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Abstract: Autonomic Computing has recently contributed to the development of self-manageable Cloud ser-
vices. It provides means to free Cloud administrators of the burden of manually managing varying-
demand services while enforcing Service Level Agreements (SLAs). However, designing Autonomic
Managers (AMs) that take into account services' runtime properties so as to provide SLA guar-
antees without the proper tooling support may quickly become a non-trivial, fastidious and error-
prone task as systems size grows. In fact, in order to achieve well-tuned AMs, administrators
need to take into consideration the speci�cities of each managed service as well as its dependencies
on underlying services (e.g., a Sofware-as-a-Service that depends on a Platform/Infrastructure-
as-a-Service). We advocate that Cloud services, regardless of the layer, may share the same
consumer/provider-based abstract model. From that model we can derive a unique and generic
AM that can be used to manage any XaaS service de�ned with that model. This paper pro-
poses such an abstract (although extensible) model along with a generic constraint-based AM that
reasons on abstract concepts, service dependencies as well as SLA constraints in order to �nd
the optimal con�guration for the modeled XaaS. The genericity of our approach are showed and
discussed through two motivating examples and a qualitative experiment has been carried out in
order to show the approache's applicability as well as to point out and discuss its limitations.

1 INTRODUCTION

The Cloud computing service provisioning model
allows for the allocation of resources in an on-
demand basis, i.e., consumers are able to re-
quest/release compute/storage/network resources,
in a quasi-instantaneous manner, in order to cope
with varying demands (Hogan and al., 2011). From
the provider perspective, a negative consequence
of this service-based model is that it may quickly
lead the whole system to a level of dynamicity that
makes it di�cult to manage so as to enforce Ser-
vice Level Agreements (SLAs) by keeping Quality
of Service (QoS) at acceptable levels.

Autonomic Computing (Kephart and Chess,
2003) has been largely adopted to tackle that kind
of dynamic environments. In fact, it proposes archi-
tecture references and guidelines intended to con-
ceive and implement Autonomic Managers (AMs)
that make Cloud systems self-manageable, while
freeing Cloud administrators of the burden of man-
ually managing them.

In order to achieve well-tuned AMs, administra-
tors need to take into consideration speci�cities of
each managed service as well as its dependencies

on underlying systems and/or services. In other
words, AMs must be implemented taking into ac-
count several managed services' runtime properties
so as to meet SLA guarantees at runtime, which
may require sometimes a certain level of expertise
on �elds that administrators are not always familiar
to or supposed to master (e.g., optimization, mod-
eling, etc.). Furthermore, modeling autonomic be-
haviours without having a holistic view of the sys-
tem, its dependency as well as the impacts incurred
by recon�gurations could lead it to inconsistent
states. Therefore, conceiving AMs from scratch or
dealing with them at a low level, and without the
proper tooling support, may quickly become a cum-
bersome and error-prone task, especially for large
systems.

We advocate that Cloud services, regardless of
the layer in the Cloud service stack, share many
common characteristics and goals. Services can
assume the role of both consumer and provider
in the Cloud service stack, and the interactions
among them are governed by SLAs. For example,
an Infrastructure-as-a-Service (IaaS) may provide
Virtual Machines (VMs) to its customers, which
can be for instance Platform-as-a-Service (PaaS)



or Software-as-a-Service (SaaS) providers, or end-
users, but it may also be a client of Energy-as-
a-Service (EaaS) providers. Similarly, the SaaS
provides software services to end-users, while pur-
chasing VM services provided by one or several
IaaS providers. In this sense, Anything-as-a-Service
(XaaS)' objectives are very similar when general-
izing it to a Service-Oriented Architecture (SOA)
model: (i) �nding an optimal balance between costs
and revenues, i.e., minimizing the costs due to other
purchased services and penalties due to SLA vi-
olation, while maximizing revenues related to ser-
vices provided to customers; (ii) meeting all SLA or
internal constraints (e.g., maximal capacity of re-
sources) related to the concerned service. In other
words, any AM could be designed so as to �nd XaaS
con�gurations according to these objectives.

In this paper, we propose an abstract model to
describe autonomic Cloud systems at any XaaS
level. The model basically consists of graphs and
constraints formalizing the relationships between
the Cloud service providers and their consumers
in a SOA fashion and is encoded in a constraint
programming model (Rossi et al., 2006). From the
latter, we can automatically derive decision-making
and planning modules that are later on integrated
into an AM. The ultimate goal is to provide the
means for administrators to easily de�ne XaaS sys-
tems so they can focus on the core functionalities of
each service while leaving the autonomic engineer-
ing, namely the decision-making and planning, to
be performed by the generic AM.

The major advantage of our approach is that it
is generic. In fact, Cloud administrators are able
to de�ne their own XaaS models by extending/spe-
cializing the abstract model. Even so the extended
XaaS model can still bene�t from the constraint
programming model in a transparent way. That
is to say, the generic AM and the underlying con-
straint solver reason on abstract concepts, service
dependencies as well as SLA or internal constraints
so as to �nd the appropriate XaaS con�gurations
at a given time.

