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3 Inria

Abstract. We introduce the problem of hub-laminar decomposition which
generalizes that of computing a shortest path with minimum eccentricity.
It consists in decomposing a graph into several paths that collectively
have small eccentricity and meet only near their extremities. The prob-
lem is also related to that of binning appearing in biology in the context
of metagenomics. We show that a graph having such a decomposition
with sufficient long paths can be decomposed with approximated guar-
anties on the parameters of the decomposition.

1 Introduction

The goal of this paper is to extend the MESP (Minimum Eccentricity Shortest
Path) Problem from Dragan and Leiter [4] and the related problem of recognizing
k-laminar graphs from Völkel et al. [11]. Both consist in finding a shortest path
(in the sense that no path joining the same endpoints is shorter) k-covering a
graph (every vertex is at distance at most k from that path). The k-laminar
problem additionally requires that path to be a diameter. Relationships between
the two parameters are derived in [3].

To generalize this problem to several paths, we introduce the problem of
decomposing a graph into subgraphs with bounded shortest-path eccentricity.
More precisely, we introduce the hub-laminar decomposition as a set of paths
that k cover the graph and meet only at their extremities. To formalize this
property, we introduce the notion of hub, that is a ball with fixed radius r
centered at a path endpoint. The laminar associated to a path is the set of
nodes k-covered by the path. Our definition requires that an edge between two
nodes belonging to two different laminars must appear in a hub. (See Fig. 1 for
an example.) The main result of the paper is that computing such decomposition
becomes tractable when hub centers are far enough one from another. The MESP
problem is equivalent to hub-laminar decomposition with one laminar. So is the
problem of recognizing a k-laminar graph with the additional requirement that
hub centers are D far appart where D is the diameter of the graph.

The motivation for such generalization is twofold. First, the MESP problem
was introduced because of its relationship with that of embedding a graph into
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Fig. 1. Illustration of an hub-laminar decomposition with r = 2, k = 1, l = 6, λ = 4.
Every vertex is at distance r from a hub center (vertices at the center of dashed circles)
or at distance k from a laminar path (paths with bold edges between hub centers).

the line with constant distortion [2]. Such an embedding allows to represent the
distances between nodes with a single number per node (its position in the line).
An approximation of the distance between two nodes is then obtained as the dif-
ference between the two positions. A similar motivation is that of representing
the distances in a graph with a succinct data-structure and with small distor-
tion. We show that a graph having a hub-laminar decomposition admits such a
succinct representation with additive distortion and size depending on the num-
ber of hubs. Second, k-laminar graphs were introduce to model read similarity
networks, that are graphs obtained when comparing the short DNA fragments
obtained when sequencing several genomes [11]. Such graphs are typically en-
countered in metagenomic approaches for evolution questions (see e.g. [8]). If
graphs appearing in this context often have a laminar structure (a long diame-
ter with low eccentricity), some more complex graphs arise with several laminar
structures (see Figure 1 in [11]). Recognizing such complex structure is then
related to the problem of binning in metagenomics (see [9]) that consists in
sorting DNA fragments into groups that might represent an individual genome
or genomes from closely related organisms. Our decomposition algorithm could
thus become an interesting tool for the binning problem.

Related works: Finding a MESP is NP-complete but can be approximated within
a constant factor [4]. Better trade-off between computation time and approxima-
tion factor for MESP is obtained in [3]. The problem of representing efficiently
the distances in a graph encompasses a vast literature dating from metric em-
bedding [1]. Approximate distance oracles, i.e. compact data-structures for rep-
resenting an approximation of distances, are investigated in [10]. A particular
approach introduced by Peleg [7] resides in assigning a label to each node of
a graph such that the distance between two nodes can be estimated from their
labels. Several result exist about the trade-off between label size and approxima-
tion quality. Exact distance estimation is investigated in [6] and requires Ω(n)
bits labels for general graphs. Approximation with a constant factor and sub-
linear label size is derived in [10]. Some results concern additive approximation
such as [5] in the case of hyperbolic graphs.



Our contributions: Given a graph that has a hub-laminar decomposition with
hub centers sufficiently far appart, we show how to compute an approximated
decomposition in polynomial time. The parameters of the computed decomposi-
tion (hub radius and covering distance of laminars) are within a constant factor
of the optimal decomposition and critical hub centers (those that are extremity
of one, three of more laminar paths) are identified up to constant distance er-
ror. We also show that such a decomposition allows to construct distance labels
with additive distortion and label size proportional to the number of hubs in the
decomposition.

