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Abstract
We introduce the problem of hub-laminar decomposition which generalizes the one of computing a
shortest path with minimum eccentricity (MESP). Intuitively, it consists in decomposing a graph
into several paths that collectively have small eccentricity and meet only near their extremities.
The problem is related to computing an isometric cycle with minimum eccentricity (MEIC). It
is also linked to DNA reconstitution in the context of metagenomics in biology. We show that
a graph having such a decomposition with long enough paths can be decomposed in polynomial
time with approximated guaranties on the parameters of the decomposition. Moreover, such
a decomposition with few paths allows to compute a compact representation of distances with
additive distortion. We also show that having an isometric cycle with small eccentricity is related
to the possibility of embedding the graph in a cycle with low distortion.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Graph Decomposition, Graph Clustering, Distance Labeling, BFS, MESP

1 Introduction

The goal of this paper is to extend the MESP (Minimum Eccentricity Shortest Path) Problem
from Dragan and Leitert [5] and the related problem of recognizing k-laminar graphs from
Völkel et al. [16]. Both consist in finding a shortest path (in the sense that no path joining
the same endpoints is shorter) k-dominating a graph (every vertex is at distance at most k
from that path). The k-laminar problem additionally requires that path to be a diameter
(there is no longer shortest path in the graph). Relationships between the two parameters
are derived in [4].

To generalize this problem to more complex underlying structures, we introduce the
problem of decomposing a graph into subgraphs with bounded shortest-path eccentricity.
More precisely, we introduce the hub-laminar decomposition as a set of paths that k-dominates
the graph and meet only near their extremities. To formalize this property, we introduce the
notion of hub, that is a ball with fixed radius r centered at a path endpoint. The laminar
associated to a path is the set of nodes k-dominated by the path. Our definition requires
that an edge between two nodes belonging to two different laminars must also belong to a
hub. The degree of a hub is then the number of laminars that meet in the hub. The main
result of the paper is that computing such a decomposition becomes tractable when hub
centers are far enough one from another, or equivalently when paths are long enough. The
MESP problem is equivalent to a hub-laminar decomposition with one laminar.

Such a generalization is naturally interesting in networks where one might want to identify
a set of speedy linear routes that are “highly accessible” with applications in communication
networks, transportation planning and water resource management. It is also motivated by
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78:2 Decomposing a Graph into Shortest Paths with Bounded Eccentricity

DNA assembly in biology. DNA sequencing proceed through the reading of DNA fragments
that must be assembled. When a single DNA strand is sequenced, comparison of fragments
leads to a graph with “laminar” structure [16] that is with large diameter and small shortest
path eccentricity. In the context of metagenomics, several DNA strands are sequenced
together and more complex structures appear (see Figure 1 in [16]). Identifying the laminar
structures of such graphs is typically encountered in metagenomic approaches for evolution
questions (see e.g. [13]). The problem of the assembly (gluing DNA fragments to reconstruct
a DNA strand) is then mixed with that of binning (sort DNA strands into groups that
represent an individual genome or genomes from closely related organisms). See [14] for a
presentation of assembly and binning problems in the context of metagenomics. Efficient
decomposition of a graph into laminars could thus enhance the techniques for assembly and
binning in this context.

The problem of decomposing a graph into λ laminars that k-cover the graph is not well
defined as there may be several trade-offs of parameters λ and k. However, we show that
when laminars are long enough compared to parameters r and k, then all (r, k)-hub-laminar
decompositions are equivalent (same global structure) and have closely located hubs (except
for hubs of degree two that do not affect the global structure). This implies for example that
the positions of the extremities of the minimum eccentricity shortest path (MESP) can be
approximated within O(k) distance when the diameter of a graph is large with respect to
the eccentricity k of the MESP.

From a graph perspective, a very natural generalization of MESP is the problem of finding
a minimum eccentricity isometric cycle (MEIC), that is a cycle preserving distances that has
minimum eccentricity k. Note that such a cycle can be seen as a hub-laminar decomposition
with two laminars and two hubs with degree two. An important motivation for the MESP
problem is its relationship with embedding a graph into the line with small multiplicative
distortion [5]. We similarly show that the MEIC problem is related to embedding a graph
into a circle with low multiplicative distortion, i.e. such that distances in the circle are
within a constant factor of distances in the graph. Note that circle distortion is bounded by
line distortion as a line segment can isometrically be embedded in a sufficiently long circle.
(However, line distortion can be much larger than circle distortion.) Graph embedding in
classical metrics is a well studied problem [9, 10]. Another related subject with abundant
literature is that of compactly representing the distances of a graph [15, 12]. We show that a
decomposition with few laminars ensures a compact representation of distances with bounded
additive distortion.

Related works:

Finding a MESP is NP-complete but can be approximated within a constant factor [5].
Better trade-off between computation time and approximation factor for MESP is obtained
in [4]. The problem of efficiently representing the distances in a graph encompasses a vast
literature dating from metric embedding [1]. Approximating embedding with low distortion
is introduced in [2] where some results are provided in the case of the line. The case of
embedding the metric induced by an unweighted graph is studied in [3]. Embedding a graph
metric into the line with minimum distortion is NP-complete but fixed parameter tractable
with respect to distortion [6]. Approximate distance oracles, i.e. compact data-structures for
representing an approximation of distances, are investigated in [15]. A particular approach
introduced by Peleg [12] resides in assigning a label to each node of a graph such that the
distance between two nodes can be estimated from their labels. Several result exist about
the trade-off between label size and approximation quality. Exact distance estimation is
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investigated in [8] and requires Ω(n) bits labels for general graphs. Approximation with a
constant factor and sub-linear label size is derived in [15]. Some results concern additive
approximation such as [7] in the case of hyperbolic graphs. A longest isometric cycle can be
found in polynomial time [11].

2 Definitions

We consider finite, undirected and connected graphs (the connectivity is always assumed
within the paper). Given a graph G, with vertex set V (G) and edge set E(G), we let dG(u, v)
denote the distance between two vertices, i.e. the length of a shortest path from u to v. When
the graph G is clear from the context, we omit the G subscript and simply write d(u, v).
Let B(u, r) = {v ∈ V (G) | d(u, v) ≤ r} denote the ball of radius r centered at u. Given a set
of vertices U we set B(U, r) = ∪u∈UB(u, r). Given two sets U and W of vertices, we say
that U k-covers W when every vertex in W is at distance at most k from some vertex in
U , i.e. W ⊆ B(U, k). We say that U has eccentricity k, denoted ecc(U) = k, when k is the
smallest integer such that B(U, k) = V (G). A path P in G is a sequence of nodes such that
any two consecutive nodes are linked by an edge of G. We consider only simple paths: a
node appears at most once in the sequence. The first node of the sequence and the last one
are called the endpoints of P . For the simplicity of notations, we also let P denote the set
of nodes appearing in the sequence. For any vertices u and v on P , we denote by Puv the
subpath of P having u and v as endpoints.

2.1 Hub-laminar decomposition
I Definition 1 (Hub-laminar decomposition). Consider a connected undirected graph G, two
positive integers r and k, H = {h1, . . . , hq} a set of vertices of G called hub centers, and
P = {P1, . . . , Pp} a set of paths of G called laminar paths. A ball B(h, r) with r ∈ H is called
a hub, and a set B(P, k) with P ∈ P is called a laminar. (H,P) is an (r, k)-hub-laminar
decomposition of G if the following conditions are satisfied:
1. each laminar links two hubs centers: the endpoints h, h′ of any P ∈ P belong to H and

for every other hub h′′ ∈ H \ {h, h′}, B(P, k) ∩B(h′′, r + 1) = ∅ ,
2. the laminars and the hubs cover G: V (G) ⊆

⋃
h∈H B(h, r) ∪

⋃
P∈P B(P, k),

3. each laminar path is locally a shortest path: any path P ∈ P with endpoints h and h′ is
a shortest path of the graph G[B(P, k) ∪B(h, r) ∪B(h′, r)],

4. laminars meet at hubs only: for all i 6= j and uv ∈ E(G) such that u ∈ B(Pi, k) and
v ∈ B(Pj , k), there is a hub center h ∈ H such that Pi and Pj both have h as endpoint
and u, v ∈ B(h, r).

The minimal laminar length of a decomposition (H,P), denoted l, is the minimal length
of the paths in P. Its laminar size, denoted λ, is the number of paths in P.

A hub-laminar decomposition (H,P) with l ≥ 2r + 1 forms a partition of the edges of G
in the following sense: each edge is either inside exactly one hub (possibly touching many
laminars ending in that hub), i.e ∃!h ∈ H s.t. u, v ∈ B(h, r); or, else, inside a unique laminar
(possibly touching one hub extremity of that laminar), i.e, ∃!P ∈ P s.t. u, v ∈ B(P, k).

Figure 1 illustrates this definition and the notion of quotient graph that we define next.
This definition basically defines a decomposition into k-neighborhoods of internally far apart
shortest paths. It may seem a bit involved, but we think it expresses in a minimalist way
what we mean by “internally far apart” with Item 4. Items 1 and 2 indicate that the graph
is decomposed into laminars which are k-neighborhoods of certain paths and hubs which
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Graph G

r k

Quotient graph of G

Reduced quotient graph of G

Figure 1 Illustration of an hub-laminar decomposition with r = 2, k = 1. Every vertex is at
distance r from a hub center (diamond vertices) or at distance k from a laminar path (bold paths
between hub centers).

are balls centered at the extremities of those paths. Item 3 requires path to be shortest
in the induced graph, and not in G, to allow laminars with different length (otherwise, a
long laminar between two hubs could be shortcut by one or more laminars forming a paths
between these hubs).