We evaluate our approach in terms of generic-
ity and applicability. The genericity is showed and
discussed throughout two motivating examples il-
lustrating an IaaS and a SaaS self-managed systems
as well as their respective customers and providers.
Regarding the applicability, we provide a qualita-
tive evaluation by showing the behaviour of the
IaaS system over the time, i.e., how its state au-
tonomously evolves in response to a series of sim-
ulated events occurring not only at the customers
(e.g., requesting/releasing resources) and providers
(e.g., changes in the price of o�ered services, new
services available, etc.) sides but also inside itself
(e.g., a crash on a given resource).
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Figure 1: Approach Overview.

In the remainder of this paper, Section 2 gives
an overview of the proposed approach. Section 3
presents a detailed and formal description of the
abstract model. Examples of an IaaS and a SaaS
model de�nitions are shown in Section 4. Section 5
shows the results on the qualitative evaluation per-
formed on a IaaS model under the proposed generic
autonomic manager. Related work is discussed in
Section 6 and Section 7 concludes this paper.

2 ABSTRACT MODEL

OVERVIEW

Our approach is based on a meta-model (Schmidt,
2006) allowing Cloud administrators to model any
XaaS layer and on a MAPE-K loop providing au-
tonomic features (Kephart and Chess, 2003). The
rest of this section gives an overview of each model-
ing level of our approach as well as the generic AM,
as depicted in Figure 1.

2.1 The meta-model level

We propose an abstract and generic model in which
XaaS layers are architecturally composed of compo-
nents and each component depends on other com-
ponent in order to function. Thus, that can be
modeled as a directed acyclic graph (DAG), where
nodes represent atomic components of the system
and arrows represent dependencies between the
components. In other words, it exists an arc from
a component A to a component B if and only if
A depends on B. In the following, the words node



and component are interchangeable.
Each node may have several attributes de�ning

its internal state and several constraints, which can
be either Link Constraints or Attribute Constraints.
The former speci�es whether a component A may
(or has to) use (or be used by) another component
B, whereas the latter expresses a value depending
on the value of other attributes located on the same
node or on neighbor nodes.

2.2 The model level

The above mentioned meta-model provides a set of
high-level DAG-based linguistic concepts allowing
for the de�nition of components, attributes, depen-
dencies among components and constraints on both
attributes and dependencies. It is straightforward
that the main advantage of relying on a DAG-based
model is that it allows, if necessary, for checking
properties such as connectivity or locality. At that
level, however, the concepts remain quite far from
the Cloud Computing domain, which makes it dif-
�cult to describe Cloud services equipped with au-
tonomic capabilities.

We de�ne a set of new linguistic concepts that
allow the de�nition of a Cloud service in terms of
relationships between service providers and service
consumers, while taking into account the SLAs es-
tablished in each relationship. The core of the ser-
vice is modeled as a set of internal components that
o�er a set of services to service clients and may de-
pend on a set of other services provided by service
providers. In summary, we rely on the DAG-based
meta-model to de�ne a Service Model that intro-
duces new SOA-related concepts while restraining
the types of nodes, attributes and connections to be
used. Thus, the Service Model is general enough to
allow for the de�nition of any XaaS service and
speci�c enough to simplify (by specialization) the
task of the Administrator in de�ning speci�c XaaS
models. For instance, an IaaS can be composed of a
set of internal components (e.g., VMs with the at-
tribute ram_capacity) that depend on a set of other
internal components (e.g., PMs with the attribute
max_nb_vm) or on a service provider (e.g., En-
ergy Provider with the attribute power_capacity),
that is, any service required by the service being
modeled.

2.3 The runtime level

Once the Administrator has de�ned its XaaS
model, he/she has to initialize the running in-
stances, that is, the representation of the Physical
XaaS entities (e.g., the real PMs) as well as their
respective constraints in terms of dependencies,
SLAs, attributes (e.g., CPU/RAM capacity). For

instance, a running IaaS instance can be composed
of a set of instances of the VM node with their ini-
tialization values (e.g., ram_capacity=8GB). This
task is tremendously simpli�ed by the adoption of a
Model@run-time approach (Blair et al., 2009): the
running XaaS instance represents the physical sys-
tem and is linked in such a way that it constantly
mirror the system and its current state and behav-
ior; if the system changes, the representations of
the system � the model � should also change, and
vice versa.

A XaaS con�guration is a snapshot of all run-
ning components, including the state of their cur-
rent dependencies and their internal state. The
con�guration can then be modi�ed by three actors:
the XaaS Administrator, the Monitor and the AM.
The XaaS Administrator modi�es the con�guration
whenever he/she initializes the XaaS service by pro-
viding an initial con�guration or for maintenance
purposes.

The Monitor along with the Executor are re-
sponsible for keeping a causal link between the
XaaS instance and the Physical XaaS. Hence, the
Monitor modi�es the con�guration every time it
detects that the state of the real Physical XaaS
has changed by pushing the changes to the XaaS
Instance. On the other way around, the Executor
pushes the changes observed on the XaaS instance
to the real system by translating them to concrete
actions speci�c to the managed system.

