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Detection of QTL for traits related 
to adaptation to sub-optimal climatic 
conditions in chickens
Ching‑Yi Lien1,2,3, Michèle Tixier‑Boichard1, Shih‑Wen Wu4, Woei‑Fuh Wang5, Chen Siang Ng6 
and Chih‑Feng Chen2,7*

Abstract 

Background: Growth traits can be used as indicators of adaptation to sub‑optimal conditions. The current study 
aimed at identifying quantitative trait loci (QTL) that control performance under variable temperature conditions in 
chickens.

Methods: An F2 population was produced by crossing the Taiwan Country chicken L2 line (selected for body weight, 
comb area, and egg production) with an experimental line of Rhode Island Red layer R‑ (selected for low residual feed 
consumption). A total of 844 animals were genotyped with the 60 K Illumina single nucleotide polymorphism (SNP) 
chip. Whole‑genome interval linkage mapping and a genome‑wide association study (GWAS) were performed for 
body weight at 0, 4, 8, 12, and 16 weeks of age, shank length at 8 weeks of age, size of comb area at 16 weeks of age, 
and antibody response to sheep red blood cells at 11 weeks of age (7 and 14 days after primary immunization). Rel‑
evant genes were identified based on functional annotation of candidate genes and potentially relevant SNPs were 
detected by comparing whole‑genome sequences of several birds between the parental lines.

Results: Whole‑genome QTL analysis revealed 47 QTL and 714 effects associated with 178 SNPs were identified by 
GWAS with 5% Bonferroni genome‑wide significance. Little overlap was observed between the QTL and GWAS results, 
with only two chromosomal regions detected by both approaches, i.e. one on GGA24 (GGA for Gallus gallus chro‑
mosome) for BW04 and one on GGAZ for six growth‑related traits. Based on whole‑genome sequence, differences 
between the parental lines based on several birds were screened in the genome‑wide QTL regions and in a region 
detected by both methods, resulting in the identification of 106 putative candidate genes with a total of 15,443 SNPs, 
of which 41 were missense and 1698 were not described in the dbSNP archive.

Conclusions: The QTL detected in this study for growth and morphological traits likely influence adaptation of chick‑
ens to sub‑tropical climate. Using whole‑genome sequence data, we identified candidate SNPs for further confirma‑
tion of QTL in the F2 design. A strong QTL effect found on GGAZ underlines the importance of sex‑linked inheritance 
for growth traits in chickens.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Detection of quantitative trait loci (QTL) is a classical 
approach to better understand the genetic architecture 
of complex traits and unravel genomic regions that con-
trol quantitative variation of traits. Many QTL detection 

studies have been conducted in chickens, as reviewed 
by Abasht et  al. [1], most of these using commercial or 
experimental lines, and only a few using local breeds. 
Since the publication of the Abasht et al. [1] review, addi-
tional QTL studies have been reported on egg laying [2, 
3] and comb traits [4]. In general, these QTL studies are 
conducted under standard management practice. In the 
current study, we carried out a QTL detection project 
under the real conditions of a humid sub-tropical climate 
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in Taiwan, using an F2 cross between a locally adapted 
line, named L2, and an imported selected line, named R-. 
The L2 line is a closed line that has been selected for egg 
production as a dam line in the mating design used for 
the production of Taiwan Country chicken since 1982 
[5]. The R- line is a closed line that has been selected in 
France for adult residual food consumption since 1975 
and was imported in Taiwan in 2003 [6]. This work 
focused on traits that are measured during the grow-
ing period and that likely play a role in the adaptation of 
chickens to sub-tropical climate. Body weight was shown 
to play an important role in adaptation to high tempera-
tures [7, 8], shank length and comb area are non-feath-
ered areas that contribute largely to heat dissipation [9], 
and antibody response to sheep red blood cells is an indi-
cator of immune response [10]. The analysis used two 
different methods, genome-wide association analysis 
(GWAS) and QTL mapping, which were applied to geno-
types obtained with the high-density 60 K Illumina iSe-
lect chicken array [11].

Methods
Experimental population
A three-generation design was produced by crossing 
two pedigreed parental lines, L2 and R-, which are main-
tained at the experimental farm of the National Chung 
Hsing University (NCHU). Line L2 was established in 
1983 from a sample of Taiwan Country chickens and has 
been maintained as a closed population since then [5]. L2 
males were selected on the basis of the size of the comb 
area (as an indicator of sexual maturity), body weight 
at 12 or 14 weeks of age, and average egg production to 
40 weeks of age of full- and half-sisters. L2 females were 
selected for egg production to 40 weeks of age based on 
their own records and those of their full- and half-sis-
ters. Since 1975, a divergent selection was undertaken at 
the French National Institute for Agricultural Research 
(INRA) to study the genetic basis of residual feed intake 
(RFI) in Rhode Island Red (RIR) layers [12]. The R-  line 
has been selected for low RFI (residual food consumption 
adjusted for body weight (BW), change in body weight 
(ΔBW) and total egg mass (EM) by multiple linear regres-
sion). Individual feed intake, BW and ΔBW, were meas-
ured between 33 and 37  weeks of age in birds of both 
sexes, and EM was recorded over the same period (i.e. 
28 consecutive days) in females. R-  males were selected 
on the basis of their own RFI value, whereas R-  females 
were selected in two steps, combining their RFI value and 
their own egg production at 40 weeks of age. In 2003, a 
subset of the 28th generation of selection of R-  line was 
shipped to NCHU to study the adaptation of R- chickens 
to sub-tropical climate [6]. Since then, this line has been 

maintained as a closed population with a one-year gen-
eration interval.