2.2 Quotient graph and equivalence between decompositions
As previously mentioned, the hub-laminar decomposition gives naturally raise to a skeleton,
which can be simplified into a quotient graph.

I Definition 2 (quotient graph and reduced quotient). Given a graph G and an (r, k)-hub-
laminar decomposition (H,P) of G, the quotient of this decomposition is an edge-labeled
multigraph with vertex-set H and for each P ∈ P with endpoints h, h′ there is an edge hh′
whose label is the length of P .

The degree of a hub denotes the degree of the corresponding vertex in the quotient graph,
or equivalently the number of laminar paths its center is the endpoint of.

The reduced quotient graph of a decomposition (H,P) is the multigraph obtained from
its quotient graph by repeatedly removing degree 2 nodes: for every vertex u of the quotient
incident with exactly two edges uv and uw with respective labels a and b, u and both edges
are removed and a new edge vw is added with label a+ b. (It is a loop when v = w.)

When the quotient is not a cycle (a case specifically adressed by MEIC, see Section 3)
the reduced quotient is well defined and unique (recall graphs are supposed connected).

I Definition 3 (equivalence between decompositions). Two hub-laminar decomposition of a
same graph G, possibly with different parameters r, k, are D-equivalent if they have the same
reduced quotient graph, up to an isomorphism φ of vertex-sets such that d(h, φ(h)) ≤ D (d
is the distance between hub centers in G, not in the reduced quotient)

2.3 Isometric cycle, circle embedding and distance labeling
A cycle C in a graph G is isometric if it preserves distances, i.e. dC(u, v) = dG(u, v) for all
u, v ∈ V (C). In other words, for any pair u, v of nodes on the cycle, one of the two path
linking u and v in the cycle is a shortest path in the graph. Note that an isometric cycle is
necessarily an induced cycle. The MEIC problem consists in finding an isometric cycle with
minimum eccentricity. It can be shown to be NP-complete following a similar proof as [5] for
the NP-completeness of MESP problem.
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A circle embedding of a graph G is a mapping f : V (G)→ C where C is a circle of given
length c. It has distortion γ if dG(u, v) ≤ dC(f(u), f(v)) ≤ γdG(u, v) for all u, v in V (G).
The circle distortion cd(G) of G is the minimum distortion of a circle embedding of G.

A distance labeling of a graph G consists in assigning a label Lu to each node u ∈ V (G)
together with a distance estimation function f that outputs an estimation of dG(u, v) when
given Lu and Lv as input. It has additive distortion α if dG(u, v) ≤ f(Lu, Lv) ≤ dG(u, v) +α

for all u, v in G.

3 Main results

Obviously, the reduced quotient graph of a graph having a (r, k)-hub-laminar decomposition
follows the following trichotomy: it is either a path, a cycle or has a degree three node. We
treat separately the three cases.

In the first case, the graph has a shortest path with eccentricity max {3k, 2r} and can be
recognized through an approximate MESP algorithm such as [4]. (The max {3k, 2r} bound
is a consequence of Lemma 12 given in Section 4.) In the second case, the graph has an
isometric cycle with eccentricity at most max {3k, 2r}. To recognize such graphs, we propose
an approximate MEIC algorithm:

I Theorem 4. Given a graph containing a K-dominating isometric cycle with length `, a
6K-dominating isometric cycle can be computed in O(n4.752log(n)) time. Moreover, the
computed cycle is indeed 3K-dominating when ` ≥ 12K + 2.

We obtain therefore an algorithm for approximating circle embedding with low distortion.

I Corollary 5. If a graph has circle distortion γ, it is possible to embed it in a circle with
distortion O(γ2) in polynomial time.

Recognizing the general case of decomposition is not a well defined problem as several
decompositions may yield different trade-offs of the parameters. However, when laminars are
long enough, all (r, k)-hub-laminar decompositions are indeed O(k) equivalent. This can be
seen as a consequence of the following recognition result.

I Theorem 6. Given a graph G having a (r, k)-hub-laminar decomposition (H,P) of minimal
laminar length ` ≥ 8r + 60k + 4 and integers K,R such that K ≥ 3k, R ≥ 2K + 3r + 3k and
2R+ 8K < `− 2r − 18k − 4, it is possible to compute in O(min(n, λ)m) time a (K,R)-hub-
laminar decomposition which is (K + 2r)-equivalent to (H,P).

From the graph metric point of view, we obtain then a compact representation of distances:

I Corollary 7. Given a graph G having an (r, k)-hub-laminar decomposition with laminar
size λ, it is possible to compute in polynomial time a O(max {k, r})-additive distance labeling
with O(λ logn) bit labels.

Due to lack of space, the proofs of these theorems, and of the lemmas and propositions
stated below, are put in Appendix.

4 Algorithms

4.1 Minimum Eccentricity Isometric Cycle
We propose to approximate the MEIC problem by computing a longest isometric cycle, that
is an isometric cycle of G with maximum length. The following lemma shows that a longest
isometric cycle O(k)-dominates any k-dominating isometric cycle.

ISAAC 2017
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I Lemma 8. Let G be a graph with an isometric cycle C = c1, ...cp k-dominating G, and
let D be a longest isometric cycle of G. Every vertex of C is at distance at most 5k of D.
Furthermore, if D has length more than 12k+ 2 then every vertex of C is at distance at most
2k of D.

Consequently, a longest isometric cycle in a graph is a 6-approximation for the MEIC
problem, and a 3-approximation when the graph has a diameter large enough. As shown in
[11], a longest isometric cycle can be computed in O(n4.752log(n)) time. Theorem 4 is thus a
direct consequence of this and Lemma 8.

4.2 General case outline
Consider a graph G having a (r, k) hub-laminar decomposition (H,P) of minimal laminar
length ` and having at least one hub of degree at least 3. The underlying idea of the algorithm
is to use BFS (Breadth-first search) to compute shortest paths and their K-neighborhoods,
K being chosen large enough to dominate every laminar traversed by the considered shortest
paths, but small enough compared to ` to detect all hubs of degree at least 3.

The first step, called FindHubs, consists in applying the procedure NextHub described
in section 4.4 until it discovers no new hubs. This step yields two sets of hub-centers A and
B, respectively called unmovable and movable hub-centers, which will be used to determine
the laminars. A unmovable hub center a ∈ A means we a sure there exists exactly one hub
center h ∈ H such that d(a, h) is bounded. It will be shown that A contains exactly one such
vertex for every hub-center of H which degree is not 2.

A movable hub center b ∈ B will only be added by NextHub in a configuration corres-
ponding to a cycle in the quotient graph of (H,P) containing only one hub of degree at least
3, like the three laminars on the left of Figure1. This is called a Problematic Configuration
We know there exists at least Degree 2 hub h ∈ H somewhere in that cycle, but if they are
thin enough they may remain merged in the laminars and we can not bound d(b, h), and in
the second step b may be moved.

The laminars are determined in a second step by the FindLaminars procedure, which
links the hub-centers of the previous step by shortest paths. The only difficulty which has
to be taken into account refers to hubs of degree 2 in (H,P). Indeed, the BFS runs of the
hub-detection step may have missed one of them because they K-dominated it, whereas the
BFSs of second step don’t. In that case, the set of hubs A is adapted by adding the new
discovered hub, and if needed, the corresponding movable hub center is deleted from B.

Figure gives a summary of the two steps by showing a possible outcome of the FindHubs
and FindLaminars on an example. The FindHubs procedure detects all hubs of degree
different from 2 and some of those of degree 2. Moreover, it places a movable hub on
each problematic configuration. FindLaminars then computes the corresponding laminars,
adding new hubs if a hub of degree 2 missed in the first step is detected. Some of them may
however still be undetected, being replaced by a movable hub or just missing in the final
decomposition. The quotient graphs of the decomposition supposed by Theorem 6 and of the
constructed decompositions may therefore be different, but their reduced quotients are equal.

4.3 Some rules to compute a decomposition
We rely on the following properties for running our algorithm. The first tool is used to
identify hub centers. Fortunately there is a pattern that, when it occurs, signals that any
hub-laminar decomposition must have a hub nearby:
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Unknow decomposition Hubs computed with FindHubs

a1

a2 a3
a4

a5

b1

Decomposition after FindLaminars

a1

a2 a3
a4

a5

a6

Figure 2 Illustration of the different steps of the algorithm. The (H,P) decomposition is unknown
(top left). Notice a Problematic Case on the right of the graph: a cycle of laminar with only one
degree not 2 hub. First, hub centers are computed such that every degree not 2 hub B(h, r), h ∈ H

is covered by B(ai, R), ai ∈ A (top right). Finally the laminar are computed (greyed, bottom) and
some movable hubs may be moved (like b1 moved into a5). Some thin degree 2 hubs from H are
not found but merged in the K-laminars. Fortunately the hub center a5 was found by BFS in the
second step, but we could also have output b1 instead, or both a5 and b1, yielding in any case an
equivalent reduced quotient.

I Lemma 9 (Hub trigger). Consider three numbers r, k and K ≥ 3k. If there exists
a shortest path Q from a to b
a vertex u ∈ V (Q) such that d(a, u) > K + 6k and d(b, u) > K + 6k
a vertex v such that d(u, v) = K

a vertex w such that vw ∈ E(G) and d(Q,w) = K + 1 and d(u,w) = K + 1,
then any (r, k)-hub-laminar decomposition (H,P) has a hub center h ∈ H with d(u, h) ≤ K+r.

