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Introduction and governing equations

General introduction. Spitzer and Härm were the first to propose an electron transport theory in a fully ionised plasma without magnetic field [42]. They derived the electron plasma transport coefficients by solving the electron kinetic equation and using the expansion of the electron mean free path over the temperature scale length (denoted ε in this paper). For that, they assumed that the isotropic part of the electron distribution function remains close to the Maxwellian. In the case of non-local regimes [START_REF] Ph | A practical nonlocal model for heat transport in magnetized laser plasmas[END_REF], the Spitzer-Härm theory is not valid anymore. Considering for instance the case of inertial confinement fusion, the plasma particles may have an energy distribution which is far from the thermodynamic equilibrium so that the fluid description is not adapted. At the same time, a kinetic description is accurate to describe such processes but is also very expensive from the computational point of view and for most of real physical applications. Kinetic codes are indeed often limited to time and length scales much shorter than those studied with fluid simulations. Therefore, it is essential to be able to 1 Laboratoire de Mathématiques de Versailles. Contact: sebastien.guisset@uvsq.fr 1 describe kinetic effects using reduced kinetic codes and operating on fluid time scales.

Entropic angular moments models can be seen as a compromise between kinetic and fluid models. On the one hand, they are less expensive than kinetic models since the number of variables is less. On the other hand, they provide more accurate results than fluid models. The main point in moments models is the definition of the closure relation which aims at giving the highest-order moment as a function of the lower-order ones. This closure relation corresponds to an approximation of the underlying distribution function. In [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF][START_REF] Minerbo | Maximum entropy Eddigton Factors[END_REF][START_REF] Muller | Rational Extended Thermodynamics[END_REF][START_REF] Struchtrup | Macroscopic Transport Equations for Rarefied Gas Flows[END_REF][START_REF] Alldredge | High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem[END_REF], closures based on entropy minimisation principles are investigated. It has been shown that such a choice enables to recover fundamental properties such as the positivity of the underlying distribution function, the hyperbolicity of the model and an entropy dissipation property [START_REF] Groth | Towards physically-realizable and hyperbolic moment closures for kinetic theory[END_REF][START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF][START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF].

As we will see, the moments model under consideration here is based on an angular moments extraction. The kinetic equation is integrated with respect to the velocity direction only, while the velocity modulus is kept as a variable. The closure is based on an entropy minimisation principle and gives the angular M 1 model. This model is used in numerous applications such as radiative transfer [START_REF] Berthon | An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions[END_REF][START_REF] Turpault | A consistent multigroup model for radiative transfer and its underlying mean opacity[END_REF] or electron transport [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landeau equation of electrons[END_REF][START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF][START_REF] Guisset | Asymptotic-preserving scheme for the Fokker-Planck-Landau-Maxwell system in the quasi-neutral regime[END_REF]. It satisfies fundamental properties and allows to recover an asymptotic diffusion equation in long time and small mean free path regimes [START_REF] Dubroca | Étude théorique et numérique d'une hiéarchie de modèles aux moments pour le transfert radiatif[END_REF], as will be seen hereafter.

In order to perform numerical simulations, the HLL scheme [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] is often used for the M 1 electronic model since it ensures the positivity of the first angular moment and the flux limitation property. However, this scheme does not degenerate correctly in the diffusive limit and necessitates extremely fine meshes to provide reasonable numerical approximations in this regime. In order to overcome this issue, the so-called asymptoticpreserving (AP) schemes in the sense of Jin-Levermore [START_REF] Jin | The discrete-ordinate method in diffusive regimes[END_REF][START_REF] Jin | Fully discrete numerical transfer in diffusive regimes[END_REF] have been proposed over the last years to handle multi-scale situations, see for instance [START_REF] Bouchut | Upwinding of the source term at interfaces for Euler equations with high friction[END_REF][START_REF] Aregba-Driollet | Asymptotic High-Order Schemes for 2x2 Dissipative Hyperbolic Systems[END_REF][START_REF] Filbet | A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources[END_REF][START_REF] Lemou | A new asymptotic preserving scheme based on Micro-Macro formulation for linear kinetic equations in the diffusion limit[END_REF][START_REF] Boscarino | High-order asymptoticpreserving methods for fully nonlinear relaxation problems[END_REF][START_REF] Dimarco | Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations[END_REF][START_REF] Lafitte | Asymptotic-preserving projective integration schemes for kinetic equations in the diffusion limit[END_REF][START_REF] Chalons | Operator-splitting-based asymptotic-preserving scheme for the gas dynamics equations with stiff source terms[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes[END_REF] and the references therein. In particular, one of the most productive approach originated from Gosse-Toscani [START_REF] Gosse | Space localizaion and well-balanced schemes for discrete kinetic models in diffusive regimes[END_REF] is based on suitable modifications of approximate Riemann solvers in Godunov-type methods, see for instance [START_REF] Buet | Asymptotic preserving and positive schemes for radiation hydrodynamics[END_REF][START_REF] Buet | Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation[END_REF][START_REF] Berthon | An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions[END_REF][START_REF] Chalons | Godunov-type schemes for hyperbolic systems with parameterdependent source. The case of Euler system with friction[END_REF][START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF]].

Governing equations and numerical schemes. In the present work, we consider the M 1 model for the electronic transport [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF][START_REF] Guisset | Classical transport theory for the collisional electronic M1 model[END_REF]. Ions are supposed to be fixed and electron-electron collisions are not considered. The angular moment model reads

         ∂ t f 0 (t, x, ζ) + ζ∂ x f 1 (t, x, ζ) + E(x)∂ ζ f 1 (t, x, ζ) = 0, ∂ t f 1 (t, x, ζ) + ζ∂ x f 2 (t, x, ζ) + E(x)∂ ζ f 2 (t, x, ζ) - E(x) ζ (f 0 (t, x, ζ) -f 2 (t, x, ζ)) = - 2α ei (x)f 1 (t, x, ζ) ζ 3 , (1) 
where f 0 , f 1 and f 2 are the first three angular moments of the electron distribution function f = f (t, x, µ, ζ), where t and x are the time and space variables, and µ and ζ represent the angle and the modulus of the velocity.