In 2009, 46 F0 parents, born in the same batch, were 
used to generate the F1 generation by mating six L2 
males to 15 R- females (LR) and seven R- males to 18 L2 
females (RL). Then, six F1 males (four LR and two RL) 
were mated to 51 unrelated F1 dams; 32 RL females were 
mated to four LR males and 19 LR females were mated 
to two RL males. The family size of dams ranged from 
1 to 35 (see Additional file  1: Figure S1). A total of 743 
F2 individuals were produced in four successive batches 
with the following birth dates: 17 Dec. 2010, 18 Jan. 2011, 
31 Jan. 2011, and 18 Feb. 2011 (see Additional file 2: Table 
S1). The experimental period lasted until 16 weeks of age 
for each batch.

Husbandry
All F2 chickens were reared in floor pens in an open-
sided building, with a temporary fence to close the 
rooms, and additional heating (24 h/day) for the first two 
weeks (up to 29 °C). The temporary fences were removed 
at three weeks of age. The mean ambient temperature 
in the surrounding area ranged from 18 to 26  °C from 
batch 1 to batch 4, with minimal values ranging from 6.6 
to 20 °C and maximal values ranging from 24 to 35.6 °C 
(see Additional file 3: Figure S2). Chicks were fed accord-
ing to recommended nutrition standards, with a starter 
diet (metabolizable energy: 2830 kcal ME/kg and 19.14% 
crude protein) from hatch to 4 weeks of age and a grower 
diet (2818  kcal ME/kg and 16.11% crude protein) from 
5 to 16  weeks of age. The same vaccination plan was 
applied to all F2 birds (see Additional file  4: Figure S3). 
Natural light was supplied during the rearing period, 
with an average day length close to 12 h.

Phenotypic measurements
Body weight was measured with an electronic scale 
(±1 g) at hatch (BW00) and every four weeks thereafter, 
i.e. BW04, BW08, BW12 and BW16. Growth rate was 
estimated by the difference between successive meas-
urements of body weight every 4  weeks, i.e. between 4 
and 8 weeks of age (BW0804), between 8 and 12 weeks 
of age (BW1208), and between 12 and 16  weeks of age 
(BW612). Length and height of the comb at 16 weeks of 
age were measured with a ruler (±1 mm), and comb area 
was computed as the product of comb length by comb 
height (CA16). Length of the right shank was measured 
with a Vernier caliper (±1 mm) at 8 weeks of age (SL08).

All F2 chickens were injected with 0.1  mL of a 0.25% 
suspension of sheep red blood cell (SRBC) at 11  weeks 
of age. Blood was sampled from the wing vein of each 
bird just before immunization to determine the baseline 
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antibody level (SRBC00) and antibody levels at 7 and 
14  days after primary immunization, i.e. SRBC07 and 
SRBC14, respectively. Sera were collected after centri-
fuging the blood samples, and stored at −20 °C until all 
assays could be run simultaneously. SRBC antibody lev-
els were assayed by the hemagglutination test [13] and 
expressed in  log2 units. All experiments involving ani-
mals in this study were done according to the approved 
protocol of the Institutional Animal Care and Use Com-
mittees of the NCHU (Taichung, Taiwan; IACUC No. 
97-99).

Genotyping and quality control
At each of the three generations of the experimental 
design, blood was collected from the wing vein of each 
bird and genomic DNA was extracted using a commer-
cial DNA extraction kit  (DNeasy® Blood kit) and diluted 
to 50 ng/μl. After DNA quality control, each chicken was 
genotyped using the Illumina 60 K Chicken SNP iSelect 
chip. Of the 846 chickens (F0: 46, F1: 57, and F2: 743), 
two F2 individuals were excluded because SNPs for these 
individuals had a low call rate (<95%). The SNP set used 
in the current study included 57,636 SNPs. Approxi-
mately 30% (17,018) of the SNPs did not meet the fol-
lowing criteria and were removed: low call rate (<95%), 
low minor allele frequency (<0.05), or unknown chro-
mosomal position on the chicken reference genome 
GalGal4. Pedigree checking was considered necessary 
before performing linkage analysis. An in-house software 
developed by D. Boichard (personal communication) 
was used to detect incompatible genotypes for each sire/
dam/progeny triplet. Each incompatibility with either 
the sire, the dam, or both was recorded. When the total 
number of incompatible SNPs exceeded 2% of all SNPs, 
another in-house software, also developed by D. Boich-
ard (personal communication), was used to assign the 
most probable parent(s) to each progeny. About 10% of 
pedigree errors were identified and corrected. When the 
pedigree was confirmed, only a few incompatible SNP 
genotypes remained for some F2 individuals compared to 
their F1 parents, and these were considered as genotyp-
ing errors rather than as pedigree errors and replaced by 
missing values for the corresponding F2 individuals. The 
final data included genotypes for 844 individuals (F0, F1, 
and F2) and 40,618 SNPs, distributed on 28 autosomes, 
two linkage groups and the Z sex chromosome. The Fst 
between parental lines was calculated with PLINK (Ver-
sion 1.9) [14] using the SNP genotypes from the 46 F0 
parents.

Phenotypic comparisons
The normality of trait distribution in the F2 popula-
tion was checked by the  SAS® UNIVARIATE procedure 

(Statistical Analysis System, Version 9.3, SAS, Institute 
Inc., Cary, NC, USA). Trait differences between paren-
tal lines were studied by analysis of variance using the 
GLM procedure in  SAS® and including the effects of sex 
and line. For the F2 population, the GLM procedure was 
applied to estimate the fixed effects of sex, dam (full-sib 
family effect), and batch, taking into account BW00 as a 
covariate for all other body weight measurements, as well 
as for SL08 and CA16. For the SRBC traits, the model 
included BW08 instead of BW00 as a covariate, in addi-
tion to the fixed effects.

Genome‑wide association analysis
Population stratification of the F2 individuals was 
assessed with multidimensional scaling (MDS) analysis 
available from PLINK (Version 1.0.7) [15]. The indep-
pairwise option with a window size of 25 SNPs, a step 
of 5 SNPs, and an  r2 threshold of 0.2 was used to obtain 
independent SNPs. Pairwise identity-by-state (IBS) dis-
tances were calculated between all individuals using 3266 
independent SNPs, and MDS components were esti-
mated by the mds-plot option based on the IBS matrix. 
Linkage disequilibrium (LD) blocks were defined as a set 
of contiguous SNPs with pairwise  r2 values exceeding 
0.4, which resulted in 7063 LD blocks for growth-related 
traits and 7048 LD blocks for SRBC traits.