Fig. 3 (right) illustrates this. This pattern, when found, allows to propose u as an hub.
And it is very powerful, since every hub h of degree at least three of any (r, k)-hub-laminar
decomposition shall trigger this pattern, for any shortest path Q passing close to h and long
enough, as the following lemma says:

I Lemma 10 (Degree ≥ 3 Hub Detection). If a graph admits an (r, k)-hub-laminar decom-
position (H,P), and has a hub h ∈ H whose degree is at least 3, then for any

K ≥ 3k
shortest path Q from a to b
vertex u ∈ V (Q) such that d(a, u) > r + 4K + 9k + 2 and d(b, u) > r + 4K + 9k + 2 and
d(u, h) ≤ K

there exists
a vertex x ∈ V (Q) such that d(a, x) > K + 6k and d(b, x) > K + 6k
a vertex v such that d(x, v) = K

a vertex w such that vw ∈ E(G) and d(Q,w) = K + 1 and d(x,w) = K + 1,

Notice that if a graph admits an (r, k)-hub-laminar decomposition (H,P) where all hubs
have degree at least three, then the pattern is enough to find all its hubs, or more exactly to
compute a set of hubs H ′ which is in bijection φ with H, i.e. for all h ∈ H d(h, φ(h)) ≤ K+r.
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h h′
v′

u′ v

u

(a)

Q

P

(b)

h
u

v

w

Q

(c)

h1 h2
hzd f K

≤ R

Figure 3 Illustration of the structural properties. (a) Lemma 12: The part of the laminar
k-covered by Pu′v′ is K-covered by Q. (b) Lemma 9: If Q goes through a hub of degree ≥ 3, a triplet
u, v, w can be found, and it is the only such case far apart the extremities of Q. (c) Lemma 11.

Of course to do so in polynomial time we shall use a clever collection of paths Q to trigger
all hubs. This is the idea developed in the algorithm. But before we shall explain how to
deal with degree 1 hubs, the “dead end” hubs.

I Lemma 11 (Hub in the dead-end). Consider the graph G′ induced by a sequence of incident
hubs and laminar H1, L1, H2, ...Hz, such that h1 and hz are at distant of at least 2R+ r + 2.
Suppose moreover that Hz is a hub of degree 1 and all other hubs but H1 are of degree 2.

Let d in L1 be at distance at most R+ r of h1 and f a vertex of G′ the furthest from d.
f is then at distance at most 2r + 2k from hz.

This lemma allow to approximate h with f . As we have just seen, hub of degree not 2 are,
in some sense, uniquely defined (up to a certain distance) in any hub-laminar decomposition
of given parameters. Degree 2 hubs however may be added at discretion on any hub-laminar
decomposition, in the middle of long laminar, so we cannot imagine a sufficient condition for
detecting them. However, they are necessary in very few case, namely

to dominate a vertex at distance more than k, but less than r, inside of a r-laminar (not
k-laminar)
for the Problematic Configuration, since a laminar must have two distinct extremities

The last property, proved in [4], deals no more with computing hub centers but with
computing laminars. While is is NP-hard to find a shortest path that k-dominates a k-laminar
graph, any path 3k-dominate a section of the laminar between its extremities. More formally

I Lemma 12 (Path local dominating). Consider a shortest path P (say, from h to h′). Let
Q be a path from u to v contained in B(P, k).

Assume there exists u′ ∈ P and v′ ∈ P such that d(u, u′) ≤ k and d(v, v′) ≤ k.
Then every vertex of Pu′v′ is at distance at most 2k from Q.
Furthermore, every vertex of B(Pu′v′ , k) is at distance at most 3k of Q.

Fig. 3 (left) illustrates this. We extensively use this lemma for designing an approximation
algorithm: P is any laminar path, and Q is chosen to 3k dominate the middle of the laminar
of P , i.e. all vertices far enough from P extremities (Lemma13 and 14 define “far enough”
as 2R+ 8K + 2r + 18k + 4) and we therefore get a decomposition into 3k-laminar graphs.
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4.4 Finding hubs
4.4.1 The StopBFS function
Let G be a vertex-colored graph with some uncolored vertices. The StopBFS procedure,
provided a vertex d and a color c, consists in running an usual Breadth-first search, starting
at vertex d, with the following additional rules:

only vertices without color c are put in the BFS queue
the BFS stops immediately if a vertex f is visited (i.e. extracted from BFS queue) and f
has a colored neighbor whose color is not c.
otherwise, if the BFS stops because its queue is empty, let f be the last visited vertex
function StopBFS(d, c) returns the BFS path P from d to f (which is a shortest path in
the graph induced by G after removing c-colored vertices).

4.4.2 Finding a new hub: NextHub
Given a vertex s, typically corresponding to an already selected hub center, the NextHub
procedure (see pseudo-code below) detects new hubs: it colors B(s,R) with a next color
and runs a StopBFS procedure from its border. In the case of a not deep-enough tree, the
discovered vertices are colored to not be reused during the hub discovery. Otherwise, it
may either find a new hub of degree at least 3 by Lemma 10, find a new hub of degree 1
by Lemma 11, meet another hub and dominate a laminar by Lemma 12 or cycle and come
back to hit B(s,R). The later case indicates that the algorithm encountered the problematic
configuration and induces the creation of a movable hub.

Given a path P , r3K(P ) denotes the subpath of P get by removing the 3K first and
3K last vertices of P . In the latter, sets A and B respectively denote the unmovable and
movable hub centers.

4.4.3 Finding all hubs : FindHub
The FindHub simply consists in considering the initial uncolored graph G and to construct
the sets A and B of unmovable and movable hub-centers by repeatedly applying NextHub
(see pseudo-code in Appendix).

For the first call, we first compute a long path Q using a double BFS. More precisely,
starting at any s0, we compute furthest node s and then repeatedly apply NextHub until
a vertex a is added to A. If the hub of degree at least three is unique, the fact that
` > 2R+ 8K + 2r+ 18k+ 4 ensures that the deepest vertex of any BFS is at distance greater
than R + (r + 4K + 9k + 2) of the hub center. If there are at least two hubs of degree at
least three, ` > 2R+ 8K + 2r + 18k + 4 implies that any vertex is at distance greater than
`
2 > R + (r + 4K + 9k + 2) of one of the two hub-centers. In any case, the Next_Hub
function applied to s has to find the configuration from Lemma 9 at some point, ensuring
that a first hub center a ∈ A is found. We set A = {a} and B = ∅, and uncolor the whole
graph.

Once this first vertex of A has been found, NextHub is run while there exists a hub center
a ∈ A having an uncolored vertex in its R + 1-neighborhood. If ` is large, the FindHubs
procedure finds all hubs of (H,P) up to those of degree 2, as stated in the following lemma.

I Lemma 13. Suppose that (H,P) has at least a hub of degree 3, and `(H,P) > 2R+ 8K +
2r + 18k + 4. Then, for every vertex in a ∈ A, there exist a vertex in h ∈ H such that their
distance is at most K + 2r. Conversely, for every h ∈ H of degree different from 2, such a
vertex a is selected in A.
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1 NextHub
Input: A graph G with possibly colored vertices, integers R and K, hub-center

sets A and B, and a vertex s
Output: Updated sets A, B and vertex coloring

2 Color every vertex in B(s,R) with a new color col(s)
3 Choose an uncolored vertex d at distance R+ 1 from s

4 Let P = stopBFS(d, col(s)) and f the last vertex of P
5 If P is of length less that 2R+ 4K + 2 then

/* Not deep enough tree: no laminar is crossed */
6 Color all vertices visited by stopBFS(d, col(s)) with color lam
7 else if ∃w, a s.t. col(w) 6=col(s) and h∈r3K(P) and d(w, a)=K+1 and

d(w,P )=K+1 then
/* A hub has been detected by Lemma 9 configuration */

8 Add to A the first vertex a of r3K(P ) satisfying the above
9 else if f is at distance less than 2K of B(s,R) then

/* P is deep, found no hub and came back near the root:
problematic configuration */

10 Add to B the vertex b in the middle of P
11 Color uncolored vertices in BG\{B(d,R)∪B(f,R)}(P,K) with color lam
12 else if f is not adjacent to a colored vertex then

/* P is long, found no hub and doesn’t come back: dead end */
13 Add f to A
14 else

/* P links B(s,R) to a vertex of a color different from col(s).
The dominated vertices correspond to a laminar. */

15 Color uncolored vertices in BG\{B(d,R)∪B(f,R)}(P,K) with color lam

4.5 Finding laminars
At this step we have a set of unmovable hubs including all hubs of degree 1 or at least 3, and
potentially those of degree 2. Moreover, the set B of movable hub-centers indicates the places
where problematic configuration occur. We have to identify the laminars and their paths,
keeping in mind that some new hubs of degree 2 may be detected. Each path is found by a
BFS starting at an hub center and ending at the first other hub center encountered.Then we
remove from the graph the vertices from the laminar, but not the hubs. For each path P
linking two hub centers h and h′, the vertices from B(P, k)− (B(h,R)∪B(h′, R) are removed
from the graph. Hub center h is no more used when B(h,R) becomes disconnected and the
whole process ends when the graph consists in disconnected hubs only.