2 Hub-laminar decomposition

We consider finite, undirected and connected graphs. Given a graph G, with
vertex set V (G) and edge set E(G), we let d(u, v) denote the distance between
two vertices, i.e. the length of a shortest path from u to v.

Let B(u, r) = {v ∈ V (G) | d(u, v) ≤ r} denote the ball of radius r centered
at u. Given a set of vertices U we denote B(U, r) = ∪u∈UB(u, r). Given two sets
U and W of vertices, we say that U k-dominates W when every vertex in W is
at distance at most k from some vertex in U , i.e. W ⊆ B(U, k).

A path P in G is a sequence of nodes such that any two consecutive nodes are
linked by an edge of G. We consider only simple paths: a node appears at most
once in the sequence. The first node of the sequence and the last one are are
called the endpoints of P . For the simplicity of notations, we also let P denote
the set of nodes appearing in the sequence. For any vertices u and v on P , we
denote by Puv the subpath of P having u and v as endpoints.

Definition 1 (Hub-laminar decomposition).
Given a connected undirected graph G, four positive integers r, k, ` and λ, and

H = {h1, . . . , hq} a set of vertices of G called hub centers, and P = {P1, . . . , Pp}
with p ≤ λ a set of at most λ paths of G; and calling hubs the sets (B(h, r))h∈H
and calling laminars the sets (B(P, k))P∈P ; (H,P) is an (r, k, `, λ)-hub-laminar
decomposition of G if the following conditions are satisfied:

1. the laminars link hubs centers: the endpoints of every P ∈ P belong to H
2. the laminars and the hubs cover G: V (G) ⊆

⋃
h∈H B(h, r) ∪

⋃
P∈P B(P, k)

3. hubs centers are ` spread: ∀ h 6= h′ ∈ H, d(h, h′) ≥ `
4. laminars meet at hubs only: for all i 6= j and uv ∈ E(G) such that u ∈

B(Pi, k) and v ∈ B(Pj , k), there is a hub center h ∈ H such that Pi and Pj

both have h as endpoint and u, v ∈ B(h, r)
5. the laminars only meet two hubs: Consider a path P ∈ P, hi, hj the extrem-

ities of P and hz ∈ H such that z 6= i, j then B(P, k) ∩B(hz, r + 1) = ∅
6. each path P ∈ P is locally a shortest path: considering its endpoints hi and

hj, Pi is a shortest path of the graph G[B(P, k) ∪B(hi, r) ∪B(hj , r)]

An example is given in Fig. 1. Notice that Axiom 5 says that the graph induced
by B(P, k)∪B(hi, r)∪B(hj , r), called the dumbbell of P , is a max(k, r)-laminar



graph under the definition of Völkel et al. [11]. As a consequence of Axioms 3, P
length must be at least `. Roughly speaking, a hub-laminar decomposition of G
consists in covering G with at most λ dumbbells of length at least ` intersecting
near their extremities only. When ` ≥ 2r+1, a hub-laminar decomposition forms
a partition of the edges of G in the following sense: for each uv ∈ E(G), ∃!h ∈ H
s.t. u, v ∈ B(h, r) or ∃!P ∈ P s.t. u, v ∈ B(P, k). More generally, any shortest
path is included in a laminar or intersects a hub as stated by the following
lemma.

Lemma 1 (shortest path cover). Any shortest path Q either intersects a hub
(∃h ∈ H s.t. Q∩B(h, r) 6= ∅) or is included in a laminar (∃P ∈ P with endpoints
h1, h2 s.t. Q ⊆ B(P, k) \B({h1, h2} , r)).

Proof. Suppose that no node of Q is in a hub. According to the cover Axiom 2,
all nodes of Q must be in laminars. Two consecutive nodes uv ∈ Q cannot
belong to two different laminars since some hub would then contain both u and
v according to Axiom 4. Q must then be completely included in the laminar
containing its first node.

A hub-laminar decomposition gives naturally raise to a quotient graph:

Definition 2 (quotient graph and reduced quotient). Given a graph G
and an (r, k, `, λ)-hub-laminar decomposition (H,P) of G, the quotient of this
decomposition is an edge-labeled multigraph with vertex-set H and for each P ∈ P
joining h and h′ there is an edge hh′ whose label is the length of P .

