretical
tools being available in recent literature (the interested reader can see, for instance,
[52, 53, 54, 55, 56])

4 Conclusion and further objectives

In this work a new simple discrete system (introduced in [6]) with a centroid-based
propagating interaction has been used in order to account for fracture phenomena in
deformable bodies. Some results on pure deformation including a direct comparison
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(a) t = 1 (b) t = 215

(c) t = 530 (d) t = 745
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Fig. 18 ‘Almost steady’ state followed by a quick and spontaneous evolution of the crack; s f =
2.5741, leaders are stopped at t = 180. Between t ≈ 500 and t ≈ 1000 the energy plot is almost flat,
then an abrupt crack opening occurs (as before, we use empty red dots to indicate that the fictitious
elements relative to the left side have an imposed null velocity, i.e. the left side has an imposed
displacement equal to zero).
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with standard Finite Element simulations are presented. A discrete equivalent of
the deformation energy is also defined and used to prove the independence of the
asymptotic configuration on the choice of the element from which the algorithm
starts in case of spontaneous evolution. A fracture algorithm is then introduced,
with the definition of a suitable adjacency matrix specifying the pairs of elements
among which no interaction exists anymore because the two elements overcame a
prescribed threshold in the actual distance. The discrete equivalent of an external
stress is also defined in the uniaxial case, and used to compare the numerical results
with Griffith’s theory of fracture. Different examples of crack formation and growth
are considered.
The results indicate that the proposed model is promising for developing new and
computationally advantageous tools for the study of fracture, and that the model is
rich enough to produce interesting behaviors such as a spontaneous crack evolution
after a long almost steady state.
Future investigations will concern how, by suitably weighting the contribution of
the neighbors in the computation of the centroid, one can obtain different material
models, and in particular different kinds of anisotropies. Moreover, one may try to
generalize the model by suitably coupling the coordinates in order to account for
Poisson’s ratios different from 0 (while using directly the centroid-based algorithm
we described this is the only possible value). Also interesting will be the study
of more cases in which higher order interactions, reproducing behaviors typical of
higher order continua, are considered. Finally theoretical results, among which the
investigation of the homogenized limit of the considered system and the relative
variational formulation, are needed in order to make further and sound progresses
in the subject.

Proof of the independence of the asymptotic behavior on the
choice of the pseudo-leader for 1D systems

In Section 2 we considered the problem of the uniqueness of the asymptotic config-
uration of the system evolving spontaneously (i.e., without leaders), independently
on the selected pseudo-leader. As this represents an important objectivity require-
ment for the model, in the present appendix we deserve a more formal treatment to
the 1D case.
Let us consider a 1-dimensional system S constituted by N elements mathemati-
cally represented by points in the real line, and an infinite set of discrete time steps
T = {t0, t1, ..., tm, ...}. The system will evolve exactly as explained in the 2D case,
with the set of first neighbors being constituted, for every element, by the two clos-
est ones. We call configuration of S a strictly increasing function C mapping i into
xi ∈R, with the integer i : 0 < i≤ N indicating the Lagrangian label of the elements
of the system. We indicate by Ct j the configuration at time t j ∈ T, and by Sī the
system evolving with the chosen pseudo-leader (ī). We say that Sī asymptotically
converges to the configuration Ct∞ , and write Sī→Ct∞ , if for every ε > 0 there ex-
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ists a positive integer M such that |xtm
i − xt∞

i |< ε for every integer i : 0 < i≤ N and
every tm ∈T : m > M (we can notice that the given definition, which is natural when
considering finite systems, would correspond in the homogenized limit to a uniform
functional convergence). Let C∗ be the set of configurations in which |xi+1−xi|= 1
for every integer i such that 0 < i < N; obviously one has E D(C∗) = 0 for every
C∗ ∈ C∗ (see Eq. (2)), and the representative C∗ is unique up to a translation. We
have the following

Proposition: A system Si evolving spontaneously tends to an asymptotic configu-
ration Ct∞ , and it is Ct∞ ∈ C∗ ∀i ∈ N : 1≤ i≤ N.

Proof: Let us first prove that the limit configuration exists. Then we will prove the
Lemma by showing that, if Ct∞ is the asymptotic configuration, one has E D(Ct∞) = 0
(the thesis follows then immediately).
We start by noticing that in every virtual time step one element or two elements
which are not neighbors move to the centroid of their first neighbors, while all
other elements do not move. Since the centroid locally minimizes the discrete en-
ergy, this means that E D(Vh, t j) ≥ E D(Vh+1, t j) and E D(Vh, t j) ≥ E D(Vk, t j+1) for
all integers j, and for all h and k for which virtual configurations are defined.
Since actual configurations of the system are a subset (preserving the order rela-
tion) of the virtual configurations, one has that E D(Ct j) (t j ∈ T) is a monotonically
decreasing function of j. Since E D is non negative, this means that there exists
limm→∞ E D(Ctm) = E D(Ct∞). Let us now enumerate all virtual configurations (in-
cluding the ones identified by definition with actual ones): V1,V2, ...Vn, .... Since E D

converges, one has:

∆E D(Vh) := E D(Vh)−E D(Vh +1)→ 0 for m→ ∞ (8)

Let ∆sh be the sum of the moduli of the displacements of the elements that move in
the virtual time step Vh. Since ∆E D(Vh) is a continuous function of ∆sh vanishing
if and only if ∆sh = 0, Eq. (8) implies that limh→∞ ∆sh = 0, i.e. all virtual displace-
ments of the elements (and thus the actual ones) tend to zero as time goes to infinity.
Therefore, there exists a limit configuration Ct∞ .
Let us now suppose by contradiction that E D(Ct∞) = Ẽ > 0 for some element ī
chosen as the pseudo-leader.
Let now dmax and dmin be respectively the maximum and minimum distance between
(non fictitious) elements which are first neighbors in Ct∞ . Since Ẽ > 0, one has
that at least one between the two inequalities dmax > 1 and dmin < 1 holds; without
losing generality, we select the first possibility. Let ĩ and ĩ+1 be the two Lagrangian
elements such that

lim
m→∞

(|xtm
ĩ+1− xtm

ĩ |) = dmax (9)

Recalling that the centroid algorithm moves the element ĩ to the centroid of its neigh-
bors, it easily follows from Eq.(9) that:
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lim
m→∞

(|xtm
ĩ − xtm

ĩ−1|) = dmax (10)

Let xtm
F be the coordinate of the left fictitious element of the system at time tm.

Iterating the previous reasoning, one gets eventually

lim
m→∞
|xtm

0 − xtm
F |= dmax > 1 (11)

and since by definition |x0− xF | = 1 at every time, the contradiction completes the
proof.
Remark The result is easily generalized to system with second or higher order
interaction. As mentioned in the paper, however, the generalization to 2D systems
is not straightforward as in that case it is not true that the energy is decreasing.
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