Omitting the x and t dependency for the sake of clarity, they are given by

f 0 (ζ) = ζ 2 1 -1 f (µ, ζ)dµ, f 1 (ζ) = ζ 2 1 -1 f (µ, ζ)µdµ, f 2 (ζ) = ζ 2 -1 -1 f (µ, ζ)µ 2 dµ. (2) 
In ( 1), the α ei > 0 positive function of x and E = E(x) is the electrostatic field. In order to close this model, one has to define f 2 as a function of f 0 and f 1 . Here, we consider that the closure relation originates from an entropy minimisation principle [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF][START_REF] Minerbo | Maximum entropy Eddigton Factors[END_REF] and that f 2 can be computed as a function of f 0 and f 1 as follows,

f 2 (t, x, ζ) = χ f 1 (t, x, ζ) f 0 (t, x, ζ) f 0 (t, x, ζ), with χ(α) = 1 + α 2 + α 4 3 , (3) 
see [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF][START_REF] Dubroca | Étude théorique et numérique d'une hiéarchie de modèles aux moments pour le transfert radiatif[END_REF]. The set of admissible states is defined by

A = (f 0 , f 1 ) ∈ R 2 , f 0 ≥ 0, |f 1 | ≤ f 0 , (4) 
which gives the existence of a nonnegative distribution function from the angular moments under consideration, see [START_REF] Pomraning | Maximum entropy Eddington factors and flux limited diffusion theory[END_REF].

In [START_REF] Guisset | Asymptoticpreserving well-balanced scheme for the electronic M 1 model in the diffusive limit: particular cases[END_REF][START_REF] Guisset | Asymptoticpreserving for the electronic M 1 model in the diffusive limit[END_REF], a numerical scheme was proposed for the electronic M 1 model. It is based on the definition of an approximate Riemann solver, the intermediate states of which are chosen in order to obtain the asymptotic-preserving property. In the present work, the proposed procedure is different and follows the same approach as the one in [START_REF] Chalons | Operator-splitting-based asymptotic-preserving scheme for the gas dynamics equations with stiff source terms[END_REF]. More precisely, the asymptotic behavior of the usual HLL scheme is studied in the diffusive regime and the numerical viscosity is modified in order to capture the correct asymptotic limit. This modification is proposed in such a way that the admissibility of the numerical solution of the scheme holds true under suitable CFL conditions. Moreover, we will show that the new scheme can be understood by means of a suitable approximate Riemann solver. We also mention from now on that unlike [START_REF] Guisset | Asymptoticpreserving well-balanced scheme for the electronic M 1 model in the diffusive limit: particular cases[END_REF][START_REF] Guisset | Asymptoticpreserving for the electronic M 1 model in the diffusive limit[END_REF], the approach followed here allows to naturally recover the mixed derivatives arising in the diffusive limit.

Outline. The outline of the paper is as follows. We start by introducing the diffusive limit of the M 1 model in Section 2. In Section 3, we neglect the electric field by setting E = 0 and we study the HLL scheme is in the diffusive regime. Then, a very simple modification of the numerical viscosity is proposed and keeps the admissibility of the numerical solution. In Section 4, it is shown that the modified scheme can be understood as a Godunov-type scheme associated with a suitable approximate Riemann solver. In Section 5, the strategy is extended to the general model (1) with electric field. In Section 6, numerical examples are presented in different collisional regimes. Finally, conclusions and perspectives are given.

Diffusion limit

In this section, the diffusive limit of the electronic M 1 model ( 1) is introduced. For that, we consider a diffusive scaling and use a formal Hilbert expansion. More precisely, let us introduce the following diffusion scaling

t = t/t * , x = x/x * , ζ = ζ/v th , Ẽ = Ex * /v 2 th
with the characteristic quantities t * and x * are chosen such that τ ei /t * = ε 2 , λ ei /x * = ε, where τ ei is the electron-ion collisional period , λ ei the electron-ion mean free path and v th the thermal velocity defined by v th = λ ei /τ ei . The positive parameter ε is devoted to tend to zero. Rewriting [START_REF] Alldredge | High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem[END_REF] in dimensionless variables and removing the tildes from the new variables, the equations take the form

         ε∂ t f 0 (t, x, ζ) + ζ∂ x f 1 (t, x, ζ) + E(x)∂ ζ f 1 (t, x, ζ) = 0, ε∂ t f 1 (t, x, ζ) + ζ∂ x f 2 (t, x, ζ) + E(x)∂ ζ f 2 (t, x, ζ) - E(x) ζ (f 0 (t, x, ζ) -f 2 (t, x, ζ)) = - 2σ(x) ζ 3 f 1 (t, x, ζ) ε , (5) 
where the coefficient σ is a non-negative function of x defined by

σ(x) = τ ei α ei (x) v 3 th .
Introducing the following Hilbert expansion of f 0 and f 1

f 0 = f 0 0 + εf 1 0 + O(ε 2 ), f 1 = f 0 1 + εf 1 1 + O(ε 2 ), (6) 
the second equation of (5) taken at order ε -1 leads to

f 0 1 = 0. ( 7 
)
Using the definition (3) of f 2 , it follows that

f 0 2 = f 0 0 /3. (8) 
Inserting again the Hilbert expansion (6) into the second equation of ( 5) gives now at order ε 0

f 1 1 = - ζ 4 6σ ∂ x f 0 0 - Eζ 3 6σ ∂ ζ f 0 0 + Eζ 2 3σ f 0 0 . (9) 
Finally, using the previous equation into the first equation of ( 5) at order ε 1 , the following limit equation is obtained

∂ t f 0 0 + ζ∂ x - ζ 4 6σ ∂ x f 0 0 - Eζ 3 6σ ∂ ζ f 0 0 + Eζ 2 3σ f 0 0 ( 10 
)
+ E∂ ζ - ζ 4 6σ ∂ x f 0 0 - Eζ 3 6σ ∂ ζ f 0 0 + Eζ 2 3σ f 0 0 = 0.
In the case E = 0 with no electric field, a classical diffusion equation with diffusion coefficient -ζ 5 /6σ is recovered. In the general case, this limit equation involves mixed x and ζ derivatives leading to a non isotropic diffusion. Note also that the source term E(f 0f 2 )/ζ brings its own contribution to the diffusive limit by adding the term (Eζ 2 /(3σ))f 0 0 in the right side of (9) and finally in the x and ζ derivatives of [START_REF] Bouchut | Upwinding of the source term at interfaces for Euler equations with high friction[END_REF].