To prevent any difficulty arising from ending a shortest path with a movable hub B(b, R),
we start by those hubs to run BFSs. Indeed, such hubs correspond to a configuration where
the quotient of the decomposition (the one supposed by Theorem 6 and the computed one,
since they have the same reduced quotient) contains a cycle . If a movable hub has been
used, it means that only one hub center a ∈ A corresponding to hub-center h ∈ H of degree
at least 3 has been found, and that all other hubs are of degree 2 on the cycle and have
been missed. Starting from b, the first element of A ∪ B which is hit is then a, whatever
the direction B(b, R) was left. Thus, two BFS from b to a are run which follow the ring in
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opposite direction. Either the two obtained paths K-dominate all vertices of the ring, in
which case b is transferred to A and the two paths added to Q; Or there exist a vertex in
the ring which is not K-dominated. This vertex is then at distance at most K + 2r of some
h ∈ H (cf Appendix for a proof). It is thus added to A and b is deleted from B.

Once the movable centers have been considered, no other places with problematic config-
urations are left. One therefore just has to draw shortest paths between vertices of A, and
Lemma 12 ensures that they cover the laminars of (H,P). The only difficulty is again that a
hub of degree 2 that had not been discovered by FindHubs may this time be discovered by
FindLaminars because Lemma 9 configuration is encountered. In that case, this degree 2
hub center is added to A and a new BFS is run from it. See pseudo-code of FindLaminars
in Appendix.

I Lemma 14. Suppose that (H,P) has at least a hub of degree 3, and `(H,P) > 2R+ 8K +
2r + 18k + 4. Suppose that FindLaminars is run on sets A and B returned by FindHubs.
Then it ends with every vertex deleted or marked as undeletable.

As shown in the appendix, Lemmas 13 and 14 imply Theorem 6.

5 Embedding and distance labeling

5.1 Circle embedding with bounded distortion
Corollary 5 is a consequence of Theorem 4 and the two following propositions.

I Proposition 15. Any graph G having a circle embedding with distortion γ has a shortest
path or an isometric cycle with eccentricity bγ/2c at most.

I Proposition 16. Given a graph G and an isometric cycle with eccentricity k in G, an
embedding of G in a circle with distortion O(k · cd(G)) can be computed in polynomial time.

Proof sketch. The construction of the embedding is similar to that of [5] with Euler tours of
trees of depth k rooted in the cycle (see [5]). We then obtain an embedding of the graph in a
cycle of length 2n at most that can be easily embedded in a circle with same length. The
distortion of an edge uv of G is then at most twice the size of the union S of trees rooted on
the shortest path of the cycle from the root u′ of the tree of u to the root v′ of the tree of
v. As we have dG(u′, v′) ≤ 2k + 1, the diameter of S is at most 4k + 1. Now consider an
embedding of G in a circle C with distortion γ = cd(G). Two nodes of S are embedded at
distance at most γ(4k + 1) in the circle and different nodes are at distance 1 at least. We
thus have |S| ≤ γ(8k + 2), and our embedding has distortion O(γk). J

5.2 Distance labeling for general hub-laminar decomposition
A decomposition of a graph G in an hub-laminar allows to compute a compact representation
of distances in G with additive distortion. A distance labeling is said to be c-additive and
have s bit labels when the label Lu assigned to a node u contains at most s bits and for all
pairs of nodes u, v, a distance estimation d̂uv can be computed from Lu and Lv such that
d(u, v) ≤ d̂uv ≤ d(u, v) + c. Corollary 7 is a consequence of Theorem 6 and the following
proposition.

I Proposition 17. Given a (r, k)-hub-laminar decomposition (H,P) with λ laminars of a
graph G, a max(4k, 2r)-additive distance labeling with O(λ logn) bit labels can be computed
in polynomial time.
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Appendix to Decomposing a Graph into Shortest Paths with Bounded
Eccentricity: Proofs and pseudocodes

I Definition 18 (k-neighbor operator _′). . When dealing with a path P (resp. a cycle C)
that k-dominates a set U , for any vertex u ∈ U , we define u′ as one of the vertices of P (resp.
C) such that d(u, u′) ≤ k. We say that u′ is a k-neighbor of u in P (resp. C). All proofs
using this operator stand whatever vertex is chosen for u′ when many vertices of P (resp. C)
may be chosen.

7 Isometric cycle

This section aims to prove Lemma 8.
For any cycle C and any pair of vertices a and b, we denote by Ca,b and Cb,a the two

paths in C linking a and b.

I Lemma 19. Let G be a graph with an isometric cycle k-dominating G. Let u and v be any
two vertices, and u′ and v′ their k-neighbor as in Definition 18.Let u, v such that u (resp.
v) is at distance at most k of u′ (resp. v′).

Every path between u and v 2k-dominates either Cu′,v′ or Cv′,u′ .

Proof. Let P be a path between u and v. Suppose that P does not 2k-dominate some vertex
b on the path Cv′,u′ and consider any vertex a in Cu′,v′ .

Without loss of generality, assume that u′ (resp. v′) is in the path Ca,b (resp. B = Cb,a).
Then u at distance at most k of Ca,b and v at distance at most k of Cb,a. Moreover, as

every vertex of G is at distance at most k of one of those two paths, there exist c and d that
are adjacent vertices in P such that c is at distance at most k of c′ ∈ Ca,b and d at distance
at d′ of Cb,a.

As d(c′, d′) ≤ d(c′, c) + d(c, d) + d(d, d′) ≤ 2k+ 1 and C is an isometric cycle, either Cc′,d′
or Cd′,c′ is of length at most 2k + 1 and is thus 2k-dominated by {c, d}. But b and a are not
in the same path on C between c′ and d′, and b cannot be 2k-dominated by P , so that a is
thus 2k-dominated by P .

The previous claim beeing true for every a in Cu′,v′ , the lemma is verified.
J

I Lemma 20. Let G be a graph with an isometric cycle C = c1, ...cp k-covering G.
Let D be a longest isometric cycle of G. (every other isometric cycle of G is of length at

most |D|)
Every vertex of C is at distance at most 5k of D, furtheremore, if D is of length more

than 12k + 2 then every vertex of C is at distance at most 2k of D.

Proof. Let D be a longest isometric cycle, assume that there exists cl in C such that no
vertex of D is at distance less than 2k of cl.

Let ci (resp. cj) be vertices at distance less than k of D and such that Cci+1,cl
(resp.

Ccl,cj−1) contains no vertex at distance less than k of D.
Let a (resp. b) the vertex of D at distance less than k of ci (resp. cj). By lemma 19 we

know that Da,b and Db,a both 2k dominate either Cci,cj or Ccj ,ci . As we assumed that cl
was at distance more than 2k of D, we have that both Da,b and Db,a 2k dominate Ccj ,ci

.
Let m be the vertex in the middle of Da,b and cm the vertex of C at distance less than k

of m. By the previous hypothesis, cm is in Ccj ,ci
.
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As Ccj ,ci is 2k-dominated by Db,a, there exist m′ in Db,a at distance less than 2k of cm
and :

d(m,m′) ≤ d(m, cm) + d(cm,m′) ≤ 3k (1)

As D is an isometric cycle, |Dm,m′ | ≤ 3k or|Dm′,m| ≤ 3k. Assume without loss of
generality that the first inequality holds and that b is in Dm,m′ . Then,

|Dm,b| ≤ 3k (2)
|Da,b| ≤ 6k + 1 (3)

By taking m in the middle of Db,a (instead of Da,b), we show also that Db,a is of length
less or equal than 6k + 1.

Finally, D is of length at most 12k + 2.

Let’s now assume that D is of length p ≤ 12k + 2. Consider two opposite vertices u,v in
D, that is at distance at least bp2c.

Let ci (resp. cj) in C at distance less than k of u (resp. v). Then,

d(ci, cj) ≥ d(u, v)− d(ci, u)− d(v, cj) ≥
c
p

2b−2k (4)

It follows that,

|Ccj ,ci | ≤ |C| − d(ci, cj) ≤ d
p

2e+ 2k ≤ 8k + 1 (5)

|Cci,cj | ≤ 8k + 1 (6)

Hence, for every cl in C, one of those inequalities holds :

d(ci, cl) ≤ 4k (7)
d(cj , cl) ≤ 4k (8)

As u (resp. v) is at distance k of ci (resp. cj), one of those inequalities holds :

d(u, cl) ≤ d(u, ci) + d(ci, cl) ≤ 5k (9)
d(v, cl) ≤ 5k (10)

J

Lemma 20 trivially implies Lemma 8 as C k-dominates G.

8 Proofs of the structural lemmas

This section details the proof of Lemmas 9 to 12, as well as an additional technical lemma.
The proofs are given in the order corresponding to the extended abstract. Notice that
Lemmas 9 and 10 rely on Lemma 12 and on the technical lemma given in the end of the
section, but that the converse is not true, ensuring the validity of all of them.

I Lemma (Hub trigger, Lemma 9). Consider three numbers r, k and K ≥ 3k. If there exists
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Figure 4 Illustration of the proof of Lemma 9

a shortest path Q from a to b
a vertex u ∈ V (Q) such that d(a, u) > K + 6k and d(b, u) > K + 6k
a vertex v such that d(u, v) = K

a vertex w such that vw ∈ E(G) and d(Q,w) = K + 1 and d(u,w) = K + 1,
then any (r, k)-hub-laminar decomposition (H,P) has a hub center h ∈ H with d(u, h) ≤ K+r.

Proof. For the sake of contradiction, suppose no such hub exists. Then u must be in a
laminar with path P from h to h′ and there exists u′ ∈ P such that d(u, u′) ≤ k.

Suppose first that w ∈ B(P, k). Consider w′ ∈ P such that d(w,w′) ≤ k, and suppose
w.l.o.g. that u′ ∈ Phw′ . Suppose there exist z ∈ Q and z′ ∈ Pw′h′ with d(z, z′) ≤ k.
Lemma 12 applied to Quz then implies that d(w,Q) ≤ 3k ≤ K, which is a contradiction.
Thus, Q cannot intersect B(Pw′h′ , k).