The reduced quotient graph of a decomposition (H,P) is the multigraph
obtained from its quotient graph by iteratively removing degree 2 nodes: for every
vertex u of the quotient incident with exactly two edges uv and uw, both edges
and u are removed and a new edge vw is added. It may be a loop if v = w.

The number of edges of the quotient is |P| ≤ λ and, since G is connected, so
is the quotient and |H| ≤ λ + 1. The size of the quotient and of the reduced
quotient are therefore O(λ). Notice that if the quotient is a cycle, the reduced
quotient is empty.

Let the degree of a hub be the number of paths its center is the endpoint of.
Or equivalently its degree in the quotient graph. We also define the hub degree
of a node h ∈ H as the degree of the corresponding hub.

Definition 3 (equivalence between decompositions). Two hub-laminar
decomposition, possibly with different parameters r, k, `, λ, are equivalent if they
have the same reduced quotient graph, up to an isomorphism φ of vertex-sets.

Furthermore the decompositions are D-equivalent if the distance between a hub
center and its image is bounded by D, i.e., for every hub center h d(h, φ(h)) ≤ D.



3 Distance labeling

Before provide an algorithm for computing a hub-laminar decomposition, we
first note that such a decomposition of a graph G allows to compute a compact
representation of distances in G with additive distortion. A distance labeling is
said to be c-additive and have s bit labels when the label Lu assigned to a node
u contains at most s bits and for all pairs of nodes u, v, a distance estimation

d̂uv can be computed from Lu and Lv such that d(u, v) ≤ d̂uv ≤ d(u, v) + c.

Proposition 1. Any graph G with a (r, k, `, λ)-hub-laminar decomposition (H,P)
has a max(4k, 2r)-additive distance labeling with O(λ log n) bit labels.

Proof. We assume that hub centers are numbered from 1 to q, q ≤ λ. For every
u ∈ V (G), we define a hub label Hu consisting in all pairs (h, d(u, h)) for h ∈ H.
For a node u in a hub, i.e. when there exists h ∈ H such that u ∈ B(h, r), we
define its label Lu as its hub label, i.e. Lu := Hu. For a node u in a laminar, i.e.
there exists P ∈ P with endpoints h1 < h2 such that u ∈ B(P, k)\B({h1, h2} , r),
we additionally store (h1, h2, dP (h1, u

′), d(u′, u)) for some u′ ∈ B(u, k) ∩ P and
set Lu := (h1, h2, dP (h1, u

′), d(u′, u)), Hu (we let dP denote the distance in the
graph induced by P ).

The distance d(u, v) between two nodes u, v ∈ V (G) is then estimated
from their labels Lu and Lv as follows. We first compute the estimate through
hub centers g(u, v) = minh∈H d(u, h) + d(v, h). If Lu and Lv both begin with
quadruples (h1, h2, d(h1, u

′), d(u′, u)) and (h′1, h
′
2, d(h′1, v

′), d(v′, v)) respectively
with h1 = h′1 and h2 = h′2, we detect that u and v belong to the same lam-
inar and return the distance estimate f(u, v) = min(g(u, v), g′(u, v)) where
g′(u, v) = d(u′, u) + |dP (h1, u

′) − dP (h1, v
′)| + d(v′, v). Otherwise, we simply

return f(u, v) = g(u, v) as distance estimate.
We now prove that we always have d(u, v) ≤ f(u, v) ≤ d(u, v) + max(4k, 2r).

By triangle inequality, we have d(u, v) ≤ d(u, h) + d(v, h) for all h ∈ H and
thus obtain d(u, v) ≤ g(u, v). In the case where u and v both belong to the
same laminar B(P, k), note that g′(u, v) is the length of a path through vertices
u′, v′ ∈ P from u to v, implying g′(u, v) ≤ d(u, v). We thus have d(u, v) ≤ f(u, v)
in any case. Now consider a shortest pathQ from u to v. First assumeQ intersects
a hub: there exists h ∈ H such that Q ∩ B(h, r) 6= ∅. Consider x ∈ Q ∩ B(h, r).
We then have d(u, v) = d(u, x) + d(x, v) ≤ d(u, h) + d(h, x) + d(v, h) + d(h, x) ≤
d(u, h) + d(v, h) + 2r implying g(u, v) ≤ d(u, v) + 2r. Second, suppose that Q
does not intersect any hub, it must then be included in a laminar according
to Lemma 1. Consider P ∈ P with endpoints h1 < h2 such that Q ⊆ B(P, k) \
B({h1, h2} , r). Then u and v both belong to the laminar and their labels contain
quadruples (h1, h2, d(h1, u

′), d(u′, u)) and (h1, h2, d(h1, v
′), d(v′, v)) respectively.