3 Derivation of an asymptotic-preserving scheme in the case with no electric field

In the case with no electric field, the electronic M 1 model reads

   ∂ t f 0 (t, x, ζ) + ζ∂ x f 1 (t, x, ζ) = 0, ∂ t f 1 (t, x, ζ) + ζ∂ x f 2 (t, x, ζ) = - 2α ei (x) ζ 3 f 1 (t, x, ζ) (11) 
and the limit equation [START_REF] Bouchut | Upwinding of the source term at interfaces for Euler equations with high friction[END_REF] writes

∂ t f 0 0 (t, x) -ζ∂ x ζ 4 6σ(x) ∂ x f 0 0 (t, x) = 0. ( 12 
)
In this section, we present a numerical scheme which preserves the asymptotic behaviour [START_REF] Buet | Asymptotic preserving and positive schemes for radiation hydrodynamics[END_REF].

We denote by ∆x and ∆t the space and time steps, respectively. We define the mesh interfaces x j+1/2 = j∆x for j ∈ Z and the intermediate times t n = n∆t for n ∈ N. We also define the mid-points x j = (x j-1/2 + x j+1/2 )/2 for j ∈ Z. At each time t n , f n 0i and f n 1i represent an approximation of the exact solutions f 0 and f 1 on the interval [x j-1/2 , x j+1/2 ), j ∈ Z, and we look for an approximation of the solutions at time t n+1 . Note that in this section, ζ is a given constant value.

Limit of the classical HLL approach and simple modification

In this part, the limit behaviour of the classical HLL approach is presented and a very simple modification is proposed. In the present case, it is natural to use a mixed explicit-implicit treatment to deal with the stiff source term. More precisely, a classical HLL scheme with an implicit treatment of the source term is considered and it writes

       f n+1 0i -f n 0i ∆t + f n 1i+1/2 -f n 1i-1/2 ∆x = 0, f n+1 1i -f n 1i ∆t + f n 2i+1/2 -f n 2i-1/2 ∆x = - 2α ei f n+1 1i ζ 3 , (13) 
where the numerical fluxes

f n 1,i+1/2 and f n 2,i+1/2 write      f n 1,i+1/2 = ζ 2 (f n 1i+1 + f n 1i ) - a x 2 (f n 0i+1 -f n 0i ), f n 2,i+1/2 = ζ 2 (f n 2i+1 + f n 2i ) - a x 2 (f n 1i+1 -f n 1i ). ( 14 
)
The wave speed a x is fixed using the ideas introduced in [START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF]. More precisely, it is known from [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF] that the electronic M 1 model without electric field [START_REF] Buet | Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation[END_REF] is hyperbolic symmetrizable and that the eigenvalues of the Jacobian matrix lies in the interval [-ζ, ζ]. Therefore, we set a x = ζ.

In order to perform the asymptotic analysis of the scheme, we consider the diffusive scaling and we introduce the following discrete Hilbert expansion of f ε 0i and f ε 1i , namely

f n,ε 0i = f n,0 0i + εf n,1 0i + O(ε 2 ), f n,ε 1i = f n,0 1i + εf n,1 1i + O(ε 2 ). (15) 
system [START_REF] Chalons | Godunov-type schemes for hyperbolic systems with parameterdependent source. The case of Euler system with friction[END_REF] rewrites

           f n+1 0i = f n 0i - ∆t ε∆x (f n 1i+1/2 -f n 1i-1/2 ), f n+1 1i = ε 2 ε 2 + 2σ i ∆t ζ 3 f n 1i - ∆t ε∆x (f n 2i+1/2 -f n 2i-1/2 ) , (16) 
and the second equation of ( 16) gives at order 1/ε

f n+1,0 1i = 0, then f n+1,0 2i = f n+1,0 0i /3 for all n.
The same equation at the next order leads to

f n+1,1 1i = - ζ 4 6σ i f n,0 0i+1 -f n,0 0i-1 2∆x for all n, (17) 
which is correctly consistent with (9) in the case with no electric field (E = 0). We thus clearly have by ( 14) that

f n 1,i+1/2 = ζ 2 (f n,1 1i+1 + f n,1 1i ) - a x 2 ∆x ε f n 0i+1 -f n 0i ∆x .
We note that the centred part of this numerical flux is consistent with f 1 1 by ( 9) with E = 0 (thanks to [START_REF] Dimarco | Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations[END_REF]), but also that the diffusion term behaves like O(∆x/ε). Therefore the numerical viscosity of the HLL scheme leads to a wrong asymptotic behavior in the diffusive regime at a given fixed mesh size ∆x.

In order to overcome this major drawback and following [START_REF] Chalons | Operator-splitting-based asymptotic-preserving scheme for the gas dynamics equations with stiff source terms[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes[END_REF], we propose to modify the numerical fluxes ( 14) such that

       f n 1,i+1/2 = ζ 2 (f n 1i+1 + f n 1i ) - a x θ i+1/2 2 (f n 0i+1 -f n 0i ), f n 2,i+1/2 = ζ 2 (f n 2i+1 + f n 2i ) - a x θ i+1/2 2 (f n 1i+1 -f n 1i ), (18) 
where θ i+1/2 is a free parameter chosen in such a way that in the diffusive limit θ i+1/2 = O(ε). Therefore, we assume that in the diffusive regime θ i+1/2 can be written under the form

θ = εθ 1 + O(ε 2 ).
With such a modification, the numerical viscosity of the HLL scheme behaves like O(∆x) in the diffusive regime and the first equation of ( 16) gives at order ε 0

f n+1,0 0i -f n,0 0i ∆t -ζ f n,1 1i+1 -f n,1 1i-1 2∆x (19) + a x θ 1 i+1/2 f n,0 0i+1 -(θ 1 i+1/2 + θ 1 i-1/2 )f n,0 0i + θ 1 i-1/2 f n,0 0i-1 2∆x = 0.
By inserting [START_REF] Dimarco | Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations[END_REF] into (19) one obtains a numerical scheme which is now consistent with the limit equation ( 12). Now, it remains to propose an explicit choice of θ which ensures the realisability requirement of the numerical solution under an uniform (with respect to ε) CFL condition on the time step ∆t. This is the aim of the next section.