The generic AM's role is to ensure that the
current XaaS con�guration: (i) respects the speci-
�ed constraints; (ii) maximizes the balance between
costs and revenues speci�ed in SLA contracts. To
that end, it observes regularly the running XaaS
instance in both periodically or event-based basis
(when severe events happen such as a SLA viola-
tion, a node that is no longer available, etc.) and
triggers a constraint solver by taking as input the
current con�guration and produces as output a new
con�guration that is more suitable to the current
Physical XaaS state. The Planner component pro-
duces a plan based on the di�erence between the
current and new con�gurations in terms of com-
ponents, attribute values and links, resulting in
a set of recon�guration actions (e.g., enable/dis-
able, link/unlink and update attribute value) that
have to be executed on the running XaaS instance.
Lastly, Executor component pushes these actions
to the Physical XaaS.

3 FORMAL DESCRIPTION

This section formally describes the DAG-based ab-
stract model that is used to de�ne the SOA-based
model, from which a XaaS model can be extended.



3.1 Con�gurations and Transitions

Let T be the set of instants t representing the ex-
ecution time of the system where t0 is the instant
of the �rst con�guration. The XaaS con�guration
at instant t is denoted by ct and includes all run-
ning nodes (e.g., PMs/VMs, Software Components,
Databases, etc.), organized in a DAG. CSTRct de-
notes the set of constraints of con�guration ct .

The property satisfy(cstr, t) is veri�ed at t
if and only if the constraint cstr ∈ CSTRct

is met at instant t. The system is consistent
(consistent(ct)), at instant t, if and only if ∀cstr ∈
CSTRct satisfy(cstr, t). Finally, function H(ct)
gives the score of con�guration c at instant t, mean-
ing that the higher this value, the better the con�g-
uration is (e.g., in terms of balance between costs
and revenues).

We discretize the time T by the application of a
transition function f on ct such that ct+1 = f(ct).
A con�guration transition can be triggered in two
ways by:

• an internal event (e.g., the XaaS administrator
initializes a component, PM failure) or an ex-
ternal event (e.g., a new client arrival) altering
the system con�guration (cf. function event in
Figure 2);

• the autonomic manager that performs the
function control. This function ensures that
consistent(ct+1) is veri�ed, while maximizing
H(ct+1) 1 and minimizing the transition cost2

to change the system state between ct and ct+1.

Figure 2 illustrates a transition graph among
several con�gurations. It shows that an event
function potentially moves away the current con-
�guration from the optimal con�guration and that
a control function tries to get closer the optimal
con�guration while respecting all the system con-
straints.

3.2 Nodes and Attributes

Let nt be a node at instant t. It is characterized
by:

• a node identi�er (idn ∈ IDt), where IDt is the
set of existing node identi�ers at t and idn is
unique ∀t ∈ T ;

• a type (typen ∈ TY PES)

1Since the research of optimal con�guration (a con-
�guration where the function H() has the maximum
possible value) may be too costly in terms of execution
time, we assume that the execution time of the control
function is limited by a bound set by the administrator.

2Assuming that an approximate cost value for each
recon�guration action type is a priori known
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Figure 2: Examples of con�guration transition in the
set of con�gurations.

• a set of predecessors (predsnt ∈ P(IDt)) and

successors (succsnt ∈ P(IDt)) nodes in the

DAG. Note that ∀nt
a, n

t
b ∈ct , idnt

b
6= idnt

a

∃idnt
b
∈ succsnt

a
⇔ ∃idnt

a
∈ predsnt

b

• a set of constraints CSTRnt about links with
neigborhood.

• a set of attributes (attsnt ) de�ning the node's
internal state.

An attribute attt ∈ attsnt at instant t is de�ned
by: a name nameatt , which is constant ∀t ∈ T , a
value denoted valattt ∈ R ∪ IDt (i.e., an attribute
value is either a real value or a node identi�er);
and a set of constraints CSTRattt about its value
(which may depends on local or remote attributes).

3.3 Service Model

XaaS services can assume the role of consumer or
provider, and the interactions between them are
governed by SLAs. According to these characteris-
tics, we de�ne our Service Model with the following
node types where relationships between each one
are illustrated and summarized in the Figure 3.

3.3.1 Root types

We introduce two types of root nodes: the
RootProvider and the RootClient. In any con�g-
uration, it exists exactly only one node instance of
each root type respectively denoted nRP and nRC .
These two nodes do not represent a real compo-
nent of the system but they can be seen rather as
theoretical nodes. The nRP (resp. nRC) node has
no sucessor (resp. predecessor) and is considered
as the only sink (resp. source) node in the DAG.
The nRP (resp. nRC) node represents the set of all
the providers (resp. the consumers) of the managed
system. This allows to group all features of both
provider and consumer layers, especially the costs
due to operational expenses of services bought from
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Figure 3: Example of a consistent con�guration

all the providers (represented by attribute SysExp
in nRP ) and revenues thanks to services sold to all
the consumers (represented by attribute SysRev in
nRC).