Consider the sub-graph GP induced by B(P, k). As P is a shortest path in GP ,
we have dGP

(u′, v′) ≤ dGP
(u, u′) + dGP

(u, v) + dGP
(v, v′). As Q is included in

B(P, k) we have d(u, v) = dGP
(u, v) and we obtain |dP (h1, u

′) − dP (h1, v
′)| =

dGP
(u′, v′) ≤ d(u, v) + 2k and thus get f(u, v) ≤ g′(u, v) ≤ d(u, v) + 4k. In any

case we have f(u, v) ≤ d(u, v) + max(4k, 2r).



4 A polynomial time approximation

Proposition 2. Given k, r,` and λ, deciding if a graph G admits an (r, k, `, λ)-
hub-laminar decomposition is NP-complete

Proof. The Maximum Excentricity Shortest Path problem of Dragan and Leit-
ert [4] consits in computing the smallest k such that G admits a (k, k, 0, 1)
hub-laminar decomposition. It is an NP-complete problem [4].

Moreover, the best known algorithm [4] for computing a Maximum Eccen-
tricity Shortest Path for a fixed k takes O(mn2k+2) time, meaning the problem
is untractable even for λ = 1. On the other hand, provided parameters r, k, ` and
λ, it takes O(m) time to test wether a pair (H,P) is a (r, k, `, λ)-hub-laminar
decomposition.

We are therefore now interested in an approximation in the sense that, as-
suming G admits a (r, k, `, λ)-hub-laminar decomposition, we want to compute
a D-equivalent (r′, k′, `′, λ)-hub-laminar decomposition (i.e. with larger param-
eters but no more hubs nor laminar) in polynomial time, with small D with
respect to the parameters. The D-equivalence that implies the degre 6= 2 hubs
of A are close to those of H.

Theorem 1. Consider a graph G having an (r, k, `, λ) hub-laminar decompo-
sition (H,P) with l > max(28r + 17k + 3, 15r + 43k + 3) and at least one
degree 3 hub. Provided K and R with K > max(r + 2k, 2r), R > 4K + 2k and
2R + 5K < ` − 2r − 9k − 3, an (R,K,L, λ)-hub-laminar decomposition (A,Q),
with L ≥ ` − 3R − K + r − 2, and which is 2K-equivalent to (H,P), can be
computed in O(min(n, λ)m) time.

Notice that if (H,P) has no hub of degree ≥ 3, it is a decomposition into a
max(k, r)-eccentricity shortest path or into a max(k, r)-eccentricity cycle. These
two particular cases can be treated separately with similar techniques but are
excluded here due to the lack of space. The running time does not rely on the
existence of (H,P): the algorithm terminates in O(nm) time on any graph.
However, the guaranties on the computed decomposition do rely on it. The
proof of this theorem is given in Section 4.7 after giving an algorithm solving
the problem and adequate lemmas.

As a corollary, when no value is provided for K nor R, it is possible to
compute a decomposition with given ` (and possibly given λ) in O(n3m) time
by trying all possible values of R and K.

4.1 Algorithm outline

Our algorithm runs in two steps. First Find Hubs computes the hub centers. It
constructs greedily a set of vertices A initialized by Find Starting Hub. Then
Find Laminars computes the paths between the hub centers using more BFSs.

The key ideas to prove the correctness of all those steps are given in the
three corresponding sections. Due to lack of space, the proofs of all Lemmas are
detailed in Appendix.
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Fig. 2. Illustration of the structural properties. (a) Lemma 2: The part of the laminar
k-covered by Pu′v′ is K-covered by Q. (b) Lemma 3 and Lemma 4. If Q goes through a
hub of degree ≥ 3, a triplet u, v, w as in Lemma 4 can be found, and it is the only such
case far apart the extremities of Q. (c) Lemma 5. If a,m, b on Q and their k-neighbors
on P are not in the same order, the distance from m to a or b is short.