We can thus define m′ as the k-neighbor of Q on Pu′w′ furthest from u′ and m ∈ Q such
that d(m,m′) ≤ k, as shown in Figure 4. As d(w,Q) > 3k, d(w′,m′) ≥ k + 1 so that, using
d(u′, w′) ≤ K + 2k+ 1, d(u′,m′) ≤ K + k. It implies that d(u,m) ≤ K + 3k. The hypothesis
on d(u, a) and d(u, b) then imply that there exist two vertices c and d on Q at distance 3k+ 1
of m. As u is at distance greater than K + r of any hub-center, Qc,d ⊂ B(P, k). Thus, the
fact that m′ is the furthest k-neighbor of Q on P contradicts Lemma 21 applied to c, m and
d.

We therefore have w /∈ B(P, k). Consider then the last node x in B(P, k) on the path
from u to v. By assertion 4. of the definition of a hub-laminar decomposition, there exist a
hub center h such that x ∈ B(h, r), and thus d(u, h) ≤ K + r.

J

I Lemma (Degree ≥ 3 Hub Detection, Lemma 10). If a graph admits an (r, k)-hub-laminar
decomposition (H,P), and has a hub h ∈ H whose degree is at least 3, then for any

K ≥ 3k
shortest path Q from a to b
vertex u ∈ V (Q) such that d(a, u) > r + 4K + 9k + 2 and d(b, u) > r + 4K + 9k + 2 and
d(u, h) ≤ K

there exists
a vertex x ∈ V (Q) such that d(a, x) > K + 6k and d(b, x) > K + 6k
a vertex v such that d(x, v) = K

a vertex w such that vw ∈ E(G) and d(Q,w) = K + 1 and d(x,w) = K + 1,
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Figure 5 Illustration of the proof of Lemma 10

Proof. Consider three paths Pi,Pk,Pl of P with h as an endpoint and vertices x′i,x′j ,x′l on
those paths, each at distance r +K + 3k + 2 from h.

Assume first that those three vertices are at distance at most K of respectively xi, xj ,
xl, vertices of Q. None of the last three vertices belongs to the hub B(h, r) as d(h, xi) ≥
d(h, x′i) − d(x′i, xi) ≥ r + 3k + 2. Moreover, we may assume w.l.o.g that xj , xi and xl
are in that order in Q. There exist therefore a maximal subpath Qcd of Q that is part of
B(Pi, k) \B(h, r) and that contains xi.

Let c′ and d′ be vertices of Pi such that d(c, c′) ≤ k and d(d, d′) ≤ k. Then d(h, c′) ≤
d(h, c) + k ≤ r+ k+ 1 and similarly for e′. As d(h, x′i) > r+ k+ 1, Lemma 21 applies to c, xi
and e and implies that d(c, xi) ≤ 3k or d(d, xi) ≤ 3k. In both cases, as d(h, c) = d(h, d) = r+1
and d(xi, x′i) ≤ K, d(h, x′i) ≤ r +K + 3k + 1, which is a contradiction.

One of the three vertices x′i, x′j or x′k is therefore at distance more than K from Q, for
instance xi. When following Pi from h to xi, let v be the last vertex at distance K from Q, w
the following vertex of Pi and x a vertex of Q such that d(x, v) = K. Then d(Q,w) = K + 1
and, assuming w.l.o.g that x ∈ Qu,b,

d(h, v) ≤ r +K + 3k + 2 (11)
d(u, x) ≤ d(u, h) + d(h, v) + d(v, x) ≤ r + 3K + 3k + 2 (12)
d(x, b) = d(u, b)− d(u, x) ≥ K + 6k (13)

J

I Lemma (Hub in the dead-end, Lemma 11). Consider the graph G′ induced by a sequence
of incident hubs and laminar H1, L1, H2, ...Hz, such that h1 and hz are at distant of at least
2R+r+2. Suppose moreover that Hz is a hub of degree 1 and all other hubs but H1 are of
degree 2.
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Let d in L1 be at distance at most R+ r of h1 and f a vertex of G′ the furthest from d.
f is then at distance at most 2r + 2k from hz.

Proof. Case 1: z = 2
Consider the laminar path between h1 and h2 and let vd (resp. vf ) be a vertex on that

path at distance at most k of d (resp f). Such a vertex vf might not exist if vf is at a
distance between k and r of h1 or h2. In the second case, we have the result, in the first case:

d(d, f) ≤ d(d, h1) + d(h1, f) ≤ R+ 2 (14)
d(d, h2) ≥ d(h1, h2)− d(d, h1) ≥ 2R+ r + 2−R− r > R+ 2 (15)

which contradicts the fact that f is the furthest vertex from d. It can be shown by a very
similar argument that vf is closer to h2 than vd.

Then,

d(d, f) ≤ d(vd, vf ) + 2k

But

d(d, f) ≥ d(d, h1) ≥ d(vd, h1)− k

so that

d(vd, vf ) + 3k ≥ d(vd, h1) (16)
d(f, h1) ≤ 4k (17)

Case 2: z > 2
In that case,

d(d, f) ≤ d(d, hz−1) + d(hz−1, vf ) + k

But, as any shortest path between d anf hz has to meet B(hz−1, r),

d(d, f) ≥ (d, hz) ≥ d(d, hz−1) + d(hz−1, hz)− 2r

Thus

d(hz−1, vf ) + k + 2r ≥ d(hz−1, hz) (18)
d(f, hz) ≤ 2k + 2r (19)

J

I Lemma (Path local covering, Lemma 12). Consider a shortest path P (say, from h to h′).
Let Q be a path from u to v contained in B(P, k).

Assume there exists u′ ∈ P and v′ ∈ P such that d(u, u′) ≤ k and d(v, v′) ≤ k.
Then every vertex of Pu′v′ is at distance at most 2k from Q.
Furthermore, every vertex of B(Pu′v′ , k) is at distance at most 3k of Q.

Proof. Let us define x0 = u, xs = v and Q = x0, ...xs.
The second assertion of the lemma is straightforward given the first one. To prove the

latter, we define, for all l between 0 and s, the subpath Ql = x0, x1...x` and x′` in P such

ISAAC 2017



78:18 Decomposing a Graph into Shortest Paths with Bounded Eccentricity

that d(x`, x′`) ≤ k

Let us show by induction on ` that every vertex of P between u′ and x′l, is at distance at
most 2k of P`.

• For ` = 0, Q0 = x0 = u and x′0 = u′. As u′ is at distance k of u, the result is true for
` = 0.

• Let l in (1...s) such that the property if verified for `− 1.
Every vertex y of Pu′x′

`−1
is at distance at most 2k of P`−1 by induction hypothesis, and

thus at distance at most 2k of P`.
Moreover, by the triangle inequality:

d(x′`−1, x
′
`) ≤ d(x′`−1, x`−1) + d(x`−1, x`) + d(x`, x′`) ≤ 2k + 1 (20)

As the sub-path of P between x′`−1 and x′` is a shortest path, it follows that, for every
vertex y of Px′

`−1x
′
`
,

d(x′`−1, y) ≤ k or d(x′`, y) ≤ k, (21)

meaning that y is at distance at most 2k of P`−1 or of x`.

The property is verified by induction, and the lemma follows for ` = s.
J

A last technical lemma on the behavior of shortest paths is needed for the proof of the
previous lemmas and the validity of the Algorithm.

I Lemma 21. Consider a shortest path Q in the graph induced by BG(P, k) with P ∈ P and
three successive nodes a,m, b on Q with a′,m′, b′ on P such that dG(a, a′) ≤ k, dG(m,m′) ≤ k,
dG(b, b′) ≤ k.

If a′ is between b′ and m′ (a′ ∈ Pm′,b′), then we have dG(a,m) ≤ 3k.

Proof. The following relations derive easily from the hypothesis:

dG(b′,m′) = dG(b′, a′) + dG(a′,m′) (22)
dG(b, a) = dG(b,m) + dG(m, a) (23)
dG(b, a) ≤ dG(b′, a′) + 2k (24)
dG(b′,m′) ≤ dG(b,m) + 2k (25)
dG(m, a) ≤ d(m′, a′) + 2k (26)

It follows from equations 23 and 24 that

dG(m, a) ≤ dG(b′, a′) + 2k − dG(b,m) (27)

Using Equation 22,

dG(m, a) ≤ dG(b′,m′)− dG(a′,m′) + 2k − dG(b,m) (28)

Using Equation 25,

dG(m, a) ≤ 4k − dG(a′,m′) (29)



Birmelé and de Montgolfier and Planche and Viennot 78:19
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Figure 6 Proof of Lemma 21

Using Equation 26,

dG(m, a) ≤ 6k − dG(m, a) (30)

Finally, we get

dG(m, a) ≤ 3k (31)

J

9 Proof of the algorithm validity

9.1 Pseudocode of FindHubs and proof of Lemma 13

1 FindHubs
Input: A graph G, integers R and K
Output: Two set of vertices A and B

2 Choose any vertex s0
3 Run a BFS rooted in s0 and choose s as a deepest vertex
4 Run NextHub(G,R,K, s) until a vertex a is added to A
5 Uncolor all vertices
6 Set A = {a} and B = ∅;
7 Color every vertex in B(a,R) with color col(a)
8 While ∃a ∈ A and an uncolored vertex d ∈ G such that d(a, d) = R+ 1 do
9 Apply NextHub(G,R,K, a)

10 If a new hub a′ has been discovered then
11 Add it to A or B depending on its movable status
12 Color every vertex in B(a′, R) with color col(a′)

I Lemma 22 (Computed hubs of degree 6= 2 are close to those of H). Consider a graph G
having a (r, k, `, λ) hub-laminar decomposition (H,P) with ` > 2R+ 8K + 2r + 18k + 4, and
a hub center h0 ∈ H with hub degree three or more. Suppose that FindHubs is called with a
starting node s such that s is at distance at most K + r from a hub center h with hub degree
at least 3, then:

(i) For every vertex a added in A at line 8, there is a hub center h ∈ H of hub degree at
least 2 at distance at most K + r from a.