3.3.2 SLA types

The relationship between the managed system and
another system is modelled by a component rep-
resenting a SLA. Consequently, we de�ne in our
model the SLAClient (resp. SLAProvider) type
corresponding to a link between the modeled XaaS
and one of its customer (resp. provider). A SLA
de�nes the prices of each service level that can
be provided and the amount of penalties for vi-
olations. Thus, a SLA component has di�erent
attributes representing the di�erent prices, penal-
ties and then the current cost or revenue (attribute
total_cost) induced by current set of bought ser-
vices (cf. service type below) associated with
it. A SLAClient (resp. SLAProvider) has a
unique predecessor (resp. successor) which is the
RootClient (resp. RootProvider). Consequently,
the attributes SysRev (resp. SysExp) is equal to
the sum of all attribute total_cost of its successors
(resp. predecessors).

3.3.3 Service types

A SLA de�nes several Service Level Objectives
(SLO) for each provided service (Kouki and

Ledoux, 2012). Consequently, we have to model
a service as a component. Each service provided
to a client (resp. received from a provider) is rep-
resented by a node of type ServiceClient (resp.
ServiceProvider). The di�erent SLOs are mod-
eled as attributes in the corresponding service com-
ponent (e.g., con�guration requirements, availabil-
ity, response time, etc.). Since each Service is
linked with a unique SLA component, we de�ne
for the service type an attribute designating the
SLA node which the service is related to. For the
ServiceClient (resp. ServiceProvider) type, this
attribute is denoted by sla_client (resp. sla_prov)
and its value is a node ID, which means that the
node has a unique predecessor (resp. successor)
corresponding to the SLA.

3.3.4 Internal components types

InternalComponent represents any kind of com-
ponent of the XaaS layer that we want to man-
age with the AM. A node of this type may
be used by another InternalComponent node or
by a ServiceClient node. Conversely, it may
require another InternalComponent node or a
ServiceProvider node to work.

3.4 Autonomic Manager and

Constraints Solver

In the AM, the Analysis task is achieved by
a constraint solver. A Constraint Programming
Model (Rossi et al., 2006) needs three elements to
�nd a solution: a static set of problem variables, a
domain function, which associates to each variable
its domain, and a set of constraints. In our model,
the con�guration graph can be considered as a com-
posite variable de�ned in a domain. For the con-
straint solver, the decision to add a new node in the
con�guration is impossible as it implies the adding
of new variables to the constraint model during the
evaluation. We have hence to de�ne a set N t cor-
responding to an upper bound of the node set ct ,
i.e., ct ⊆ N t . More precisely, N t is the set of all
existing nodes at instant t. Every node nt /∈ ct is
considered as deactivated and does not take part in
the running system at instant t.

Each existing node has consequently a boolean
attribute called activation attribute. Thanks to this
attribute the analyzer can decide whether a node
has to be enabled (true value) or disabled (false
value), which corresponds respectively to a node
adding/removing in the con�guration.

The property enable(nt) veri�es if and only if n
is activated at t. This property has an incidence
over the two neighbor sets predsnt and succsnt .

Indeed, when enable(nt) is false nt has no neighbor



because n does not depend on other node and no
node may depend on n. The set N t can only be
changed by the Administrator or by the Monitor
when it detects for instance a node failure, meaning
that a node will be removed in N t+1.

Figure 4 depicts an example of two con�gura-
tion transitions. At instant t, there is a node set
N t = {n1, n2, . . . , n8} and ct = {n1, n2, n5, n6, n7}.
The next con�guration at t+1, the Monitor agent
detects that component n2 has failed, leading the
managed system to an inconsistent con�guration.
At t + 2, the control function detects the need to
activate a disabled node in order to replace n2 by
n4. This scenario matches the con�guration tran-
sitions from conf1 to conf3 in Figure 2.
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Figure 4: Examples of con�guration transition.

3.5 Con�guration Constraints

The graph representing the managed XaaS has to
meet the following constraints:

1. any deactivated node nt
a at t ∈ T has no neigh-

bor: nt
a does not depend on other nodes and

there is not a node nt
b that depends on nt

a. For-
mally,

¬enable(nt
a)⇒

(
succsnt

a
= ∅ ∧ predsnt

a
= ∅

)
2. except for root nodes, any activated node has

at least one predecessor and one successor. For-
mally,

enable(nt
a)⇒

(
| succsnt

a
|> 0 ∧ | predsnt

a
|> 0

)
3. if a node nti

a is enabled at instant ti, then all
the constraints associated with na (link and at-
tribute constraints) will be met in a �nite time.
Formally,

enable(nti)⇒ ∃tj ≥ ti,∀cstr ∈ CSTR
n
ti
a

∧cstr ∈ CSTR
n
tj
a
∧enable(ntj )∧satisfy(cstr, tj)

4. the functionH() is equal to the balance between
the revenues and the expenses of the system.
Formally, H(ct) = atttrev−atttexp where atttrev ∈
attsnt

RC
∧ atttrev = SysRev and where atttexp ∈

attsnt
RP
∧ atttexp = SysExp
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Figure 5: Example of a IaaS con�guration.