In the remaining of the paper we consider, sometimes implicitly, a graphG having
a (not known by the algorithm) (r, k, `, λ) hub-laminar decomposition (H,P),
and the decomposition (A,Q) is the one output by the algorithm detailed below.

4.2 Structural properties

The algorithm relies on the selection of hub centers and shortest paths which
may not correspond those of (H,P). However, three key structural properties
ensure that we can rely on them to build a hub-laminar decomposition. The first
one shows that any shortest path joining the two hubs of a dumbbell K-covers
the central part of the laminar for K ≥ 3k. Finding laminars mainly rely on the
following Lemma (see also Fig. 2.a).

Lemma 2 (Path local covering). Consider P ∈ P and a path Q from u to
v in the graph induced by B(P, k), with u′, v′ ∈ P such that d(u, u′) ≤ k and
d(v, v′) ≤ k. Then every vertex of Pu′v′ is at distance at most 2k from Q.

Subsequently, every vertex of B(Pu′v′ , k) is at distance at most 3k of Q.

The second structural property characterizes vertices of long shortest paths
that are near hub centers of the unknown underlying decomposition. The two
following lemmas are the key results that allow to find hubs with degree 3 or
more (see also Fig. 2.b).

Lemma 3 (Hub in the middle). Consider K ≥ 3k and let Q be a shortest
path from a to b and u ∈ V (Q) at distance greater than K + 6k from a and b.



If there exists vw ∈ E(G) such that d(u, v) = K and d(Q,w) = K + 1, then
there exists a hub center h ∈ H with d(u, h) ≤ K + r.

Lemma 4 (Degree ≥ 3 Hub Detection). Consider K ≥ 3k and let Q be a
shortest path from a to b, with u ∈ V (Q) at distance more than r+ 4K + 9k+ 2
from a and b.

If there exists a hub h ∈ H of degree at least 3 with d(u, h) ≤ K, then there
exists vw ∈ E(G) and a vertex x ∈ Q at distance more than K + 6k from a and
b such that d(x, v) = K, d(Q,w) = K + 1.

Finally, the third structural property implies that a shortest path entering
and leaving a laminar by the same hub may no go deep inside as implied by the
following lemma (see also Fig. 2.c).

Lemma 5 (Bounded zig-zag). Consider a shortest path Q in the graph in-
duced by BG(P, k) with P ∈ P and three successive nodes a,m, b on Q with
a′,m′, b′ on P such that dG(a, a′) ≤ k, dG(m,m′) ≤ k, dG(b, b′) ≤ k.

If a′ is between b′ and m′ (a′ ∈ Pm′,b′), then we have dG(a,m) ≤ 3k.

4.3 The stopBFS function

Let G be a vertex-colored graph with some uncolored vertices. The stop-BFS
procedure, provided a vertex d and a color c, consists in running a usual Breadth-
First Search, starting at vertex d, and returning a node f and a path P from d
to f , with the following additional rules:

– only vertices without color c put in the BFS queue,
– the BFS stops immediately is a vertex f is visited (i.e. extracted from BFS

queue) such that f has a colored neighbor whose color is not c,
– otherwise, if stops because the queue is empty, let f be the last visited vertex,
– function stopBFS(d, c) returns f and the BFS path P from d to f (P is a

shortest path in the graph induced by G after removing c-colored vertices).

4.4 Computing the hub centers

Function Find Hubs works by coloring vertices and adding some of them to a set
A of hubs. Initially all vertices are uncolored. A vertex inside B(a,R) for a ∈ A
get a new color col(a). Vertices supposed to belong to a laminar but to no hub
are colored with color lam. Given a path P , r3K(P ) denotes the subpath of P
obtained by removing the 3K first and 3K last vertices of P . Each time a vertex
a is inserted in A, the vertices of B(a,R) are colored with a color identifying the
hub. While there are uncolored nodes in G, a stop-BFS (see Section 4.3) rooted
near a ∈ A is run. In the pseudo-code given on next page, five cases may occur:

(a). Either we stop very near the starting hub (Line 5), closer than the parameter
L, meaning that we are in a disconnected part of an already visited laminar.