GWAS was carried out by using a univariate linear 
mixed model in GEMMA [16]. The linear mixed model 
used in this study was applied for each chromosome, 
with sex, batch, and dam as fixed effects and by incor-
porating random genetic effects with genomic relation-
ships to correct for genetic structure in the experimental 
population. The analysis was implemented on all data 
for the autosomes, while data from males and females 
were separated for the analyses on the Z chromosome. 
P value thresholds were computed based on the number 
of independent SNPs and LD blocks [17, 18], resulting 
in a P-value threshold of 5% Bonferroni genome-wide 
significance threshold of 4.84  ×  10−6 (0.05/10329) and 
a suggestive linkage threshold of 9.68 × 10−5 (1/10329). 
Manhattan plots of the GWAS results for each trait were 
produced with the qqman package available from R (Ver-
sion 3.1.2) [19].

QTL mapping
Single QTL detection analyses were carried out with 
the QTLMap software [20], which was developed to 
handle data on F2 individuals for designs from outbred 
populations. QTLMap is an interval mapping method, 
in which QTL are detected using a likelihood ratio test 
(LRT) calculated under the hypothesis of one versus no 
QTL linked to the given SNPs. The linkage disequilib-
rium linkage analysis (LDLA) option of QTLMap was 
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applied to single trait [17]. No assumptions were made 
on the fixation of alleles in the grand-parental lines (L2 
and R-) and on the number of segregating alleles at the 
QTL. The family structure of the F2 population consisted 
of six half-sib families, and the minimum size for consid-
ering dam families was set at 20 progeny, which was the 
case for 15 of the 51 dam families. Fixed effects of dam, 
sex, batch, as well as covariates (BW00 or BW08 depend-
ing on the trait studied) were taken into account in the 
model. For the Z chromosome, an interaction between 
the QTL and the fixed effect of sex was added to the 
model. The LRT value was calculated by scanning chro-
mosomes for QTL with a step of 1 cM. The method pro-
posed by Churchill and Doerge [23] was used to estimate 
empirical thresholds taking into account the family struc-
ture (pedigree) and genotype data (SNPs). Chromosome-
wide significance of LRT values was obtained by 10,000 
simulations under the null hypothesis (no QTL) to calcu-
late 1 and 5% significance thresholds [21]. Genome-wide 
thresholds were defined by applying the Bonferroni cor-
rection across chromosomes:

where n is the number of chromosomes used in the study. 
Confidence intervals for QTL were estimated by the one 
LOD drop-off method [22]. The QTL substitution effect 
was assessed in each sire family at the position of the LRT 
maximum, and significance was assessed by Student’s 
t test. The additive value of a QTL effect was calculated 
as the mean of the absolute value of the sire substitution 
effects (P value  < 0.05). SNP positions and information 
were annotated using the GalGal4 genome assembly [24]. 
Information on potential candidate genes in each QTL 
region was searched for in the NCBI and Ensembl data-
bases [24, 25]. Furthermore, for genes that were associ-
ated with significant SNPs, we performed a search of the 
gene ontology database [26] to draw hypotheses about 
the biological processes and molecular functions that 
likely influence the trait of interest.

Bioinformatics
In previous research, whole-genome sequence data was 
produced for one L2 chicken [27] and for two R- chickens 
[28]. The sequenced animals were chosen at random in a 
recent generation for each line and constitute a resource 
for identifying SNPs that differ between the lines but 
were not used as F0 animals in the current F2 design.

Sequence alignment between the reference genome 
assembly GalGal4 and the whole-genome sequences of 
the L2 and R- individuals was performed to identify SNPs 
that differ between the two lines. Sequencing fragments 
with a Phred quality score lower than 15 and the adapter 

Pgenome−wide = 1−
(

1− Pchromosome−wide

)n
,

sequences were removed by Trimmomatic [29] before 
alignment to the chicken reference genome assembly 
Galgal4.84 [25]. Trimmed reads that were shorter than 
36  bp were then eliminated. Only read pairs for which 
both forward and reverse reads remained after trim-
ming were mapped to the chicken reference by Burrows–
Wheeler Alignment tool (BWA) [30].

SNP calling
Genome Analysis Toolkit (GATK) was applied to identify 
variants across the genome [31–33]. Mutations that were 
located within repeated sequences were marked by Pic-
ard [34] and discarded. In order to increase the accuracy 
of insertion and deletion (InDel) calling, reads around 
InDels were locally realigned by the IndelRealigner tool 
provided by GATK. The HaplotypeCaller tool of GATK 
was applied to detect variants. A read base with a Phred 
score less than 10 was not considered in the variant dis-
covery step. Only mutations that were called with a Phred 
score equal to or higher than 30 were considered as con-
fident mutations and reported. Our search for SNPs that 
differed between the L2 and R-  birds was focused on 
the QTL regions that were detected by both GWAS and 
QTL mapping, with the aim to identify potential candi-
date mutations for further study. Functional effects of the 
identified mutations were predicted by SnpEff [35] and 
with Variant Effect Predictor (VEP) [36].