(ii) For every vertex a added in A at line 12, there is a hub center h ∈ H of hub degree 1
at distance at most 2(k + r) from a.
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Proof. (i) This is a direct result of lemma 9.

(ii) Let f be added to A at line 12.
By induction, d is in a laminar L with endpoints h and h′, such that B(h, r) is in B(a,R).

Therefore Pd,f is such that f is in L or Pd,f goes through h′.
Assume h′ of degree at least 2. Then there exists a second laminar L′ incident to h′, with

path P ′ = (h′ = v′0, v
′
1, ...v

′
l′). Moreover,

d(d, f) ≥ d(d, v′l′) ≥ d(d, h′) + d(h′, v′l′)− 2r ≥ d(d, h′) + l − 2r (32)

and,

d(h′, f) ≥ d(d, f)− d(d, h′) ≥ l − 2r (33)

As any path from d to f has a vertex in B(h′, r), h′ is not of degree more than 3, as
otherwise Lemma 10 (K ≥ 3k) would imply that h′ should have been detected at line 8.

By induction we deduce that there is no hub of degree more than 3 in G \B(a,R) and
that any path in G \B(a,R) starting on d goes through the same set of hubs in the same
order. This set either end with an hub of degree 1 or with the hub h (the last laminar
intersects B(a,R)).

In the second case, let v0, v1, ...vz be the path associated with the laminar, and vj the
vertex closest to vz and not in B(a,R).

d(d, vj) ≥ d(d, v0) + d(v0, vj)− 2r (34)
d(d, f) ≤ d(d, vf ) + k ≤ d(d, v0) + d(v0, vf ) + k (35)
d(d, v0) + d(v0, vf ) + k ≥ d(d, v0) + d(v0, vj)− 2r (36)
d(v0, vf ) ≥ d(v0, vj)− 2r − k (37)
d(vf , a) ≤ R+ 2r + k (38)
d(f, a) ≤ R+ 2r + 2k (39)

In the first case, let h′′ be the ending hub of degree 1 and v′′0 , v
′′
1 , ...h

′′ be the path
associated with the laminar, by lemma 11, we have :

d(f, h′′) ≤ 2k + 2r (40)

J

The following lemma is needed to prove the converse result and implies that FindHubs
terminates.

I Lemma 23 (Uncolored vertices are close to A). Consider a graph G having a (r, k, `, λ)
hub-laminar decomposition (H,P) with ` > 2R+ 8K + 2r + 18k + 4 such that at least one
hub has degree three or more.

The algorithm FindHubs ends with every vertex colored or at distance 3R + 4K at most
from a vertex a of A

Proof. Let y be an uncolored vertex at distance at least 3R+ 4K + 1 of a and x0 the closest
colored vertex. We denote by Q = (x0, x1, ..., xt = y) the shortest path from x0 to y. All
vertices in Q but x0 are then uncolored.
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x0 cannot have been colored by a vertex of A, as x1 would have been selected at line 8
and thus colored. x0 has therefore color lam. It cannot have been colored at Line 6 as y
would then also be colored. It has therefore been colored by a path Pd,f .

x0 is at distance K of some vertex u in Pd,f , otherwise x1 would have been colored by
u. It implies that u is at distance less than 3K of d or f , otherwise x1 would have been
colored at line 8. We may suppose w.l.o.g that it is at distance at most 3K from d, so that
d(d, x0) ≤ 4K.

We have that d is at distance R+ 1 of some a ∈ A. Vertices added to A at line 10 have
no uncolored vertex at distance R + 1. Indeed, Lemmas 9 and the size of L imply that a
vertex would then have been added at line 8. By Lemma 22, a is thus at distance more than
r +K of some hub center h ∈ H, so that R > 2(K + r) implies that d is at distance at least
K + r from h. By definition of an hub-laminar decomposition, d is in a laminar L, which
associated path is denoted by P = (v0 = h, v1...vr).

Let vid and vi1 be vertices of P at distance less than k of d and x1. As

d(d, y) ≥ d(a, y)− d(d, a) ≥ 3R+ 4K + 1−R− 1 ≥ 2R+ 4K, (41)
d(d, f) ≥ min(d(d, y), l − 2R+ 2) ≥ 2R+ 4K (42)

Lemma 12 thus implies that every vertex at distance k of the path vid , ...vid+2R+4K−2k
is K covered by Pd,f . So i1 is either lower than id or greater than id + 2R+ 4K − 2k.

But

d(vid , vi1) ≤ d(vid , d) + d(d, x1) + d(x1, vi1) ≤ 4K + 2k + 1 (43)
d(h, vi1) ≤ d(h, vid) + 4K + 2k + 1 ≤ d(h, vid) + 2R+ 4K − 2k (44)

Thus, i1 ≤ id.
As B(vid+2R,K) disconnects L and is entirely colored, Q is entirely in L. Let us denote vij

a vertex of P at distance k of xj for every 2 ≤ j ≤ t. Then for every 1 ≤ j < t, d(vij , vij+1) ≤
2k + 1, so that all indices ij are lower than i or all are greater than i+ 2R + 4K − 2k. It
follows that they are all lower than id.

But

id = d(h, vi) ≤ d(h, a) + d(a, d) + d(d, vid) ≤ 2R+ 2k − r

so that d(h, vit) ≤ 2R+ 2k − r.
Finally,

d(a, y) ≤ d(a, h) + d(h, vit) + d(vit , y) ≤ R− r + 2R+ 2k − r + k < 3R+ 4K + 1

which is a contradiction.
J

I Lemma 24 (Hubs of H of degree 6= 2 are close to computed ones). Consider a graph G
having a (r, k, `, λ) hub-laminar decomposition (H,P) with 2R+ 7K < `− 2r − 3k − 3 such
that at least one hub of degree three or more.

When FindHubs terminates:
(i) For every hub h ∈ H of degree at least 3, there exists a vertex a in A at distance at

most K + r from h.
(ii) For every hub h ∈ H of degree 1, there exists a vertex a in A at distance at most

2(k + r) from h.
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Proof. (i) Assume that h is at distance more than max(R+ r + 5K + 9k + 3, 3R+ 4K) of
every vertex a of A. By Lemma 23, h is of color lam. Therefore there is a path Pd,f and
vertices a, a′ in A, u in Pd,f such that :

d(d, a) ≤ R+ 1 (45)
d(f, a′) ≤ R+ 1 (46)
d(h, a) ≥ R+ r + 5K + 9k + 3 (47)
d(h, a′) ≥ R+ r + 5K + 9k + 3 (48)
d(u, h) ≤ K (49)

By combining those inequalities :

d(d, u) ≥ d(h, a)− d(d, a)− d(u, h) ≥ r + 4K + 9k + 2 (50)
d(f, u) ≥ d(h, a′)− d(d, a′)− d(u, h) ≥ r + 4K + 9k + 2 (51)

By Lemma 10, there is vw ∈ E(G) and x at distance more than K + 6k from d and f
such that d(x, v) = K, d(P,w) = K + 1. It results that h should have been detected at line
14 and colored by a vertex of A.

Assume that h is at distance less than R+ r + 5K + 9k + 3 of a vertex a of A added at
line 12. By lemma 22, there exist a hub of degree 1 of center h′ such that d(a, h′) ≤ K + r.
Therefore, d(h, h′) ≤ d(h, a) + d(a, h′) ≤ R+ 2r + 6K + 9k + 3, which is impossible.

Let h be at distance less than R+ r+ 5K + 9k+ 3 of a added at line 8 of NextHub. a is
at distance at most K + r of a hub h′ of degree 3 or more. We then have :

d(h, h′) ≤ R+ 2r + 6K + 9k + 3 < l (52)

Thus h = h′, so that h is at distance at most K + r of a.

ii) Let h be an hub of degree 1. Suppose first that h is at distance less than 3R + 4K
of a vertex a of A. By a proof similar to (i), a was added at line 12 of NextHub and is at
distance at most K + r of h.

Assume now that h is at distance more than 3R+ 4K of every vertex a of A. Then there
is a path Pd,f , and u in Pd,f at distance at most K of h. We have,

d(d, u) ≥ d(a, h)− d(a, d)− d(u, h) > 3k (53)
d(f, u) > 3k (54)

Let y and y′ be the vertices of Pd,f at distance 3k + 1 of u. Let L be the laminar having
h as an endpoint and P the path associated to L.

As 3k + 1 < l, y and y′ are in L. Let v (resp. v′) a vertex of PL at distance at most k of
y (resp. y′). Assume w.l.o.g that v is closest to h than v′.

Then v ∈ Ph,v′ , which leads to a contradiction by lemma 21. Thus, h cannot be at
distance more than 3R+ 4K of every vertex a of A.