(b). Or (Line 8) there is Lemma 3 configuration (hub in the middle) implying
that there is a hub with degree ≥ 2 close to the node h added to A.



(c). Or the BFS comes back to the starting hub without finding such an enlarge-
ment (Line 12). A degree 2 hub is then added in the middle of the path
found that is considered to correspond to two parallel laminars.

(d). Or we stop in a dead end (Line 17) meaning that there is a degree 1 hub
near f which is added to A.

(e). Or we stop near another already discovered hub (Line 20) meaning that there
is no new nearby hub and we just traversed a laminar that is now colored.

1 Find Hubs
Input: A graph G, integers R and K, a starting node s.
Output: A set of vertices A.

2 Set A = {s} ; color every vertex in B(s,R) with color col(s)
3 While ∃a ∈ A and an uncolored vertex d ∈ G such that d(a, d) = R+ 1 do
4 Let f, P = stopBFS(d, col(a)) (f is the last vertex of P ).
5 If P length is at most 2R+ 4K + 2 /* Case(a) */

6 then
7 Color all vertices visited by stopBFS(d, col(a)) with color lam.

8 else if ∃w, h s.t. col(w) 6=col(a) and h∈r3K(P) and d(w, h)=K+1 and
d(w,P )=K+1 /* Case (b) */

9 then
10 Let h be the first vertex of r3K(P ) satisfying the above condition.
11 Add h to A and color every vertex in B(h,R) with color col(h).

12 else if f is at distance at most 2K from B(a,R) /* Case (c) */

13 then
14 Let m be a vertex in the middle of P .
15 Add m to A and color every vertex in B(m,R) with color col(m).
16 Color uncolored vertices in BG\{B(d,R)∪B(f,R)}(P,K) with color lam.

17 else if f is not adjacent to a colored vertex /* Case (d) */

18 then
19 Add f to A and color every vertex in B(f,R) with color col(f).

20 else /* Case (e) */

21 Color uncolored vertices in BG\{B(d,R)∪B(f,R)}(P,K) with color lam.

The Find Hubs procedure finds the hubs of (H,P) up to those of degree 2.
More precisely, Lemmas 6 and 9 imply that there exists a bijection between
Degree 1 hubs of (H,P), and vertices of A selected at line 19, and another one
between hubs of (H,P) with degree at least 3, and vertices of A selected at line
11. Moreover, the distance between the vertex of A and the corresponding vertex
of H is at most 2K. The order of the lemmas is determined by the way they
depend on each other in the proofs.

Lemma 6 (Computed hubs of degree 6= 2 are close to those of H).
Consider a graph G having a (r, k, `, λ) hub-laminar decomposition (H,P) with



2R + 5K < ` − 2r − 9k − 3, and a hub center h0 ∈ H with hub degree three or
more. Suppose that Find Hubs is called with a starting node s such that s is at
distance at most K + r from a hub center h with hub degree at least 3, then:

(i) For every vertex a added in A at line 11, there is a hub center h ∈ H of
hub degree at least 2 at distance at most K + r from a.

(ii) For every vertex a added in A at line 19, there is a hub center h ∈ H of
hub degree 1 at distance at most 2(k + r) from a.

The following lemma states that vertices of A are far apart.

Lemma 7 (Computed hubs are far apart). Consider a graph G having a
(r, k, `, λ) hub-laminar decomposition (H,P) with 2R + 5K < ` − 2r − 9k − 3
such that at least one vertex h ∈ H has hub degree three or more.

Suppose that Find Hubs is called with a starting node s such that s is at
distance at most R− r from a hub center h ∈ H of hub degree at least 3.

The algorithm Find Hubs outputs a set A of vertices that are at distance at
least `− 3R−K + r − 2 one from another.

The following lemma imply the termination of Find Hubs.

Lemma 8 (Uncolored vertices are close to A). Consider a graph G having
a (r, k, `, λ) hub-laminar decomposition (H,P) with 2R + 5K < `− 2r − 9k − 3
such that at least one hub has degree three or more.

Suppose that Find Hubs is called with a starting node s such that s is at
distance at most R− r from a hub center h ∈ H of hub degree at least 3.