Results
Phenotypic means of the F0 and F2 populations
None of the phenotypes recorded in this study signifi-
cantly deviated from the normal distribution (P > 0.05). 
Means and standard deviations for the F0 lines and their 
F2 crosses are in Tables  1 and 2 for males and females, 
respectively. Highly significant differences were found 
between the L2 and R- lines for all growth traits (BW00 
to BW16) and for CA16. Lines did not differ for immune 
response to sheep red blood cells, except for SRBC14 
which was lower in R-  females (P  <  0.05) than in L2 
females. Shank length was not available for the F0 indi-
viduals. Animals from the R- line were lighter than those 
from the L2 line, and also had a much smaller comb 
area. In the F2 generation, the fixed effects of sex, dam, 
and batch were significant, except for sex for BW00 and 
SRBC00, batch for BW08, and dam for BW1612, SRBC07, 
and SRBC14. The R- square values for the model ranged 
from 0.11 (SRBC00) to 0.77 (CA16). Regression coef-
ficients on BW00 or BW08 were not significant for any 
trait (P > 0.10). Coefficients of variation for body weight 
traits and shank length ranged from 10 to 20% but were 
much higher for comb area (about 40 to 50% depending 
on sex) and for immune response traits (about 50 to 70%). 
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Population stratification
The Fst between the parental lines was equal to 0.31, 
which shows significant differentiation between the lines. 
The structure of the F2 population was assessed by MDS 
analysis by applying an  r2 less than 0.2. Plotting of the first 
two MDS components showed that F2 individuals clus-
tered according to mating type (LR or RL F1 males) and 
half-sib family (four families from the LR males and two 
families from the RL males), which showed that the MDS 
components represented the family structure of the F2 
generation (see Additional file 5: Figure S4). As expected, 
clustering of individuals within sires reflected the within-
sire dam family structure (see Additional file 6: Figure S5).

Genome‑wide association analysis
A total of 714 SNP effects associated with 178 SNPs were 
identified for nine traits with 5% Bonferroni genome-
wide significance (P value <4.84 × 10−6) (see Additional 
file  7: Table S2). No SNP effect reached 5% Bonferroni 
genome-wide significance for BW00, CA16, SRBC00, and 
SRBC07. BW0804 had the largest number of genome-
wide significant SNP effects (136), followed by SL08 (131) 
and BW08 (126) (Fig.  1). In contrast, a limited number 
of significant SNP effects was detected for SRBC14 (1), 
BW1208 (17), and BW1612 (20). In addition, 364 SNP 
effects associated with 234 SNPs reached suggestive sig-
nificance (P value <9.68 × 10−5).

Table 1 Body weight (g), comb area  (cm2), shank length (cm), and immune response traits (SRBC) in the F0 L2 and R- lines 
and their F2 male progeny from hatch to 16 weeks of age

BW00, 04, 08, 12, 16: body weight at hatch, at 4, 8, 12, and 16 weeks of age; CA16: size of comb area at 16 weeks of age; SRBC00, 07, 14: baseline antibody level, 
antibody level at 7 and 14 days after primary immunization of sheep red blood cell; SD: standard deviation; the p value corresponds to the significance level of the 
comparison between L2 and R- lines, for each trait

Male L2 R‑ p value F2

Trait Mean SD Mean SD Mean SD

BW00 27.5 2.1 36.3 1.5 <0.0001 32.2 2.3

BW04 354.8 46.4 238.7 26.4 <0.0001 290.7 51.3

BW08 1052.5 113.2 759.7 75.3 <0.0001 937.0 131.3

BW12 1758.4 240.3 1309.4 106.0 <0.0001 1511.6 262.4

BW16 2112.4 196.1 1808.1 128.4 0.0008 2220.4 324.7

CA16 56.6 12.1 16.0 2.4 <0.0001 31.8 13.1

SL08 – – – – – 7.0 0.5

SRBC00 – – – – – 0.3 0.8

SRBC07 5.2 2.1 4.9 1.6 0.79 2.6 1.8

SRBC14 4.1 1.8 3.3 1.2 0.97 2.7 1.7

Table 2 Body weight (g), comb area  (cm2), shank length (cm), and immune trait (SRBC) in the F0 L2 and R- lines and their 
F2 female progeny from hatch to 16 weeks of age

BW00, 04, 08, 12, 16: body weight at hatch, at 4, 8, 12, and 16 weeks of age; CA16: size of comb area at 16 weeks of age; SRBC00, 07, 14: baseline antibody level, 
antibody level at 7 and 14 days after primary immunization of sheep red blood cell; SD: standard deviation; the p-value corresponds to the significance level of the 
comparison between L2 and R- lines, for each trait

Female L2 R‑ p value F2

Trait Mean SD Mean SD Mean SD

BW00 25.7 2.5 35.8 1.9 <0.0001 32.4 2.5

BW04 285.1 40.2 220 28.7 0.0014 256.5 48.3

BW08 829.2 86.1 610 96.0 <0.0001 735.2 148.1

BW12 1312.4 126.7 933.1 128.6 <0.0001 1147.1 249.2

BW16 1675.5 143.7 1170.4 195.6 <0.0001 1526.5 309.2

CA16 10.2 5.3 3.0 1.0 0.0022 4.8 2.5

SL08 – – – – – 6.2 0.7

SRBC00 – – – – – 0.3 0.8

SRBC07 5.6 1.5 5.4 1.3 0.78 3.1 2.2

SRBC14 5.0 1.4 3.4 1.0 0.01 3.1 1.7
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Only three chromosomes (GGA14, 24, and Z) car-
ried genome-wide significant SNPs (Figs.  2, 3), whereas 
suggestive SNP effects were found on 11 chromosomes 
(GGA1, 2, 4, 7, 9, 14, 15, 22, 24, 26, and Z) (Table  3). 
GGAZ carried the most genome-wide significant SNP 
effects, which were detected only in females and for 
eight traits (BW04, BW08, BW12, BW16, BW0804, 
BW1208, BW1612, and SL08). The strongest associa-
tion was found for a large region on GGAZ that spanned 
13.1  Mb (between 8.9 and 22.0  Mb) and contained 
146 genome-wide significant SNPs associated with 
eight growth-related traits. The most significant SNPs 
(3.57 ×  10−42  <  P value  <1.74 ×  10−47) were associated 
with BW08, BW0804, and SL08. This region contained 30 
SNPs, harbored three annotated genes and one unchar-
acterized gene. Among these, the highest significance 
(P value ≤1.74 ×  10−47) was obtained for SNPs in the 
prostaglandin E receptor 4 (PTGER4) and complement 
component 7 (C7) genes and in the uncharacterized gene 
(LOC100857889). Two overlapping chromosomal regions 
on GGA24 (between 4.1 and 5.3 Mb and between 4.3 and 
6.0 Mb) were associated with BW04 and BW08, respec-
tively. These two regions harbored 13 and seven genome-
wide significant SNPs, respectively, and have been 
reported to carry several growth-related QTL [37]. For 
SRBC14, we detected one genome-wide significant SNP 