Admissibility requirement

In the previous part, we proposed a very simple modification of the HLL numerical fluxes that enables to capture the correct asymptotic limit. At this stage, it is natural to wonder how such a modification may affect the admissibility requirement (4) of the numerical solution since the numerical viscosity of the scheme has been reduced when ε tends to zero by the correction parameter θ. Given an admissible solution at a time t n , we now give the conditions on θ and on the time step ∆t to ensure the admissibility of the numerical solution at time t n+1 . Theorem 1. The modified scheme ( 13)-( 18) preserves the admissibility of the numerical solution under the following conditions

∆t ≤ ∆x a x , and 
θ i+1/2 = max(θ 1 i+1/2 , θ 2 i+1/2 ), ∀ i, (20) 
where

θ 1 i+1/2 = max |f n 1i | f n 0i , |f n 1i+1 | f n 0i+1 , θ 2 i+1/2 = max |f n 1i + α i f n 2i | f n 0i + α i f n 1i , |f n 1i+1 + α i+1 f n 2i+1 | f n 0i+1 + α i+1 f n 1i+1 , and 
α i = 1 1 + 2σ i ∆t ζ 3 . (21) 
Proof. Let us first prove that f n+1 0i ≥ 0 for all i ∈ N. Using [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF], the first equation of ( 13) rewrites

f n+1 0i = f n 0i (1 - ζ∆t(θ i+1/2 + θ i-1/2 ) 2∆x ) + ζ∆t 2∆x (θ i+1/2 f n 0i+1 -f n 1i+1 ) + ζ∆t 2∆x (θ i-1/2 f n 0i-1 + f n 1i-1 ).
In order to ensure the positivity of f n+1 0i , it is sufficient to prove that the three terms in the right-hand side are positive. One obtains the positivity of

f n+1 0i under the conditions ∆t ≤ 2∆x a x (θ i+1/2 + θ i-1/2 ) and θ i+1/2 = max( |f n 1i | f n 0i , |f n 1i+1 | f n 0i+1 ), ∀ i, (22) 
Let us now prove that

|f n+1 1i | ≤ f n+1 0i for all i ∈ N which is equivalent to f n+1 0i + f n+1 1i ≥ 0 and f n+1 0i -f n+1 1i ≥ 0. We will focus on f n+1 0i + f n+1 1i
≥ 0, the treatment of the other inequality being similar. Considering (13) leads to

f n+1 0i + f n+1 1i = ζ∆t 2∆x θ i+1/2 f n 0i+1 -f n 1i+1 -αf n 2i+1 + α i θ i+1/2 f n 1i+1 + ζ∆t 2∆x θ i-1/2 f n 0i-1 + f n 1i-1 + α i f n 2i-1 + α i θ i-1/2 f n 1i-1 + f n 0i + α i f n 1i - ζ∆t(θ i+1/2 + θ i-1/2 ) 2∆x f n 0i - ζ∆tα i (θ i+1/2 + θ i-1/2 ) 2∆x f n 1i .
It is sufficient to show that the three terms of the right-hand side are positive. The positivity of the first two terms is ensured provided that

θ i+1/2 = max( |f n 1i + α i f n 2i | f n 0i + α i f n 1i , |f n 1i+1 + α i+1 f n 2i+1 | f n 0i+1 + α i+1 f n 1i+1 ). ( 23 
)
The positivity of the third term is ensured as soon as

∆t ≤ 2∆x a x (θ i+1/2 + θ i-1/2 )
, which is the same CFL condition as for the first admissiblity condition f n+1 0 ≥ 0 for all i. The same approach but now considering

f n+1 0i -f n+1 1i
gives the same conditions.

Remark 1. It is interesting to notice that in the diffusive regime, θ i+1/2 defined by ( 22)-( 23) as well as f n 1i ∀i ∈ N behave like O(ε) in ε. Indeed using the diffusive scaling and a direct development in ε in the second equation of [START_REF] Chalons | Operator-splitting-based asymptotic-preserving scheme for the gas dynamics equations with stiff source terms[END_REF] gives

f n+1 1i = -ε ζ 4 6σ i f n,0 0i+1 -f n,0 0i-1 2∆x + O(ε 2 ). ( 24 
)
Remark 2. Observe that the quantity (f 1 +αf 2 )/(f 0 +αf 1 ) remains smaller or equal to 1. Indeed, by introducing the anisotropic parameter x defined such that x = f 1 /f 0 , and using the definition (3) we get

f 1 + αf 2 f 0 + αf 1 = x + αχ(x) 1 + αx ,
which remains smaller or equal to 1 for all α ∈ [0, 1] and x ∈ [-1, 1]. This quantity is displayed in terms of α and x on Figure 1.

Remark 3. It is not really possible to use the CFL condition [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF] as it stands since the parameter θ depends on α which depends itself on ∆t by [START_REF] Gosse | Computing qualitatively correct approximations of balance laws[END_REF]. In order to overcome this issue, we use the fact that θ is equal or smaller than 1 and we consider the CFL condition

∆t ≤ ∆x a x .
Therefore, at each time step, we start computing ∆t independently of θ by using [START_REF] Filbet | A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources[END_REF], then we obtain α and θ with (21) and [START_REF] Filbet | A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources[END_REF]. Finally, the quantities can be updated at the next time step with the scheme ( 13) and [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF]. 

Approximate Riemann solvers interpretation

In this part we show that the numerical scheme derived in the previous section is equivalent to a Godunov-type scheme based on a particular approximate Riemann solver.