4 IMPLEMENTATION

EXAMPLES

The models presented in the previous sections rely
on abstract provider/consumer relationships as well
as on SLA constraints to describe any autonomic
XaaS service. This section aims at showing the
genericity of those models by applying them to two
di�erent XaaS: an IaaS and a SaaS. Figure 5 (resp.
Figure 6) gives an example of a con�guration at
a given instant. Each enabled node is represented
with its own attributes and their corresponding val-
ues.

4.1 Example of an IaaS Description

4.1.1 Provided Services

For sake of simplicity, we consider that such sys-
tem provides a unique service to their customers:
compute resource in the form of VMs. Hence,
there exists a node type VMService extending the
ServiceClient type de�ned in the abstract model.
This node type is responsible for bridging the IaaS
and its customers. A customer can specify the re-
quired number of CPUs and RAM as attributes
of VMService node. The prices for a unit of
CPU/RAM are de�ned inside the SLA component,
that is, inside the SLAVM node type, which ex-
tends the SLAClient type of the abstract model. It
should be noticed that prices may di�er according



to the customer.

4.1.2 Internal Components

VMs are hosted on PMs which are themselves
grouped into Clusters. We de�ne thus three node
types extending the InternalComponent type:

• the type VM represents a virtual machine and
it has an attribute de�ning the current number
of CPUs/RAM. Each enabled VM has exactly a
successor node of type PM and exactly a unique
predecessor of type VMService. The main con-
straint of a VM node is to have the number of
CPUs/RAM equal to attribute speci�ed in its
predecessor VMService node.

• the type PM represents a physical machine
with several attributes such as the total num-
ber of CPUs/RAM, the number of allocated
CPUs/RAM on VM and the node represent-
ing the cluster hosting the PM . The latter at-
tribute allows to express a constraint that spec-
i�es the physical link between the PM and its
cluster. The predecessors of a PM are the
VMs currently hosted by it.

• the type Cluster represents a component host-
ing several PMs. It has an attribute represent-
ing the current power consumption of all hosted
PMs. This attribute is computed according to
the power consumption of each running PM ,
i.e., the number of predecessors.

4.1.3 Services bought from other providers

The di�erent clusters of the modeled IaaS sys-
tem need electrical power in order to operate.
That power is also o�ered in the form of service
(Energy-as-a-Service, i.e., electricity), by an en-
ergy provider. We de�ne the PowerService type
by extending the ServiceProvider type of the ab-
stract model, and it corresponds to an electricity
meter. A PowerService node has an attribute
that represents the maximum capacity in terms of
kilowatt-hour, which bounds the sum of the cur-
rent consumption of all Cluster nodes linked to
this node (PowerService). Finally, the SLAPower
type extends the SLAProvider type and represents
a signed SLA with an energy provider by de�ning
the price of a kilowatt-hour.

4.2 Example of a SaaS Description

4.2.1 Provided Services

Also for the sake of simplicity and readability, we
model a SaaS system so it provides a single Web
Application service to its customers. It means,
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Figure 6: Example of a SaaS con�guration.

that there is a node type WebAppService extend-
ing ServiceClient. This node has two attributes
corresponding to the current response time of the
provided service and the node that de�nes SLA
which the service provider and the client signed
for. Customers can specify the maximum required
response time in each corresponding SLAWebApp
node, which extend the SLAClient type from the
abstract model. The service price is de�ned as a
utility function of the overall response time, that
is to say that the price charged to customers is in-
versely proportional to the response time (in this
case max_rt− rt) and is also de�ned within node
SLAWebApp. It should be noticed that prices may
vary according to the client, i.e., according to the
way SLAWebApp is de�ned for each client.

4.2.2 Internal Components

The web application is architecturally structured in
tiers, and each tier is composed of workers that can
be activated or deactivated to cope with workload
variations while minimizing costs. That way, we
de�ne three InternalComponent nodes:

• the type App represents the web application it-
self and it has an attribute that de�nes current
application overall response time. There is a
constraint in App stating that the value of the
response time is equal to the value of the re-



sponse time of node WebAppService. Each App
has two or more successor nodes of type Tier
(in this case TierApp and TierDB). The App
response time is calculated based on the sum of
the response times of all its successors.

• the type Tier has also one or several succes-
sors of type Worker and two attributes: the in-
come workload, which can be given as input to
the model (i.e., monitored from the running sys-
tem); and the tier response time, which is calcu-
lated based on the workload attribute and the
amount of resources allocated to each worker as-
sociated to the concerned Tier. More precisely,
we de�ne the response time as a function of the
amount of CPU and RAM currently allocated
to the successor Worker nodes.

• the typeWorker represents a replicated compo-
nent of a given tier (e.g., application, database,
etc.). It has three attributes corresponding to
the currently allocated CPU and RAM; and
specifying precisely which tier the worker be-
longs to so as to avoid the constraint solver
to link a worker to a di�erent tier (e.g., App-
Worker1 to TierDB).