(rs10724420) that was flanked by suggestive SNPs. This 
SNP was located in the 3′-UTR of the 3-phosphoinositide 
dependent protein kinase 1 gene (PDPK1), which is 
involved in transcriptional regulation of proopiomelano-
cortin in mice, with consequences for food intake, body 
weight and size [38]. This region on GGA14 was previ-
ously reported in studies on body weight and immune 
related QTL [37]. 

QTL mapping
The whole-genome single QTL analysis led to the iden-
tification of 47 QTL that corresponded to 34 non-over-
lapping regions on 20 chromosomes (Table  3), since 
there were several overlapping QTL regions for different 
traits. Thirteen of these 47 QTL had high genome-wide 
significance (P < 0.05) and corresponded to 10 non-over-
lapping regions on GGA1, 2, 4, 9, 14, 27, and Z. BW00 
was associated with the largest number of genome-wide 
QTL regions, which were distributed on five chromo-
somes (GGA1, 2, 4, 9, and 27), whereas the QTL regions 
for other traits were distributed on GGA2 (BW12), 
GGA14 (BW04), and GGAZ (BW04, BW08, BW12, 
BW16, BW0804, and SL08). The QTL that were the 
most highly significant at the chromosome-wide level (P 
value <0.01) affected BW04 (GGA7), BW08 (GGA2 and 
GGA14), BW12 (GGA3), CA16 (GGA3 and 5), SRBC00 

Fig. 1 Number of SNPs reaching 5% Bonferroni genome‑wide significance (P value <4.84 × 10−6) for the nine evaluated traits. A total of 714 effects 
associated with 178 SNPs were identified for nine traits at the 5% Bonferroni genome‑wide significance level (P value <4.84 × 10−6). No SNP effect 
reached 5% Bonferroni genome‑wide significance for BW00, CA16, SRBC00, and SRBC07. BW0804 had the largest number of SNP effects (136), fol‑
lowed by SL08 (131) and BW08 (126)
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(GGA17), and SRBC14 (GGA4 and 19). All other iden-
tified QTL had chromosome-wide significance P values 
less than 0.05. Estimates of QTL allele substitution effects 
ranged from 0.18 (SRBC07 on GGA18) to 2.25 (CA16 
on GGA26) residual standard deviations, with a mean of 
0.58 standard deviations. Among the autosomes, GGA2 

carried the largest number of detected regions, with six 
identified QTL, followed by GGA3, 4, and 17, which 
each carried three QTL. The average confidence interval 
spanned 2.4 cM, ranging from 2 to 5 cM.

Three QTL with chromosome-wide significance that 
affected SRBC traits on GGA18 and 21 were not reported 

Fig. 2 Manhattan plots. Manhattan plots for genome‑wide analyses of BW04, BW08, BW12, BW16, BW0804, and BW1208. Red and blue lines cor‑
respond to thresholds of 4.84 × 10−6 and 9.68 × 10−5, respectively
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before. The chromosome-wide QTL found for CA16 on 
GGA3 was not located at the same position as the one 
previously described on that chromosome for comb mass 
[4].

QTL detected by both GWAS and QTL mapping‑LDLA
The position of the SNPs that flanked a QTL region was 
used to establish the correspondence between the results 
of QTLMap and those of GEMMA, by considering all 
SNP effects detected at a P value less than 0.05. Regions 
detected by both methods were found only on two chro-
mosomes: GGA24 for BW04 and GGAZ for seven traits 
(BW04, BW08, BW12, BW16, BW0804, BW1612, and 
SL08). Thus, of the 47 QTL detected with QTLMap, eight 
were also detected with GEMMA. The 39 QTL that were 
detected only with QTLMap corresponded to 35 chro-
mosome regions that overlapped with previously pub-
lished QTL, for either growth- or immune-related traits 
[37].

Sequence analysis
The analysis of whole-genome sequence data focused on 
the 13 genome-wide significant QTL (10 non-overlap-
ping chromosomal regions) detected by QTLMap, and 
the region identified with GEMMA on GGA24, which 
contained genome-wide significant SNPs but was only 
chromosome-wide significant with QTLMap. The L2 
bird and the two R- birds differed for 15,443 SNPs in 106 
genes (83 known genes, 16 genes coding for uncharac-
terized proteins, and seven miRNA); 1698 of these SNPs 
were novel. Among these 106 genes, 21 carried 41 mis-
sense mutations, as identified by VEP. The results are 
summarized according to QTL region in Table S3 (see 
Additional file 8: Table S3). An in-depth analysis focused 
on genes with known functions that were the closest to 
the position showing the highest probability in QTL 
mapping or GWAS.