Extending the ideas introduced in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF][START_REF] Gosse | Computing qualitatively correct approximations of balance laws[END_REF][START_REF] Bouchut | Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for sources[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF], we consider an approximate solver of the following form

U R (x/t, U L , U R ) =            U L (t) if x/t < -a x θ, U L * (t) if -a x θ < x/t < 0, U R * (t) if 0 < x/t < a x θ, U R (t) if a x < x/t, (25) 
where the intermediate states

U L * (t) = t (f L * 0 , f L * 1 (t)), U R * (t) = t (f R * 0 , f R * 1 (t)
), the minimum and maximum speeds of propagation -a x and a x and the states U L (t) and U R (t) have to be defined. We note that the proposed approximate Riemann solver is made of three well-ordered waves, the second one being stationary. The quantities U L (t) and U R (t) stand for

U L (t) = t (f L 0 , f L 1 (t)) and U R (t) = t (f R 0 , f R 1 (t)).
At this stage, it is crucial to notice that the second component of the constant (in space) states U L , U L * , U R * , U R actually depend on t and that we will have f

L 1 (0) = f L 1 and f R 1 (0) = f R 1 .
The structure of the approximate Riemann solver is displayed on Fig. 2. Following the classical Godunov-type procedure to compute a piecewise constant approximate solution U n+1 i on each cell D i =]x i-1/2 , x i+1/2 [ at time t n+1 , the exact solution w of ( 11) is averaged on each cell and

-a x θ a x θ t x U R (t) U L (t) U R * (t) U L * (t)
U n+1 i ≈ 1 ∆x x i+1/2 x i-1/2 w(∆t, x)dx. (26) 
Instead of solving [START_REF] Buet | Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation[END_REF] exactly, one suggests to use the approximate Riemann solver [START_REF] Guisset | Asymptoticpreserving well-balanced scheme for the electronic M 1 model in the diffusive limit: particular cases[END_REF] at each interface and to replace w by w defined as the juxtaposition of the approximate Riemann solutions as follows

w(x, t) = U R ((x -x i+1/2 )/t, U n i , U n i+1 ), if x ∈ [x i , x i+1 ].
Let us now explain the derivation of the intermediate states U L * (t) and U R * (t). Following [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF], we impose that the integral at time ∆t of the approximate Riemann solution (25) over the slab [-∆x 2 , ∆x 2 ] under the CFL condition ∆t ≤ ∆x 2a x θ equals the integral of the exact Riemann solution to [START_REF] Buet | Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation[END_REF], which gives here for the first equation

( ∆x 2 -a x θ∆t)f L 0 + a x θ∆tf L * 0 + a x θ∆tf R * 0 + ( ∆x 2 -a x θ∆t)f R 0 = ∆x 2 (f L 0 + f R 0 ) -ζ ∆t 0 (f R 1 (t) -f L 1 (t))dt
that is to say

f L * 0 + f R * 0 2 = f L 0 + f R 0 2 - ζ 2a x θ∆t ∆t 0 (f R 1 (t) -f L 1 (t))dt,
which can be approximated by

f L * 0 + f R * 0 2 = f L 0 + f R 0 2 - ζ 2a x θ (f R 1 -f L 1 ),
using the left rectangle (time explicit) quadrature formula and since f R

1 (0) = f R 1 and f L 1 (0) = f L 1 .
Therefore a natural choice consists in setting

f L * 0 = f R * 0 = f L 0 + f R 0 2 - ζ 2a x θ (f R 1 -f L 1 ). ( 27 
)
Before considering the second equation of ( 11), let us define f R 1 (t) and f L 1 (t) in the approximate Riemann solver [START_REF] Guisset | Asymptoticpreserving well-balanced scheme for the electronic M 1 model in the diffusive limit: particular cases[END_REF]. Since there is a source term, using the ideas of [START_REF] Ben-Artzi | Generalized Riemann problems in computational fluid dynamics[END_REF], we compute f 1i (t) as solution of the following ordinary differential equation

df 1 (t) dt = - 2α ei f 1 (t) ζ 3 , (28) 
with

f 1 (0) = f L 1 or f 1 (0) = f R 1 .
This equation can be solved exactly, however, in order to recover the numerical scheme ( 13)-( 18), we choose a standard implicit discretisation which gives

f L,R 1 (t) = 1 1 + 2σ L,R ∆t ζ 3 f L,R 1 , ∀ t ∈ [0, ∆t]. ( 29 
)
Considering now the second equation of ( 11), the same approach gives

( ∆x 2 -a x θ∆t)f L 1 (∆t) + a x θ∆tf L * 1 (∆t) + a x θ∆tf R * 1 (∆t) + ( ∆x 2 -a x θ∆t)f R 1 (∆t) = ∆x 2 (f L 1 (0) + f R 1 (0)) -ζ ∆t 0 (f R 2 (t) -f L 2 (t))dt - ∆t 0 ∆x 2 -∆x 2 2α ei (x) ζ 3 f 1 dxdt, that is to say, since f R 1 (0) = f R 1 and f L 1 (0) = f L 1 , f L * 1 (∆t) + f R * 1 (∆t) 2 = f L 1 (∆t) + f R 1 (∆t) 2 + ∆x 4a x θ∆t (f L 1 + f R 1 ) - ∆x 4a x θ∆t (f L 1 (∆t) + f R 1 (∆t)) - ζ 2a x θ∆t ∆t 0 (f R 2 (t) -f L 2 (t))dt (30) - 1 2a x θ∆t ∆t 0 ∆x 2 -∆x 2 2α ei (x) ζ 3 f 1 dxdt.
Let us try to simplify this equality. We first notice that

∆t 0 ∆x 2 -∆x 2 2α ei (x) ζ 3 f 1 dxdt = ∆t 0 axθ∆t -axθ∆t 2α ei (x) ζ 3 f 1 dxdt + ( ∆x 2 -a x θ∆t) ∆t 0 2α ei (x) ζ 3 f 1 dxdt + ( ∆x 2 -a x θ∆t) ∆t 0 2α ei (x) ζ 3 f 1 dxdt,
which gives by [START_REF] Guisset | Classical transport theory for the collisional electronic M1 model[END_REF] to evaluate the last two integrals