The algorithm Find Hubs ends with every vertex colored or at distance 3R+
2K + 1 at most from a vertex a of A

Lemma 9 (Hubs of H of degree 6= 2 are close to computed ones).
Consider a graph G having a (r, k, `, λ) hub-laminar decomposition (H,P) with
2R+ 5K < `− 2r − 9k − 3 such that at least one hub of degree three or more.

Suppose that Find Hubs is called with a starting node s such that s is at
distance at most K + r from an hub center h ∈ H of hub degree at least 3, then
after termination of Find Hubs:

(i) For every hub h ∈ H of degree at least 3, there exists a vertex a in A at
distance at most K + r from h.

(ii) For every hub h ∈ H of degree 1, there exists a vertex a in A at distance
at most 2(k + r) from h.

4.5 Computing the first hub center

To compute a starting node s at distance at distance at most K+r from a degree
3 hub, we use a procedure similar to Find Hubs but starting from an arbitrary
start vertex r until a hub is detected according to Line 10 (case (c)). The only
case where the procedure may fail is when there is only one such hub and r was
chosen sufficiently close to it. In that case, running again the procedure from the
last visited node from r allows to find it.



4.6 The function to detect laminars

Since Find Hubs constructs the set of hub centers, at this step we have the hubs.
We just have to identify the laminars and their paths. Each path is found by a
BFS starting at an hub center and ending at the first hub center encountered.
Then we remove from the graph the vertices from the laminar, but not the hubs.
The process ends when the graph consists in disconnected hubs only.

1 Find Laminars
Input: A graph G, integers R and K, a set A of hub centers.
Output: a hub-laminar decomposition (A,Q).

2 Q = ∅
3 Mark all vertices as deletable
4 For each vertex a in A do
5 Mark the vertices in B(a,R) as undeletable

6 While there exists a ∈ A such that B(a,R+ 1) 6= B(a,R) do
7 Run a BFS starting at a and stopping on the first vertex a′ ∈ A, a′ 6= a
8 Add to Q the path Q from a to a′ computed by this BFS
9 Delete from G the deletable vertices from B(Q,K)

Lemma 10. Consider a graph G having a (r, k, `, λ) hub-laminar decomposition
(H,P) with 2R + 5K < `− 2r − 9k − 3 with at least one hub of degree three or
more. Suppose that Find Laminars is called with a set A such that for every hub
center h ∈ H of hub degree different from two, there is a vertex a in A at distance
2K at most from h. If there exists an edge (u, v) ∈ E(G) with u ∈ B(Q,K) and
v /∈ B(Q,K) for some path Q with endpoints a and a′ that is return by the
algorithm, then we have v ∈ B({a, a′}, R.

Lemma 10 implies that Find Laminars terminates. Indeed, ifG still contains
delatable vertices when the algorithm stops. The connexity of G implies that
there exist a pair (u, v) of vertices such that v is an undeleted deletable vertex
and u is not. The lemma then ensures that v should indeed be undeletable,
raising a contradiction.

4.7 Proof of Theorem 1

Let us first show that the output of the algorithm fulfills the definition of n
hub-laminar decomposition.

– Axiom 1. The laminars link hubs centers: The set of paths Q is defined in the
function Find Laminars. They are by definition paths between two vertices
of A, the set of hubs returned by the previous function.

– Axiom 2 (the laminars and the hubs cover G). This is a result of Lemma 10
as discussed before.



– Axiom 3. Hubs centers are L far appart: This is a direct result of lemma 7.

– Axiom 4 (laminars meet at hubs only). This is a direct consequence of
Lemma 10.

– Axiom 5 (the laminars only meet two hubs). Let Q be a path of Q with end
points a1, a2 ∈ A. Assume the existence of a third vertex a3 ∈ A such that
B(a3, R) intersects B(Q,K), i.e. a3 is at distance K +R at most from some
vertex q ∈ Q. We then have:

d(a1, a3) ≤ d(a1, q) +K + r

d(q, a2) ≥ d(a2, a3)− d(q, a3) ≥ L−K − r
d(a1, a2) = d(a1, q) + d(q, a2) ≥ d(a1, q) + L−K − r > d(a1, a3)

Without lost of generality, assume that Q started on a1, Q is then the short-
est path between a1 and any vertex of A in the remaining graph when com-
puting Q. As a3 is not visited before a2, some vertices between q and a3
must have been deleted during a previous step of the algorithm. This means
that Q meets an other laminar outside a hub, in contradiction with Axiom 4
that we have already established.