Two genome-wide significant QTL were detected on 
GGA2 for body weight traits. The QTL that affected 

Fig. 3 Manhattan plots. Manhattan plots for genome‑wide analyses of BW1612, and SL08. Red and blue lines correspond to thresholds of 
4.84 × 10−6 and 9.68 × 10−5, respectively
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Table 3 List of QTL and genome-wide significant SNPs identified by QTL mapping (LDLA) and GWAS

Trait GGA Loc (M) CI (M) MLR Nearest SNPs SL QTL 
effect

GWAS Published 
related QTL

BW00 1 3.452 3.442–3.462 124.22 GGaluGA046916‑rs13947322 G*** 0.269 – BW

BW00 2 0.831 0.821–0.841 74.46 rs14168592‑rs14170121 G* 0.251 – BW

BW04 2 2.341 2.331–2.351 60.68 rs14234623‑rs16106127 C* 0.498 – BW

BW08 2 2.341 2.331–2.351 71.7 rs14234623‑rs16106127 C** 0.748 – BW

BW16 2 2.341 2.331–2.351 82.98 rs14234623‑rs16106127 G** 0.720 BW

SL08 2 2.341 2.331–2.351 63.31 rs14234623‑rs16106127 C* 0.486 – BW

SRBC00 2 0.111 0.101–0.141 60.69 GGaluGA131350‑rs14134125 C* 0.431 – BW

BW12 3 0.06 0.05–0.07 65.9 rs14308283‑GGaluGA203599 C** 0.399 – BW

BW16 3 0.03 0.02–0.07 62.52 GGaluGA203198‑GGaluGA203599 C* 0.345 – BW

CA16 3 0.02 0.01–0.03 66.44 rs14309145‑rs14308726 C** 0.280 – BW

BW00 4 1.141 1.131–1.151 77.01 GGaluGA258962‑rs14469696 G* 0.787 – BW,IM

SRBC14 4 1.391 1.381–1.401 63.77 rs14480306‑GGaluGA262668 C** 0.622 – BW

CA16 5 0.231 0.221–0.241 60.79 rs14511113‑rs15655840 C** 0.426 – IM

SL08 5 0.611 0.601–0.621 54.24 GGaluGA278486‑rs14521985 C* 0.343 – BW

BW04 7 0.732 0.722–0.742 60.69 rs16596997‑rs15864433 C** 0.514 – BW

SL08 7 0.712 0.702–0.732 58.74 GGaluGA315581‑GGaluGA316229 C* 0.221 – BW

BW00 9 0.774 0.764–0.784 139.65 GGaluGA342923‑rs16677966 G*** 0.449 – BW,IM

SL08 12 0.103 0.093–0.113 57.16 rs13621525‑GGaluGA082232 C* 0.469 – BW

SRBC00 12 0.403 0.393–0.413 55.25 rs14040595‑GGaluGA085745 C* 0.385 – BW

SL08 13 0.077 0.067–0.087 52.39 rs14057266‑GGaluGA091278 C* 0.421 – BW

SRBC00 13 0.317 0.307–0.327 54.13 GGaluGA094109‑rs15001109 C* 0.496 – BW

BW04 14 0.131 0.121–0.141 108.62 rs15722248‑rs15723606 G*** 0.526 – BW,IM

BW08 14 0.171 0.151–0.181 69.68 rs14071741‑GGaluGA100621 C** 0.453 – BW

SL08 14 0.171 0.161–0.181 64.13 rs13531412‑GGaluGA100621 C* 0.188 – BW

SRBC14 14 – – – – – – 1 G‑W SNP 
(7418129 bp)

–

BW16 17 0.277 0.257–0.287 51.51 rs15799059‑rs14100782 C* 0.567 – BW

CA16 17 0.137 0.127–0.147 50.45 rs15033487‑GGaluGA113549 C* 0.310 – BW

SRBC00 17 0.197 0.187–0.207 62.72 rs15032558‑rs14102021 C** 0.363 – BW

SRBC07 18 0.412 0.402–0.422 49.89 rs13509086‑GGaluGA122291 C* 0.177 – –

SRBC14 18 0.412 0.402–0.422 50.99 rs13509086‑GGaluGA122291 C* 0.442 – –

SRBC14 19 0.151 0.141–0.161 56.17 rs13573938‑rs14118340 C** 0.349 – BW

BW12 20 0.381 0.371–0.391 52.76 rs16005422‑rs16172318 C* 0.446 – BW

SL08 20 0.381 0.371–0.391 51.38 rs16005422‑rs16172318 C* 0.233 – BW

SRBC00 21 0.3 0.29–0.33 55.45 rs16180505‑GGaluGA184295 C* 0.289 – –

BW04 24 0.291 0.281–0.301 53.35 rs16196993‑GGaluGA192626 C* 0.214 13 G‑W SNPs (4145811–
5321244 bp)

BW

BW08 24 – – – – – – 7 G‑W SNPs (4286369–
6019223 bp)

–

CA16 24 0.281 0.271–0.291 54.07 GGaluGA192284‑rs14295712 C* 0.325 – BW

CA16 26 0.385 0.375–0.395 52.51 rs14300692‑rs16204214 C* 0.182 – BW

BW00 27 0.461 0.451–0.471 117.61 GGaluGA200219‑rs14304325 G*** 0.402 – BW,IM

BW00 28 0.203 0.193–0.213 49.59 GGaluGA201613‑GGaluGA201725 C* 0.556 – BW,IM

BW04 Z 0.43 0.41–0.44 166.33 rs14756962‑rs16763234 G*** 0.893 50 G‑W SNPs 
(11113817–
17739555 bp)

IM

BW08 Z 0.38 0.36–0.39 294.24 rs14786654‑rs16102663 G*** 1.409 119 G‑W SNPs 
(9581584–
21954151 bp)

BW,IM
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BW00 (between 41.1 and 42.4 Mb) contained 18 genes, of 
which four abhydrolase domain containing 5 (ABHD5), 
calpain 7 (CAPN7), maturin, neural progenitor differen-
tiation regulator homolog (MTURN), and testis and ovary 
specific PAZ domain containing 1 (TOPAZ1), are involved 
in the regulation of body weight, total amount of body 
fat, and lean body mass in mice [39]. The TOPAZ1 gene 
carried 207 SNPs that differed between the L2 and the 
R- birds, of which 80 were novel SNPs, and one missense 
SNP that resulted in a valine being replaced by an isoleu-
cine at position 431 of the protein. The QTL that affected 
BW16 (between 111.2 and 112.0  Mb) harbored two 
genes, cytochrome P450, family 7, subfamily a, polypep-
tide 1 (CYP7A1) and inositol monophosphatase domain 
containing 1 (IMPAD1), which are associated with birth 
weight [40] and increased body weight [39] in mice.