4.2.3 Services bought from other providers

Each worker depends on compute/storage resources
that are o�ered in terms of VMs by a VM provider.
We de�ne the node VmService by extending the
ServiceProvider type of the abstract model. It cor-
responds to a VM o�ered by an IaaS provider.
This node type consists of two attributes repre-
senting the CPU and RAM capacities and one at-
tribute precising to which SLA Provider the service
is associated to. Finally, the SLAVmProvider node
extends the SLAProvider type from the abstract
model and it corresponds to the signed SLA with
the IaaS provider. This SLA speci�es the price per
unit of compute resources bought/rented (in terms
of VM) by the SaaS.

5 PERFORMANCE

EVALUATION

In this section, we present an experimental study of
an implementation of our generic AM for an IaaS
system modeled as the one depicted in the Figure 5.
The main objective of our study is to analyse qual-
itatively the impact of the AM behaviour on the
system con�guration when a given series of events
occur and the analysis time of the constraint solver
to take a decision.

5.1 Experimental Testbed

We implemented the Analysis component of the
AM by using the Java-based constraint solver
Choco (Prud'homme et al., 2014). The experimen-
tation simulates the interaction with the real world,
i.e., the role of the componentsMonitor and Execu-
tor depicted in Figure 1. This simulation has been
conducted on a single processor machine with an
Intel Core i5-6200U CPU (2.30GHz) and 6GB of
RAM Memory running Linux 4.4.

We rely on the XML language to specify the ini-
tial con�guration of our IaaS system. The snapshot
of the running IaaS system con�guration (the ini-
tial as well as the ones associated to each instant
t ∈ T ) is stored in a �le. At each simulated event,
this �le was modi�ed to apply consequences of the
event over the con�guration. After each modi�ca-
tion due to an event, we activated the AM to prop-
agate the modi�cation on the whole system and to
ensure that the con�guration meets all the imposed
constraints. By trying to maximize the system bal-
ance between costs and revenues and to minimize
the recon�guration time, the AM produces a recon-
�guration plan and generates then a new con�gu-
ration �le.

The simulated IaaS system is composed of
3 clusters physical homogeneous machines (PM).
Each physical machine has 32 processors and 64
GB of RAM memory. The system has two power
providers: a classical power provider, that is, brown
energy power provider and a green energy power
provider. The current consumption of a turned on
PM is the sum of its idle power consumption (40
power units) when no guest VM is hosted with an
additional consumption due to allocated resources
(1 power unit per CPU and per RAM allocated). In
order to avoid to degrade analysis performance by
considering too much physical resources compared
to the number of consummed virtual resources, we
limit the number of unused PM nodes in the graph
while ensuring a su�cient amount of available phys-
ical resources to host a potential new VM.

In the experiments, we considered four types of
event:

• AddVMService: a customer requests for a new
VMService. The required con�guration of this
request (i.e., the number of CPUs and RAM
units) is chosen independently, with a random
uniform law. The number of required CPU
ranges from 1 to 8, and the number of required
RAM units ranges from 1 to 16 GB. The direct
consequences of such an event is the addition
of a VMService node and a VM node in the
con�guration �le. The aim of the AM after this
event is to enable the new VM and to �nd the
best PM to host it.



• leavingClient: a customer decides to cancel
de�nitively the SLA. Consequently, the corre-
sponding SLAVM , VMService and VM nodes
are removed from the con�guration. After a
such an event the aim of the AM is potentially
to shut down the concerned PM or to migrate
other VMs to this PM in order to minimize the
revenue loss.

• GreenAvailable: the Green Power Provider de-
creases signi�cantly the price of the power unit
to a value below the price of the Brown Energy
Provider. The consequence of that event is the
modi�cation of the price attribute of the green
SLAPower node. The expected behaviour of
the AM is to enable the green SLAPower node
in order to consume a cheaper service.

• CrashOnePM : a PM crashes. The conse-
quence on the con�guration is the suppression
of the corresponding PM node. The goal of the
AM is to potentially turn on a new PM and to
migrate VM which was hosted by the broken
PM.

In our experiments, we consider the following
scenario. Initially, the con�guration at t0, no VM
is requested and the system is turned o�. At
the beginning, the unit price of the green power
provider is considerably higher than the price of
the other provider (70 against 5). The system has
four clients which requests VM services. The num-
ber of requested services per client is not neces-
sary equal. The unit selling price is 50 for a CPU
and 10 for a RAM unit. We �rst consider a se-
quence of several AddVMService events until hav-
ing around 40 VMService nodes. Then, we trigger
a leavingClient event, a GreenAvailable event and
�nally a CrashOnePM event.

We shows the impact of this scenario over the
following metrics: the amount of power consump-
tion for each Power Provider in the Figure 7(a); the
amount of enabled PMs and VMService in the Fig-
ure 7(b); and the con�guration balance (function
H()) in the Figure 7(c). The x-axis in Figures 7(a),
7(b) and 7(c), represents the logical time of the ex-
periment in terms of con�guration transition. Each
colored area in this �gure includes two con�gura-
tion transitions: the event immediately followed by
the control action. The color di�ers according to
the type of the �red event. For sake of readability,
the x-axis does not begin at the initiation instant
but when the number of VMService reaches 20. In
�gure 7(d), we show the time of the Choco Solver
to take a decision according to the number of nodes
in the graph. Actually, while the experiment of �g-
ures 7(a), 7(b) and 7(c) considers a size of 0 to 99
nodes, we replay the same scenario of events de-
scribed above until reaching around 1000 nodes.
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Figure 7: Experimental results of the simulation.