∆t 0 ∆x 2 -∆x 2 2α ei (x) ζ 3 f 1 dxdt ≈ -( ∆x 2 -a x θ∆t)(f R 1 (∆t) -f R 1 ) -( ∆x 2 -a x θ∆t)(f L 1 (∆t) -f L 1 ) + ∆t 0 axθ∆t -axθ∆t 2α ei (x) ζ 3 f 1 dxdt.
Now using a right-rectangle (time implicit) quadrature formula, we get

- ∆t 0 ∆x 2 -∆x 2 2α ei (x) ζ 3 f 1 dxdt ≈( ∆x 2 -a x θ∆t)(f R 1 (∆t) -f 1 ) +( ∆x 2 -a x θ∆t)(f L 1 (∆t) -f L 1 ) (31) 
- 2a x θ∆t 2 α L ei ζ 3 f L * 1 (∆t) - 2a x θ∆t 2 α R ei ζ 3 f R * 1 (∆t).
Let us then use a left rectangle (time explicit) quadrature formula to write

ζ 2a x θ∆t ∆t 0 (f R 2 (t) -f L 2 (t))dt ≈ ζ 2a x θ (f R 2 -f L 2 ). ( 32 
)
Inserting ( 31) and ( 32) in [START_REF] Jin | Fully discrete numerical transfer in diffusive regimes[END_REF] gives after easy calculation

f L * 1 (∆t) + f R * 1 (∆t) 2 = f L 1 + f R 1 2 - ζ 2a x θ (f R 2 -f L 2 )- ∆t 2 ( 2α L ei ζ 3 f L * 1 (∆t)+ 2α R ei ζ 3 f R * 1 (∆t)).
Following the same procedure as for the first equation we consider the intermediate states

             f L * 1 (∆t) = ( 1 1 + 2∆tα L ei ζ 3 )( f L 1 + f R 1 2 - ζ 2a x θ (f R 2 -f L 2 )), f R * 1 (∆t) = ( 1 1 + 2∆tα R ei ζ 3 )( f L 1 + f R 1 2 - ζ 2a x θ (f R 2 -f L 2 )). ( 33 
)
Now using the relation ( 26) but with the approximate Riemann solver instead of the exact one, and considering that θ takes a positive value θ i+1/2 at each interface, the numerical solution at time t n+1 is given by

                         f n+1 0i = a x θ i-1/2 ∆t ∆x f R * 0i-1/2 + (1 - a x (θ i-1/2 + θ i+1/2 )∆t ∆x )f n 0i + a x θ i+1/2 ∆t ∆x f L * 0i+1/2 , f n+1 1i = a x θ i-1/2 ∆t ∆x f R * 1i-1/2 (∆t) + (1 - a x (θ i-1/2 + θ i+1/2 )∆t ∆x )f 1i (∆t) + a x θ ∆ i+1/2 t ∆x f L * 1i+1/2 (∆t). ( 34 
)
A direct calculation using the definitions ( 27)-( 33)-( 29) enables us to recover the scheme ( 13) with the numerical fluxes [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF]. Therefore the asymptoticpreserving scheme ( 13)-( 18) can be interpretated as a Godunov-type scheme based on the approximate Riemann solver [START_REF] Guisset | Asymptoticpreserving well-balanced scheme for the electronic M 1 model in the diffusive limit: particular cases[END_REF].

Conditions [START_REF] Filbet | A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources[END_REF] on the parameter θ can be recovered by considering the intermediate states of [START_REF] Guisset | Asymptoticpreserving well-balanced scheme for the electronic M 1 model in the diffusive limit: particular cases[END_REF]. Indeed, since the numerical scheme [START_REF] Lemou | A new asymptotic preserving scheme based on Micro-Macro formulation for linear kinetic equations in the diffusion limit[END_REF] writes as a convex combinaison and the admissible set is convex, the admissibility of the intermediate states U L * and U R * yields the admissibility of the numerical solution at time t n+1 under the usual CFL condition ∆t ≤ ∆x 2a x ||θ|| ∞ .

Computing f L * 0 ± f L * 1 and f R * 0 ± f R * 1 and using the definitions ( 27) and ( 33) enables to recover the conditions (20) by a simple calculation.

Extension to the general model

In this part, we extend the asymptotic-preserving scheme we derived in the previous section to the M 1 model (1) with non zero electric field E.

General scheme

Extending our previous ideas, we use a j index to deal with the ζ variable and we propose the following numerical scheme

f n+1 0ij -f n 0ij ∆t + f n 1i+1/2j -f n 1i-1/2j ∆x + f n 1ij+1/2 -f n 1ij-1/2 ∆ζ = 0, f n+1 1ij -f n 1ij ∆t + f n 2i+1/2j -f n 2i-1/2j ∆x + f n 2ij+1/2 -f n 2ij-1/2 ∆ζ -E i (f n 0ij -f n 2ij ) ζ j = - 2α ei,i f n+1 1ij ζ 3 j , (35) 
where the numerical fluxes used are defined by

       f n 1,i+1/2j = ζ j 2 (f n 1i+1j + f n 1ij ) - a x θ 1i+1/2j 2 (f n 0i+1j -f n 0ij ), f n 2,i+1/2j = ζ j 2 (f n 2i+1j + f n 2ij ) - a x θ 1i+1/2j 2 (f n 1i+1j -f n 1ij ), (36) 
and

       f n 1,ij+1/2 = E i 2 (f n 1ij+1 + f n 1ij ) - a ζ θ 2ij+1/2 2 (f n 0ij+1 -f n 0ij ), f n 2,ij+1/2 = E i 2 (f n 2ij+1 + f n 2ij ) - a ζ θ 2ij+1/2 2 (f n 1ij+1 -f n 1ij ). (37) 
The correction coefficients θ 1 and θ 2 are fixed in order to ensure the admissibility requirement and the asymptotic-preserving property. We take

a x = ζ j and a ζ = |E i |.
For the sake of clarity, we omit the dependency of the speed a x in velocity modulus and a ζ in space.