The region on GGA14 (between 2.8 and 3.3  Mb) 
was associated with a strong effect for BW04 and car-
ried the ACTB gene, which is involved in the regula-
tion of body weight and size in mice [41]. This gene 
contained 75 SNPs that differed between the L2 and 
the R- birds, of which 12 were novel SNPs. Three QTL 
on GGAZ that contain several growth-related genes 
were detected in this study for BW16 (between 11.7 
and 13.0  Mb), BW04 (between 13.7 and 14.7  Mb), 
and BW08, BW0804, BW12, SL08 (between 12.1 and 

13.0 Mb). The PTGER4 gene carried 104 SNPs that dif-
fered between the L2 and the R- birds, of which 96 were 
novel SNPs. A previously described missense mutation 
(rs315266117, 12708649 bp) was detected in the genome 
of the R-  birds; it is located close to the SNP with the 
lowest P-value in our GWAS analysis and results in the 
replacement of a glutamic acid by a lysine at position 
375 of the protein, which is deleterious according to the 
SIFT prediction. The OSMR gene, which is involved in 
muscle organ and skeletal development in chickens [36], 
carried 144 SNPs that differed between the L2 and the 
R-  birds, of which 136 were novel SNPs. One missense 
mutation (rs312389473) that resulted in the replacement 
of a threonine by a serine was located at position 501 of 
the protein. Among the other identified genes, PRKAA1 
(protein kinase, AMP-activated, alpha 1 catalytic subu-
nit) and RICTOR (RPTOR independent companion of 
MTOR, complex 2) are related to viscera weight [42, 43] 
and prostaglandin E receptor 4 (EP4), fibroblast growth 
factor 10 (FGF10), and leukemia inhibitory factor recep-
tor (LIFR), which are located in the QTL region for 
BW16 (between 11.7 and 13.0 Mb on GGAZ), have been 
reported to be associated with body weight related traits 
[44, 45]. FGF10 and EP4 contained 189 and 106 SNPs 
that differed between the L2 and R-  lines and each of 
these genes carried one missense SNP.

Table 3 continued

Trait GGA Loc (M) CI (M) MLR Nearest SNPs SL QTL 
effect

GWAS Published 
related QTL

BW0804 Z 0.38 0.36–0.39 288.44 rs14786654‑rs16102663 G*** 1.323 136 G‑W SNPs 
(9088090–
21954151 bp)

BW,IM

BW12 Z 0.38 0.36–0.39 226.51 rs14786654‑rs16102663 G*** 1.712 99 G‑W SNPs 
(10983124–
21146543 bp)

BW,IM

BW1208 Z – – – – – – 17 G‑W SNPs 
(11327074–
17739555 bp)

–

BW16 Z 0.37 0.35–0.39 216.29 rs16131361‑rs16102663 G*** 1.773 121 G‑W SNPs 
(4646914–
21954151 bp)

BW,IM

BW1612 Z 0.32 0.31–0.33 75.71 GGaluGA347787‑rs16780992 C* 1.158 20 G‑W SNPs (8872779–
15196080 bp)

–

CA16 Z 1.1 1.09–1.13 82.4 rs16109845‑rs16768163 C* 0.615 – BW,IM

SL08 Z 0.37 0.36–0.39 367.79 rs14786654‑rs16102663 G*** 2.250 131 G‑W SNPs 
(2937208–
115665705 bp)

BW,IM

SRBC07 Z 0.6 0.59–0.61 79.81 rs16100247‑GGaluGA349037 C* 0.756 – IM

GGA: Gallus gallus chromosome; Loc: location; CI: confidence interval; MLR: maximal likelihood ratio; SL: significance level with C*, C**, and C*** at 5, 1, and 0.1% 
chromosome-wide significance and G*, G**, and G*** at 5, 1, and 0.1% Bonferroni genome-wide (G-W) significance, respectively; QTL effect: substitution effect 
expressed in residual standard deviation; GWAS: chromosomal region detected by GEMMA; BW00, 04, 08, 12, 16: body weight at hatch, at 4, 8, 12, and 16 weeks 
of age; BW0804, 1612: body weight gain during 4 to 8 weeks of age and 12 to 16 weeks of age; CA16: size of comb area at 16 weeks of age; SL08: shank length at 
8 weeks of age; SRBC00, 07, 14: baseline antibody level, antibody level at 7 and 14 days after primary immunization of sheep red blood cell; Published related QTL: QTL 
regions that were detected in the current study and overlapped with published related QTL (BW: overlapped with body weight, shank length, or egg weight QTL; IM: 
overlapped with immune related QTL
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Furthermore, three QTL for BW00, on GGA4, 9, and 
27, harbored four growth-related genes, among which 
ubiquitin-like modifier activating enzyme 6 (UBA6) on 
GGA4 and MDS1 and EVI1 complex locus (MECOM) on 
GGA9 play a critical role in body size/length and weight 
loss in mice [46, 47]. The QTL region on GGA27 con-
tained two genes that regulate decrease in body weight in 
mice, i.e., LIM and SH3 protein 1 (LASP1) and phosphati-
dylinositol-5-phosphate 4-kinase, type II, beta (PIP4K2B) 
[48, 49].

Discussion
In this study, we focused on traits that were measured 
during the growing period and are likely to play an 
important role in the adaptation of chickens to sub-opti-
mal conditions, particularly to tropical climate. Since the 
lines used for the F2 design were original experimental 
lines, our findings may be specific to these genetic back-
grounds and/or to the sub-optimal environmental condi-
tions that differ from other studies. Yet, most of the QTL 
regions detected for growth traits overlapped with pre-
viously published QTL, which suggests that these QTL 
have an effect across a range of environmental conditions 
and could be particularly useful for selection. Several 
genome-wide QTL were detected for BW00, a trait that is 
strongly influenced by maternal effects. Since data on egg 
weight of the F1 dams were not available at the time of 
reproduction, this effect could not be separated from the 
additive dam effect on chick weight.