5.2 Analysis and Discussion

As expected, when the amount of requests of
VMService increases in a regular basis (Figure
7(b)), the system power consumption increases
(Figure 7(a)) su�ciently slowly so that the sys-
tem balance also increases (Figure 7(c)). This can
be explained by the ability of the AM to decide
to turn on a new PM in a just-in-time way, that
is, the AM tries to allocate the new coming VMs
on existing enabled PM. Indeed, we can see at the
�fth AddVMService event that starting a new PM
can be costly (especially when the new VM is small
in terms of resources), since the balance does not



increase after this event, which would be the ex-
pected outcome after selling new services (VMs in
this case).

On the other way around, when a client leaves
the system, as expected, the number of VMService
nodes decreases (from 40 to 32). In spite of that,
the power consumption also decreases from 748
to 634 (around 15%) due to the amount of re-
sources which are not used anymore, the decrease
from 8260 to 6210 of the system balance is not
proportional (around 24 %). In fact, we can see
that the number of PMs is constant during this
event and consequently, the power consumption
is higher than at the previous instant, where the
number of VMService nodes is the same (at the
tenth AddVMService event). Consequently, we
can deduce that the AM has decided in this case
to privilege the recon�guration cost criteria at the
expense of the system balance criteria: the cost
in terms of planning actions (in our case VM mi-
grations) leading to the con�guration at the tenth
AddWMService event is too costly compared to
the cost due to system balance loss.

When the GreenAvailable event occurs, we can
observe the activation of the Green Energy Provider
(cf. Figure 7(a)) and, as expected, an increase of
the system balance. This shows that the AM is
capable of adapting the choice of provided service
according to their current price. Thus, the modeled
XaaS can bene�t from sales promotions o�ered by
its providers.

Finally, when a PM (CrashOnePM event), we
can see that the AM starts a new PM to replace the
old one. Moreover, in order to optimize the system
balance (Figure 7(c)), the new PM is started on a
cluster that uses the green energy, i.e., the current
cheapest energy.

In �gure 7(d), we can see that the decision time
globally increases with the system size while keep-
ing the same order of magnitude. However, it is not
regular according to the event type showing that
the impact of each event is very variable. Indeed,
the AddWMService event concerns the adding of
a unique VM on a PM which explains the fact that
it is the fastest processed event, contrary to the
CrashOnePM event which concerns a cluster, sev-
eral PMs and VMs to migrate leading to a decision
on a larger scale. Moreover we can see a huge vari-
ance especially for the leavingClient event. This
shows that its impact over the system recon�gura-
tion is unpredictable. Indeed, it depends on sev-
eral factors like the number of concerned VM and
their locality on the PMs, leading thus to make
sometimes costly consolidation operations. In spite
of that, as shown in Figure 7(d), our constraint
model is capable of managing systems with reason-
able sizes (e.g., 1000 nodes), with acceptable solv-

ing time.

6 RELATED WORK

Model-driven approach and Cloud man-
agement. Recent work have proposed the use
a Model-driven Engineering for engineering the
Cloud services. Some for reusing existing deploy-
ment procedures (Mastelic et al., 2014), other for
optimizing VM con�guration (Dougherty et al.,
2012) or managing multi-cloud applications (e.g.,
migrate some VMs from a IaaS to another that of-
fers better performance) (Ardagna and al., 2012).
These approaches typically focus on supporting ei-
ther IaaS or PaaS con�guration, but do not address
SaaS layer nor cross-layer modelisation. StratusML
provides a modeling framework and domain speci�c
modeling language for cloud applications dealing
with di�erent layers to address the various cloud
stakeholders concerns (Hamdaqa and Tahvildari,
2015). The OASIS TOSCA speci�cation aims at
enhancing the portability of cloud applications by
de�ning a modeling language to describe the topol-
ogy across heterogeneous clouds along with the pro-
cesses for their orchestration (Brogi and Soldani,
2016). However, those approaches do not deal with
autonomic management.

Recently, OCCI (Open Cloud Computing In-
terface) has become one of the �rst standards in
Cloud. The kernel of OCCI is a generic resource-
oriented metamodel (Nyrén et al., 2011), which
lacks a rigorous and formal speci�cation as well as
the concept of (re)con�guration. To tackle these
issues, the authors of (Merle et al., 2015) specify
the OCCI Core Model with the Eclipse Modeling
Framework (EMF)3, whereas its static semantics is
rigorously de�ned with the Object Constraint Lan-
guage (OCL)4. A EMF-based OCCI model can ease
the description of a XaaS, which is enriched with
OCL constraints and thus veri�ed by a many MDE
tools. The approach, however, does not cope with
autonomic decisions that have to be done in order
to meet those OCL invariants.