J

I Lemma (Lemma 13). Suppose that (H,P) has at least a hub of degree 3, and `(H,P) >
2R + 7K + 2r + 3k + 3. Then, for every vertex in a ∈ A, there exist a vertex in h ∈ H such
that their distance is at most K + 2r. Conversely, for every h ∈ H of degree different from 2,
such a vertex a is selected in A.

Proof. This is a direct result of lemma 22 and 24. J
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9.2 Pseudocode of FindLaminars and proof of Lemma 14

1 FindLaminars
Input: A graph G, integers R and K
Output: a hub-laminar decomposition (A,Q)

2 (A,B) = FindHubs(G,R,K)
3 Q = ∅
4 Mark all vertices as deletable
5 For each vertex a of A do
6 Mark the vertices in B(a,R) as undeletable
7 For each b ∈ B do
8 Run a BFS starting at b and stopping on the first vertex a ∈ A
9 Let Q1 be the path from b to a computed by this BFS

10 Run a BFS starting at b, not using vertices of B(Q1,K) \ (B(b, R) ∪B(a,R))
and stopping in a

11 Let Q2 be the path from b to a computed by this BFS
12 Compute G′, the union of the connected component of G \B(a,R) containing b

and B(a,R)
13 Color in G′ the vertices of B(a,R), B(b, R), B(Q1,K) and B(Q2,K)
14 If ∃ an uncolored vertex a in H then
15 Add a to A Mark the vertices in B(a,R) as undeletable
16 else
17 Add b to A
18 Mark the vertices in B(b, R) as undeletable
19 Delete from G the deletable vertices from B(Q1,K) ∪B(Q2,K)
20 Add Q1 and Q2 to Q

21 While there exists a ∈ A such that B(a,R+ 1) 6= B(a,R) do
22 Run a BFS starting at a and stopping on the first vertex a′ ∈ A, a′ 6= a

23 Let Q be the path from a to a′ computed by this BFS
24 If ∃w, h s.t. h ∈ r3K(Q, d(w, h)=K+1 and d(w,Q)=K+1 then
25 Add to A the first vertex h of Q satisfying the above
26 Mark the vertices in B(h,R) as undeletable
27 else
28 Add to Q the path Q from a to a′ computed by this BFS
29 Delete from G the deletable vertices from B(P,K)

I Lemma (Lemma 14). Suppose that (H,P) has at least a hub of degree 3, and `(H,P) >
2R+ 7K + 2r + 3k + 3. Suppose that FindLaminars is run on sets A and B returned by
FindHubs. Then it ends with every vertex deleted or marked as undeletable.

Proof. Consider the underlying decomposition (H,P) of G. Let X = {x1, . . . , xλ} be the
set of midpoints of the laminar paths (for paths of odd length, an arbitrary choice is made
betwwen the two possible vertices). In the following of the proof, a laminar will be denoted
by L(x), where x is the unique element of X belonging to the laminar.

A h ∈ H is said to be covered by A if there exist a vertex of A at distance at most K + 2r
of h.

Claim 1: The vertices belonging to a hub B(h, r), h beeing covered in the end of the
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algorithm, are marked as undeletable.
h beeing covered, some a ∈ A is at distance at most K + 2r of h. As K + 2r + r < R,

B(h, r) ⊂ B(a,R) and its vertices are undeletable.

Claim 2: Consider a laminar L(x) which laminar path joins h1 to h2. Suppose that at
some point, h1 and h2 are covered and x is not deleted. Then all vertices of L(x) are deleted
or marked as undeletable when the algorithm terminates.

By the same reasoning as in Claim 1, as (K + 2r) + (r+ 3k+K) ≤ R, all vertices of L(x)
belonging to B(hi, r + 3k + K) are undeletable. Let L′(x) = L(x) \

(
B(h1, r) ∪ B(h2, r)

)
denote the central part of the laminar, that is the vertices belonging to the laminar but not
to the incident hubs.

Let Q be any path added to Q by the algorithm. To prove the claim, we shall prove that
Q either delete all or none of the deletable vertices of L(x). As L(x) is connected, the While
loop will thus be run until some path Q is selected which deletes them all.

Case 1: Q does not hit L′(x)
The deletable vertices of L(x) beeing at distance at least r + 3k + K from h1 and h2,

none of them is deleted.
Case 2: Q enters and exits L′(x) by the same hub, say B(h1, r)
Let x, y and z beeing vertices appearing on Q in this order, such that x and z are at

distance r from h1 and y is the vertex on Q the furthest of h1. Let x′, y′ and z′ be vertices
on the laminar path k-covering them. If y′ is closer to h1 than x′ or z′, say x′,

d(h1, y) ≤ d(h1, x
′) + d(y′, y) ≤ d(h1, x) + d(x, x′) + d(y′, y) ≤ r + 2k

If not, Lemma 21 implies that d(x, y) ≤ 3k. In any case, d(h1, y) ≤ r + 3k. Thus any
vertex K-covered by Q is at distance at most r + 3k + K from h1, that is is undeletable.
None of the deletable vertices of L(x) is thus deleted.

Case 3: Q enters L′(x) by one hub and exits it by the other one
Let u and v be vertices on Q at distance r from respectively h1 and h2. Let u′ and v′ on

the laminar pat of L(x) that k-cover u and v. As d(h1, u
′) ≤ r+ k and d(h2, v

′) ≤ r+ k), all
deletable vertices of L(x) are k-covered by the laminar subpath between u′ and v′. Lemma 12
then implies that they are K-covered by Q. All of them are thus deleted.

Case 4: Q has an endpoint in L’(x)
Let a be that endpointn and w.l.o.g., let suppose it covers h1. Denote by a′ a vertex

on the laminar path that k-covers a. Then all vertices of L(x) that are k-covered by the
laminar subpath between h1 and a′ are at distance less than R of a and are thus undeletable.
Concerning those which are covered by the laminar subpath between a′ and h2, the proofs
of Cases 1 to 3 can be rewritten by replacing h1 by a′. Either Q exits L′(x) by B(h2, r),
covering all deletable vertices, or it exits L(x) by B(h1, r), covering none of them.

Claim 3: Consider a sequence of hubs and laminars H1, L(x1), H2, . . . , L(xp−1), Hp

corresponding to a path in the quotient graph and such that the Hi’s are of degree 2 for
2 ≤ i ≤ p− 1. Suppose that at some point the hub-centers of H1 and Hp are covered, those
of the others hub aren’t, and x1 is not deleted. Then all vertices of the hubs and laminars of
the sequence are deleted or marked as undeletable when the algorithm terminates.

This claim is proven exactly in the same way that the preceeding one, except that in the
case where the path Q crosses the whole sequence of laminars, Lemma 12 doesn’t ensure
that all vertices are K-covered. However, if this should not be the case, the condition of
Line 24 is fullfilled, in which case a vertex covering a hub of degree 2 is added to A. The
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sequence is then cut into two subsequences, on which the claim can be recursivaly applied.
Claim 2 ensures that only a finite number of recursions are needed.

Claim 4: Consider a sequence of hubs and laminars H1, L(x1), H2, . . . , L(xp−1), H1
corresponding to a cycle in the quotient graph and such that the Hi’s are of degree 2 for
2 ≤ i ≤ p − 1. Then all vertices of the hubs and laminars of the sequence are deleted or
marked as undeletable when the algorithm terminates.

This situation corresponds to the problematic case, H1 beeing the only hub of degree at
least three in the sequence, and is thus covered by Lemma 24. If one of the hubs of degree 2
has been covered during the FindHubs procedure, the result is true by applying Claims 2 or
3 to the resulting subsequences.

Suppose therefore that no hub of degree 2 is covered. Then a movable b has been
introduced by FindHubs and two paths Q1 and Q2 linking b to the vertex a covering the
hub-center of H1 are drawn. Note that Lemma 12 implies that Q1 K-covers the central part
of the laminars it crosses so that Q2 has to go the other way around: if Q1 reaches a by
L(x1), Q2 reaches it by L(xp−1).

Consider the graph G′ as introduced in the algorithm and which correspond to the union
of B(a,R) with the graph induced by the considered sequence of laminars and hubs. The
R-neighborhoods of a and b as well as the K-neighborhood of Q1 ∪Q2 are colored.

If there is no uncoloured vertex in G′, all of them are either deleted or marked as
undeletable at lines 18 and 19. Supposetherefore that there exist an uncolored vertex a. We
shall prove that a covers one of the hubs of degree two, so that the fact that it is added to A
at line again creates two subsequences for which the result is true by Claims 2 or 3.

If a belongs to one of the hubs of the sequence, the result is obvious, so let’s suppose it
belongs to some laminar L(xi).

Case 1: neither a or b belongs to L(xi)
Then one of the two paths Q1 or Q2 has to cross L(xi), that is contains a vertex u at

distance r from hi and a vertex v at distance r from hi+1. Let u′ and v′ be vertices of the
laminar path of L(xi) k-dominating them. Then d(hi, u′) ≤ k + r and d(hi+1, v

′) ≤ k + r.
By Lemma 12, a cannot be k-covered by the laminar subpath between u′ and v′ as it

would have been colored. It is therefore at distance k of a vertex beeing on the subpath
between h1 and u′ or between h2 and v′. Thus, its distance to hi or hi+1 is bounded by
2k+r, so it covers it.

Case 2: a or b belongs to L(xi)
The same reasoning as in Case 1 by replacing B(hi, r) and/or B(hi+1, r) by B(a,K)

and/or B(b,K). The only difference is that v cannot be close to one of those balls as
K + 2k < R and that v would thus have been colored.

J

9.3 Proof of Theorem 6
Let us first show that the output of the algorithm fulfills the definition of n hub-laminar
decomposition.