Properties

In this part, the properties of the numerical scheme ( 35)-( 36)-( 37) are detailed. It is first shown that the scheme preserves the admissibility of the numerical solution under suitable conditions, and then that the asymptoticpreserving property holds true. Theorem 2. The numerical scheme ( 35)-( 36)- [START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF] preserves the set of admissible states A under the following conditions

∆t ≤ min ∆x∆ζ a x ∆x + a ζ ∆ζ , ∆x∆ζ a x ∆x + a ζ ∆ζ + 4||E|| ∞ ∆x , (38) 
and

θ 1i+1/2j = max(θ 1 1i+1/2j , θ 2 1i+1/2j ), θ 2ij+1/2 = max(θ 1 2ij+1/2 , θ 2 2ij+1/2 ), (39) 
with

θ 1 1i+1/2j = max |f n 1ij | f n 0ij , |f n 1i+1j | f n 0i+1j , θ 2 1i+1/2j = max |f n 1ij + α ij f n 2ij | f n 0ij + α ij f n 1ij , |f n 1i+1j + α i+1j f n 2i+1j | f n 0i+1j + α i+1j f n 1i+1j , θ 1 2ij+1/2 = max |f n 1ij | f n 0ij , |f n 1ij+1 | f n 0ij+1 , θ 2 2ij+1/2 = max |f n 1ij + α ij f n 2ij | f n 0ij + α ij f n 1ij , |f n 1ij+1 + α ij+1 f n 2ij+1 | f n 0ij+1 + α ij+1 f n 1ij+1 .
Proof. The proof follows exactly the same lines as in the case with no electric field. The property is obtained by direct computations of

f n+1 0ij ± f n+1 1ij under the CFL condition ∆t ≤ min ∆x∆ζ a x ||θ 1 ||∆x + a ζ ||θ 2 ||∆ζ , (40) 
∆x∆ζ

a x ||θ 1 ||∆x + a ζ ||θ 2 ||∆ζ + || αE ζ ( f n 0 -f n 2 f n 0 + αf n 1 )|| ∞ ∆x∆ζ . Remark 4.
Introducing the anisotropic parameter x defined by x = f 1/f 0 and using the definition (3), we get

f 0 -f 2 f 0 + αf 1 = 1 -χ(x) 1 + αx .
This quantity is displayed in terms of α and x on Figure 3 and it is interesting to note that it is less than 2, which also applies to

(f n 0 -f n 2 )/(f n 0 + αf n 1
) for all n. Therefore following the same procedure as in the case without electric field, instead of using [START_REF] Ph | A practical nonlocal model for heat transport in magnetized laser plasmas[END_REF], we consider the CFL condition [START_REF] Minerbo | Maximum entropy Eddigton Factors[END_REF] which is independent of θ.

The asymptotic-preserving property of the scheme is now stated. Theorem 3. (Consistency with the limit diffusion equation) In the limit ε tends to zero, the limit of the numerical scheme (35) is consistent with the limit diffusion equation [START_REF] Bouchut | Upwinding of the source term at interfaces for Euler equations with high friction[END_REF].

Proof. Using again discrete Hilbert expansions the second equation of ( 35) at order 1/ε gives f n+1,0 1ij = 0 and then f n+1,0 2ij = f n+1,0 0ij /3 for all n and j. The same equation at the next order leads to

f n+1,1 1ij = - ζ 3 j 2σ i (- ζ j 3 f n,0 0i+1j -f n,0 0i-1j 2∆x + E i 3 f n,0 0ij+1 -f n,0 0ij-1 2∆ζ + 2E i 3 f n,0 0ij ζ j ), (41) 
which is consistent with [START_REF] Bouchut | Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for sources[END_REF]. Thanks to the correction parameters θ ε 1 and θ ε 2 , the numerical viscosity of the scheme behaves like O(∆x) and the first equation of [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF] gives at the order O(ε 0 )

f n+1,0 0ij -f n,0 0ij ∆t -ζ j f n,1 1i+1j -f n,1 1i-1j 2∆x + a x θ 1 1i+1/2j f n,0 0i+1j -(θ 1 1i+1/2j + θ 1 1i-1/2j )f n,0 0ij + θ 1 1i-1/2j f n,0 0i-1j 2∆x (42) 
-E i f n,1 1ij+1 -f n,1 1ij-1 2∆ζ + a ζ θ 2ij+1/2 f n,0 0ij+1 -(θ 2ij+1/2 + θ 2ij-1/2 )f n,0 0ij + θ 2ij-1/2 f n,0 0ij-1 2∆ζ = 0,
which is clearly consistent with the limit diffusion equation [START_REF] Bouchut | Upwinding of the source term at interfaces for Euler equations with high friction[END_REF].

Accuracy enhancement

In order to prepare the next section devoted to the numerical experiments, we briefly mention that a second-order type improvement of our scheme will be considered. The underlying strategy, based on the usual second-order Van Leer's slope limiter [START_REF] Van Leer | Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow[END_REF] method, will lead to a significant improvement of the numerical solutions. More precisely and following [START_REF] Van Leer | Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow[END_REF], piecewise linear reconstructions are considered and the corresponding extrapolated values at each interface are used in the numerical fluxes ( 36)- [START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF]. On the other hand, the θ 1 and θ 2 coefficients are still defined by [START_REF] Muller | Rational Extended Thermodynamics[END_REF]. To conclude, the rigorous analysis (admissibility, asymptotic-preserving property...) of the proposed second-order type extension is not easy, see for instance [START_REF] Blachère | An asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes with high-order MOOD reconstruction[END_REF], and it is postponed to a forthcoming study.

Remark 5. In practice, the admissibility is checked at each time step. In case the numerical solution is not admissible, it is recomputed using the classical scheme with no reconstruction, in the spirit of the MOOD approach (see for instance [START_REF] Blachère | An asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes with high-order MOOD reconstruction[END_REF] and the references therein).

Numerical results

This section is devoted to numerical experiments. Depending on the collisional regime, our asymptotic-preserving scheme is compared to an explicit discretisation of the limit diffusion equation and with a standard HLL scheme.

Test 1 : relaxation of a gaussian profile in different collisional regimes.