Surprisingly, no genome-wide significant QTL effects 
were detected on comb area, a trait that is likely relevant 
for climate adaptation and that differed significantly 
between the parental lines. Because of the large sexual 
dimorphism of this trait, we analyzed the data from F2 
males and females separately to search for sex-specific 
QTL but none were detected. This may be explained by 
measurement errors, which can be quite important for 
both sexes, or by the rather large number of QTL that 
control variation of this trait, each with a small effect. 
None of the regions previously described for comb mass 
[4] were identified in the current study, which could be 
due to the use of lines with different genetic backgrounds 
in the current study.

Very little overlap was observed between the QTL 
regions detected by QTLMap and GEMMA. The differ-
ences between GWAS and QTL mapping-LDLA may be 
due to GWAS detecting associations based on LD across 
the F2 population, whereas QTL mapping-LDLA also 
exploits the information provided by within-family segre-
gation, in order to estimate SNP effects on the trait vari-
ation. Legarra et  al. [50] compared LDLA and EMMA 
methods (such as GEMMA) using real and simulated 
datasets and showed good agreement for the location of 

QTL between them. In general, these datasets consisted 
in a large number of small families, except for the sheep 
dataset, in which five F1 sires were mated to a large num-
ber of F1 dams, so that the number of half-sib families 
was similar to the design in the current study but the pro-
portion of full-sibs was much lower in the sheep dataset. 
In our case, differences between the GWAS and LDLA 
results could be due to the fact that within-family segre-
gation provides the most relevant information for QTL 
detection.

Although GEMMA and QTLMap identified the 
same QTL region on GGAZ, with strong effects on 
body weight and shank length, it was significant only in 
females with GEMMA, while QTLMap offered the pos-
sibility to include an interaction between sex and QTL. 
Such detection of sex-specific QTL is not new and they 
could contribute to our results, but in the present case, 
this result could also be due to the segregation mode of 
Z-linked alleles according to sex. In females, only two 
alleles are compared since females are hemizygous, so 
this is a 1:1 comparison of an R-  allele to an L2 allele, 
whereas in males the within-family comparison will differ 
according to mating type. When F1 females have inher-
ited their Z chromosome from an L2 F0 female (named 
 ZL2), the F2 male progeny can have two possible geno-
types: homozygous  ZL2ZL2 or heterozygous  ZL2ZR-, with 
some recombination occurring on the Z chromosome 
inherited from the F1 male. When F1 females inherit 
their Z chromosome from an R- F0 female (named  ZR-), 
the F2 male progeny scan have two possible genotypes: 
homozygous  ZR–ZR- or heterozygous  ZL2ZR-, with recom-
bination occurring on the Z chromosome inherited from 
the F1 male. Thus, if the QTL effect is not additive, the 
different F2 families will not provide the same contribu-
tion to estimation of the QTL, which may result in the 
absence of a significant association. Thus, GWAS involv-
ing sex-linked inheritance may require specific analysis.

Relevant candidate genes were identified in this study, 
according to their position and function. Most of them 
belong to networks of genes that are involved in embry-
onic, organism and tissue development, according to 
Ingenuity Pathway Analysis (IPA) [51]. The sequence data 
available from previous studies provided a list of SNPs 
that represents only a subset of all SNPs that can differ 
between the lines. Some of the alleles at these SNPs are 
expected to be line-specific as a result of the long selec-
tion history of each line and the genetic distance between 
the lines. Since line-specific alleles may arise because of 
selection response or because of random drift, follow-
up studies are necessary to validate whether or not these 
SNPs contribute to the QTL effect. Since missense muta-
tions are rare, they could be the first choice for validation 
analyses, but it is also expected than non-coding variants 
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can be quite relevant for quantitative variation. Thus, the 
choice of SNPs to be validated will be made according to 
their position on the gene, heterozygosity in the F1 popu-
lation, and technical factors depending on the genotyping 
method.

For instance, PTGER4, a candidate gene for the 
growth QTL on GGAZ, has no known function in 
chicken but plays an important role in osteoclast dif-
ferentiation and physiology in mice [52–54]. Although 
the role of this gene is not well known in chickens, it 
is a good candidate for further analysis, starting with 
the genotyping of F1 and F2 animals for SNPs chosen 
from the sequence data, followed by expression studies 
in each parental line if a significant effect on growth is 
identified in the F2 animals. Furthermore, genotyping 
candidate SNPs in the F2 population would also help to 
understand the different results obtained for F2 males 
and females. An obvious candidate gene to be tested for 
the QTL on GGAZ is the growth hormone receptor gene, 
which is known to carry mutations that cause sex-linked 
dwarfism in chickens. This gene lies close to the QTL 
region but not in it, so it may be worthwhile to include 
it in a confirmation study.

Our findings can also be useful for the future man-
agement of the L2 and R-  lines. The frequency and the 
phenotypic consequences of the validated SNPs should 
be determined in the current breeding populations of 
the L2 and R- lines, to investigate their potential use in 
the management of these lines. Depending on their fre-
quency and effect, some of these SNPs could be useful 
in the selection process for sub-tropical climate adap-
tation. Another option would be to set up a dual-pur-
pose cross, taking advantage of the sex-linked QTL on 
growth. For instance, R-  males could be crossed to L2 
females to take advantage of heterosis in hybrids by pro-
ducing light weight F1 females for egg production and 
F1 males with a greater body weight for local broiler 
production.

Conclusions
We have identified QTL for growth and morphological 
traits that may influence adaptation of chickens to vary-
ing environmental conditions. The availability of whole-
genome sequence data for each parental line was useful 
to better document the candidate genes that were iden-
tified according to their positions and known functions. 
Finally, the very strong QTL effects found on the Z chro-
mosome for body weight and shank length underlines the 
importance of sex-linked inheritance for growth-related 
traits in chickens, which is particularly relevant for cross-
breeding in poultry breeding programs.
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