Another body of work propose ontologies (Dast-
jerdi et al., 2010) or a model-driven approach based
on Feature Models (FMs) (Quinton et al., 2013) to
handle cloud variability and then manage and cre-
ate Cloud con�gurations. These approaches �ll the
gap between application requirements and cloud
providers con�gurations but, unlike our approach,
they focus on the initial con�guration (at deploy-
time), not on the run-time (re)con�guration. In
(García-Galán et al., 2014), the authors rely on

3https://eclipse.org/modeling/emf
4http://www.omg.org/spec/OCL



FMs to de�ne the space of con�gurations along
with user preferences and game theory as decision-
making tool. While the work focuses on features
that are selected in a multi-tenant context, our ap-
proach provides support for ensuring the selection
of SLA-compliant con�gurations in a cross-layer
manner, i.e., by considering the relationships be-
tween providers and consumers in a single model.

Generic autonomic manager. In (Mohamed
et al., 2015), the authors extend OCCI in or-
der to support autonomic management for Cloud
resources, describing the needed elements to
make a given Cloud resource autonomic regard-
less of the service level. This extension al-
lows autonomic provisioning of Cloud resources,
driven by elasticity strategies based on imperative
Event�Condition�Action rules. These rules require
expertise at each service level and is error-prone
as the number of rules grows. In contrast, our
generic autonomic manager is based on a declar-
ative approach of consumer/provider relationships
and � thanks to a constraint solver � it is capable
of controlling the target XaaS system so as to keep
it close to the optimal con�guration.

In (Ferry et al., 2014), the authors propose a
support for management of multi-cloud applica-
tions for enacting the provisioning, deployment and
adaptation of these applications. Their solution is
based on a models@run-time (Blair et al., 2009)
engine which is very close to our autonomic man-
ager (with a reasoning in a cloud provider-agnostic
way and a di� between the current and the target
con�guration). However, the authors focus on the
IaaS or PaaS levels, but do not address SaaS, nor
the relationships between layers.

Relationships between Cloud layers are ad-
dressed in (Marquezan et al., 2014) where the au-
thors propose a conceptual model to represent the
entities and relationships inside the cloud environ-
ment that are related to adaptation. They identify
relationships among the cloud entities and depen-
dencies among adaptation actions. However, their
proposal is only an early work without a formal
representation neither implementation.

In (Kounev et al., 2016), the authors propose
a generic control loop to �t the requirements of
their model-based adaptation approach based on
an architecture-level modeling language (named
Descartes) for quality-of-service and resource man-
agement. Their solution is very generic and do not
focus speci�cally on cross-layers SLA contracts.

SLA-based resource provisioning and Con-
straint solver. Several approaches on SLA-
based resource provisioning � and based on con-
straint solvers � have been proposed. Like in our

approach, the authors of (Hermenier et al., 2009)
rely on the Choco solver, but their focus remains on
the IaaS infrastructure, and more precisely on VM
migration. In (Ghanbari et al., 2012), the authors
propose a new approach to autoscaling that utilizes
a stochastic model predictive control technique to
facilitate resource allocation and releases meeting
the SLO of the application provider while minimiz-
ing their cost. They use also a convex optimization
solver for cost functions but no detail is provided
about its implementation. Besides, the approach
addresses only the relationship between SaaS and
IaaS layers, while in our approach any XaaS service
can be de�ned.

7 CONCLUSION AND FUTURE

WORK

This paper presented a generic and abstract service-
based model that uni�es the main characteristics
and objectives of Cloud services: �nding an optimal
balance between costs and revenues while meeting
constraints regarding the established Service Level
Agreements and the service itself. This model en-
abled us to derive a unique and generic Autonomic
Manager (AM) capable of managing any Cloud
service, regardless of the layer. From the Cloud
Administrators point of view, this is an interest-
ing contribution, not only because frees them from
the di�cult task of conceiving and implementing
purpose-speci�c AMs, but also because the pro-
posed model, although generic and abstract, is ex-
tensible. The generic AM relies on a constraint
solver that reasons on very abstract concepts (e.g.,
nodes, relations, constraints) to perform the analy-
sis phase in a MAPE-K loop. We showed the gener-
icity of the abstract model by illustrating two pos-
sible implementations: a IaaS and a SaaS systems.
The IaaS implementation was evaluated experimen-
tally, with a qualitative study and the results show
that the AM is able to adapt the con�guration ac-
cordingly by taking into account the established
SLAs and the recon�guration costs. Further, re-
sults show that although generic, the AM can cap-
ture the speci�cities and runtime properties of the
modeled Cloud service.

As an on-going work, we are currently improving
the constraint resolution model so we can have bet-
ter performance in terms of decision-making. Also,
we are implementing a real IaaS AM on top of
OpenStack 5 and evaluating it 6. For future work,
we plan to tackle issues related to the coordina-
tion of many inter-related AMs, which may cause

5https://www.openstack.org/
6https://www.grid5000.fr/



problems of con�icting actions and other synchro-
nization issues that come with (Alvares de Oliveira
et al., 2012). Finally, we plan also to provide full
Domain Speci�c-Language (DSLs) (van Deursen
et al., 2000) and tooling support allowing Admin-
istrators for a clearer, easier and more expressive
description of XaaS models.
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