In this first test case, three different collisional regimes are considered with the same initial condition given by Test 1a : the free transport regime.

f 0 (t = 0, x, ζ) = ζ 2 exp(-(ζ -2) 2 ) exp(-x 2 ),
In this case, the collisional parameter α ei is set to zero. On Fig. 5, we present the solutions obtained with the classical HLL scheme and our asymptoticpreserving scheme, with and without piecewise linear reconstruction. In this transport regime, one can observe that both schemes give the same results and that the piecewise linear reconstruction allows to reduce the numerical diffusion.

Test 1b : the diffusive regime.

In this case, the collisional parameter is set to 10 4 . Fig 6 shows the f 0 profile obtained with the asymptotic-preserving scheme, the usual HLL scheme We clearly see that the classical HLL scheme is very diffusive while the asymptotic-preserving scheme gives a much more accurate numerical solution. However, at time t = 100, the solution is quite different from the expected diffusion profile. Turning now to the second-order extension, the asymptotic-preserving solution is now very close to the exact one, while the HLL scheme remains very diffusive. Test 1c : non-constant collisional parameter.

In this case, the collisional parameter α ei depends on x and is given by

α ei (x) = 10 3 • (arctan(1 + 0.5 • x) + arctan(1 -0.5 • x),
see Fig. 8. On Fig. 9, one clearly sees that the solution obtained with the second-order HLL scheme is much more diffused than the one obtained with the second-order asymptotic-preserving scheme.

Test 2: Discontinuous f 0 profile with non constant electric field and non constant collision parameter.

We now consider the temporal evolution of a discontinuous f 0 profile with inhomogeneous electric field and non-constant collision parameter. The initial condition is discontinuous and writes 10 shows the electronic density profiles obtained with the second-order HLL and asymptotic-preserving schemes at different times and for different values of A. For A = 1 corresponding to a weak collisional regime, we observe that HLL and asymptotic-preserving schemes are really close. On the contrary, as noticed in the previous test case, in strong collisional regimes, the results obtained with the HLL scheme are much more diffused that the ones obtained with the asymptotic-preserving scheme. Indeed, in the case A = 10 4 it is observed that the profile obtained with the asymptoticpreserving scheme is very close to the one obtained with the diffusion scheme while the second order HLL scheme is not accurate.

             f ini 0 (x, ζ) =        4 √ π ζ 2 exp(-ζ 2 ) if x < 0, 2 √ π ζ 2 exp(-ζ 2 ) if x > 0, f ini 1 (x, ζ) =

Conclusion

In this work, a new asymptotic-preserving scheme has been proposed for the electronic M 1 model. It is based on a very simple modification of the HLL scheme in order to capture the correct asymptotic limit in the diffusive limit. This modification also ensures the admissibility of the numerical solution under suitable CFL conditions. The new scheme has also been understood as a Godunov-type scheme based on a given approximate Riemann solver. Several numerical test cases have been proposed to show the relevance of the proposed scheme in different regimes.

Considering the perpectives of this work, we would like to provide a rigorous analysis of the proposed second-order type extension. We are also interested in considering the contribution of an electron-electron collision operator and the coupling with the Maxwell-Ampere equation.
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 1 Figure 1: Representation of the quantity (1 + αχ(x))/(1 + αx) in terms of α and x.
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 2 Figure 2: Structure of the approximate Riemann solver.
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 3 Figure 3: Representation of the quantity (1χ(x))/(1 + αx) in terms of α and x.
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 1 t = 0, x, ζ) = 0, for (x, ζ) in [-10 : 10] × [0, 6] and displayed on Fig. 4. The electric field E is taken to be constant and equal to 1. Neumann boundary conditions are considered and ghost cells are used from a practical point of view. The space step ∆x equals 2.5 • 10 -2 and the modulus energy step ∆ζ is 5 • 10 -2 .
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 4 Figure 4: Representation of the f 0 profile at the initial time.
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 5 Figure 5: Test 1a : representation of the f 0 profiles obtained with a HLL scheme (right) and the AP scheme (left) at time t = 2 in the case without collisions.
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 6 Figure 6: Test 1b : of the f 0 profiles obtained with the first order HLL scheme (left), the first order AP scheme (middle) and the diffusion scheme (right) at time t = 20 (top) and t = 100 (bottom) in the diffusive regime with α ei = 10 4 .
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 78 Figure 7: Test 1b : representation of the f 0 profiles obtained with the second order HLL scheme (left), the second order AP scheme (middle) and the diffusion scheme (right) at time t = 20 (top) and t = 100 (bottom) in the diffusive regime with α ei = 10 4 .

  0, for (x, ζ) in [-10 : 10] × [0, 6]. The non constant electric field and collisional parameter are given byE(x) = exp(-|x|), α ei (x) = A • (arctan(1 + 0.5 • x) + arctan(1 -0.5 • x),where the constant A will be specified hereafter. Neumann boundary conditions are considered and we take ∆x = ∆ζ = 10 -1 and the modulus energy

Figure 9 :

 9 Figure 9: Test 1c : representation of the f 0 profile obtained with the HLL scheme (left) and the asymptotic-preserving scheme (right) at time t = 100 in the case of a non constant collisional parameter.

Fig.

  Fig.10shows the electronic density profiles obtained with the second-order HLL and asymptotic-preserving schemes at different times and for different values of A. For A = 1 corresponding to a weak collisional regime, we observe that HLL and asymptotic-preserving schemes are really close. On the contrary, as noticed in the previous test case, in strong collisional regimes, the results obtained with the HLL scheme are much more diffused that the ones obtained with the asymptotic-preserving scheme. Indeed, in the case A = 10 4 it is observed that the profile obtained with the asymptoticpreserving scheme is very close to the one obtained with the diffusion scheme while the second order HLL scheme is not accurate.
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Figure 10 :

 10 Figure 10: Test 2 : of the density profiles obtained with the HLL scheme (red), with the AP scheme (green) and with the diffusion scheme (blue) at time t = 50 (left) and t = 400 (right) for A = 1 (top), A = 10 2 (middle) and A = 10 4 (bottom).
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