Axiom 1. Each laminar links two hubs centers. The endpoints h, h′ of any P ∈ P belong
to H and for every other hub h′′ ∈ H \ {h, h′}, B(P, k) ∩B(h′′, r + 1) = ∅:

The set of paths Q is defined in the function FindLaminars. They are by definition
paths between two vertices of A, the set of hubs returned by the previous function.
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Let Q be a path of Q with end points a1, a2 ∈ A. Assume the existence of a third vertex
a3 ∈ A such that B(a3, R) intersects B(Q,K), i.e. a3 is at distance K +R at most from
some vertex q ∈ Q. We then have:

d(a1, a3) ≤ d(a1, q) +K + r

d(q, a2) ≥ d(a2, a3)− d(q, a3) ≥ L−K − r
d(a1, a2) = d(a1, q) + d(q, a2) ≥ d(a1, q) + L−K − r > d(a1, a3)

Without lost of generality, assume that Q started on a1, Q is then the shortest path
between a1 and any vertex of A in the remaining graph when computing Q. As a3 is
not visited before a2, some vertices between q and a3 must have been deleted during a
previous step of the algorithm. This means that Q meets an other laminar outside a hub,
in contradiction with Axiom 4, which is verified as detailed below.
Axiom 2. The laminars and the hubs cover G: V (G) ⊆

⋃
h∈H B(h, r) ∪

⋃
P∈P B(P, k):

This is a direct result of Lemma 14.
Axiom 3. Each laminar path is locally a shortest path. Any path P ∈ P with endpoints
h and h′ is a shortest path of the graph G[B(P, k) ∪B(h, r) ∪B(h′, r)]:

Each path Q ∈ Q is locally a shortest path, each path Q with endpoint a, a′ is a
shortest path of the remaining graph when computing Q which contains the dumbbell
B(Q,K) ∪B(a,R) ∪B(a′, R).
Axiom 4. Laminars meet at hubs only. For all i 6= j and uv ∈ E(G) such that u ∈ B(Pi, k)
and v ∈ B(Pj , k), there is a hub center h ∈ H such that Pi and Pj both have h as endpoint
and u, v ∈ B(h, r):

It is a consequence of the proof Lemma 14, and more precisely of the arguments developed
in Claim 2. Indeed, they imply that for a path Q added between a1 and a2, every
connected component of G \∪a∈AB(a,R) not included in B(Q,K) is not hit by B(Q,K).
Consequently, B(Q1,K) and B(Q2,K) cannot intersect vertices that are not undeletable,
that is in the hubs.

The K + 2r-equivalence is a consequence of Lemma 22 and Lemma 24, which allow to
build the bijection φ between hub centers with hub degree different from 2. Notice moreover
that the decomposition (A,Q) has λ hubs at most since it has no more degree 2 hubs than
(H,P). Our algorithm indeed adds degree 2 hubs in two cases only. First, when the conditions
of Lemma 9 are met, and the added hub is then associated by Lemma 22 to a hub of H.
Second, when we encounter a self loop in the reduced quotient, i.e. a sequence of (at least 2)
laminars of (H,P) connected by (at least 1) hubs of degree 2, the algorithm then adds only
one hub (at Line 10 according to case (c)).

Regarding the time complexity, apart from case (a), each iteration of the while loop in
FindHubs corresponds to finding a hub or a laminar. There are thus O(|A| + |Q|)) such
interations, and their overall cost is O(min(λ, n)m). In the iterations corresponding to
Case (a), all vertices visited by StopBFS are colored: the overall cost of such iterations is
thus O(m). Similarly, FindLaminars consists in λ iterations costing O(m) each.

10 Embedding and distance labeling

I Proposition (Proposition 15). Any graph G having a circle embedding with distortion γ
has a shortest path or an isometric cycle with eccentricity bγ/2c at most.
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Proof sketch. Consider an embedding of G in a circle C with distortion γ. Suppose that
any shortest path of G has eccentricity greater than bγ/2c. We first show that G contains
a simple cycle that bγ/2c covers the graph. Given a path P , two consecutive nodes u, v of
P are at distance at most γ in the circle embedding, and P thus bγ/2c covers any node
embedded between u and v in the circle. We define the arc PC of P in C as the smallest arc
of C where nodes of P are embedded. Note that all nodes embedded in PC are bγ/2c covered
by P . Consider a shortest path P with longest arc PC and let a, b denote the extremities
of PC . If P does not bγ/2c cover G, consider a node c at distance greater than bγ/2c from
P . c cannot be embedded in PC . Consider a shortest path Q from c to a in G. The choice
of P implies that QC cannot contain PC , it thus covers nodes embedded in the arc Cca of
C from c to a that avoids the interior of PC . Similarly, the shortest path R from c to b
covers nodes embedded in the arc Ccb of C from c to b that avoids the interior of PC . Let
a′ be the first node of Q in P . Let Q′ be the sub-path of Q from c to a′ and let P ′ be the
sub-path of P ′ from a′ to b. Note that the arc of Q′ ∪P ′ contains the arc in C from c to b in
QC ∪ PC . Similarly, let b′ be the first node of R in Q′ ∪ P ′. Then define R′ as the sub-path
of R from c to b′ and Q′′ as the sub-path of Q′ ∪ P ′ from c to b′. Note that R′C contains the
arc from c to b in RC ∪ PC . The union Q′′ ∪R′ defines a simple cycle that bγ/2c covers G
as Q′′C ∪R′C = C.

Now consider a simple cycle S of G that bγ/2c covers G and has minimum length. S
must be isometric: otherwise there would be a path P from a to b in S that is shorter than
both paths Q and R of S from a to b. Consider the arc A of C from a to b included in PC .
Without loss of generality, Q covers the nodes embedded in the other part C \A of the cycle.
We can then construct from P ∪Q (similarly as above) a simple cycle that bγ/2c covers G
in contradiction with the choice of S as |P |+ |Q| < |S|. J

I Proposition (Proposition 17). Given a (r, k)-hub-laminar decomposition (H,P) with λ
laminars of a graph G, a max(4k, 2r)-additive distance labeling with O(λ logn) bit labels can
be computed in polynomial time.

Proof. We assume that hub centers are numbered from 1 to q, q ≤ 2λ. For every u ∈ V (G),
we define a hub label Hu consisting in all pairs (h, d(u, h)) for h ∈ H. For a node u in a hub,
i.e. when there exists h ∈ H such that u ∈ B(h, r), we define its label Lu as its hub label,
i.e. Lu := Hu. For a node u in a laminar, i.e. there exists P ∈ P with endpoints h1 < h2
such that u ∈ B(P, k) \B({h1, h2} , r), we additionally store (h1, h2, dP (h1, u

′), d(u′, u)) for
some u′ ∈ B(u, k) ∩ P and set Lu := (h1, h2, dP (h1, u

′), d(u′, u)), Hu (we let dP denote the
distance in the graph induced by P ).

The distance d(u, v) between two nodes u, v ∈ V (G) is then estimated from their la-
bels Lu and Lv as follows. We first compute the estimate through hub centers g(u, v) =
minh∈H d(u, h) + d(v, h). If Lu and Lv both begin with quadruples (h1, h2, d(h1, u

′), d(u′, u))
and (h′1, h′2, d(h′1, v′), d(v′, v)) respectively with h1 = h′1 and h2 = h′2, we detect that u and v
belong to the same laminar and return the distance estimate f(u, v) = min(g(u, v), g′(u, v))
where g′(u, v) = d(u′, u) + |dP (h1, u

′)− dP (h1, v
′)|+ d(v′, v). Otherwise, we simply return

f(u, v) = g(u, v) as distance estimate.
We now prove that we always have d(u, v) ≤ f(u, v) ≤ d(u, v) + max(4k, 2r). By triangle

inequality, we have d(u, v) ≤ d(u, h) + d(v, h) for all h ∈ H and thus obtain d(u, v) ≤ g(u, v).
In the case where u and v both belong to the same laminar B(P, k), note that g′(u, v) is the
length of a path through vertices u′, v′ ∈ P from u to v, implying g′(u, v) ≤ d(u, v). We thus
have d(u, v) ≤ f(u, v) in any case. Now consider a shortest pathQ from u to v. First assumeQ
intersects a hub: there exists h ∈ H such that Q∩B(h, r) 6= ∅. Consider x ∈ Q∩B(h, r). We
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then have d(u, v) = d(u, x)+d(x, v) ≤ d(u, h)+d(h, x)+d(v, h)+d(h, x) ≤ d(u, h)+d(v, h)+2r
implying g(u, v) ≤ d(u, v) + 2r. Second, suppose that Q does not intersect any hub, it must
then be included in a laminar according to Items 2 and 4. Consider P ∈ P with endpoints
h1 < h2 such that Q ⊆ B(P, k) \B({h1, h2} , r). Then u and v both belong to the laminar
and their labels contain quadruples (h1, h2, d(h1, u

′), d(u′, u)) and (h1, h2, d(h1, v
′), d(v′, v))

respectively. Consider the sub-graph GP induced by B(P, k). By triangle inequality, we have
dGP

(u′, v′) ≤ dGP
(u, u′) + dGP

(u, v) + dGP
(v, v′). As Q is included in GP we have d(u, v) =

dGP
(u, v) and we obtain |dP (h1, u

′)− dP (h1, v
′)| = dGP

(u′, v′) ≤ d(u, v) + 2k and thus get
f(u, v) ≤ g′(u, v) ≤ d(u, v) + 4k. In any case we have f(u, v) ≤ d(u, v) + max(4k, 2r). J
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