– Axiom 6. Each path Q ∈ Q is locally a shortest path: each path Q with
endpoint a, a′ is a shortest path of the remaining graph when computing Q
which contains the dumbbell B(Q,K) ∪B(a,R) ∪B(a′, R).

The 2K-equivalence is a consequence of Lemma 6 and Lemma 9, which allow
to build the bijection φ between hub centers with hub degree different from 2.
Notice 2K ≥ max(K + r, 2(k + r)). Decomposition (A,Q) has λ hubs at most
since it has no more degree 2 hubs than (H,P). Our algorithm indeed adds
degree 2 hubs in two cases only. First, when the conditions of Lemma 3 (hub in
the middle) are met at Line 8, the added hub is associated by Lemma 6 to a
hub of H. Second, when we encounter a self loop in the reduced quotient, i.e.
a sequence of (at least 2) laminars of (H,P) connected by (at least 1) hubs of
degree 2, the algorithm then adds only one hub (at Line 14 according to case
(c)).

Regarding the time complexity, apart from case (a), each iteration of the
while loop in Find Hubs corresponds to finding a hub or a laminar. There are
thus O(|A|+ |Q|)) such interations, and their overall cost is O(min(λ, n)m). In
the iterations corresponding to Case (a), all vertices visited by StopBFS are col-
ored: the overall cost of such iterations is thus O(m). Similarly, Find Laminars
consists in λ iterations costing O(m) each.

5 Acknowledgments

The authors thank Michel Habib for inspiring discussions about k-laminar graphs,
and Eric Bapteste, Philippe Lopez and Chloé Vigliotti for raising the problem
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Appendix : Proofs

Proof of Lemma 2

Let us define x0 = u, xs = v and Q = x0, ...xs.
The second assertion of the lemma is straightforward given the first one. To

prove the latter, we define, for all l between 0 and s, the subpath Ql = x0, x1...x`
and x′` in P such that d(x`, x

′
`) ≤ k

Let us show by induction on ` that every vertex of P between u′ and x′l, is
at distance at most 2k of P`.

• For ` = 0, Q0 = x0 = u and x′0 = u′. As u′ is at distance k of u, the result
is true for ` = 0.

• Let l in (1...s) such that the property if verified for `− 1.
Every vertex y of Pu′x′`−1

is at distance at most 2k of P`−1 by induction
hypothesis, and thus at distance at most 2k of P`.

Moreover, by the triangle inequality:

d(x′`−1, x
′
`) ≤ d(x′`−1, x`−1) + d(x`−1, x`) + d(x`, x

′
`) ≤ 2k + 1 (1)

As the sub-path of P between x′`−1 and x′` is a shortest path, it follows that,
for every vertex y of Px′`−1x

′
`
,

d(x′`−1, y) ≤ k or d(x′`, y) ≤ k, (2)

meaning that y is at distance at most 2k of P`−1 or of x`.

The property is verified by induction, and the lemma follows for ` = s.

Proof of Lemma 3

For the sake of contradiction, suppose no such hub exists. Then u must be in a
laminar with path P from h to h′ and there exists u′ ∈ P such that d(u, u′) ≤ k.

Suppose first that w ∈ B(P, k). Consider w′ ∈ P such that d(w,w′) ≤ k,
and suppose w.l.o.g. that u′ ∈ Phw′ . Suppose there exist z ∈ Q and z′ ∈ Pw′h′

with d(z, z′) ≤ k. Lemma 2 applied to Quz then implies that d(w,Q) ≤ 3k ≤ K,
which is a contradiction. Thus, Q cannot intersect B(Pw′h′ , k).

We can thus define m′ as the k-neighbor of Q on Pu′w′ furthest from u′

and m ∈ Q such that d(m,m′) ≤ k, as shown in Figure 3. As d(w,Q) > 3k,
d(w′,m′) ≥ k + 1 so that, using d(u′, w′) ≤ K + 2k + 1, d(u′,m′) ≤ K + k. It
implies that d(u,m) ≤ K+ 3k. The hypothesis on d(u, a) and d(u, b) then imply
that there exist two vertices c and d on Q at distance 3k + 1 of m. As u is at
distance greater than K + r of any hub-center, Qc,d ⊂ B(P, k). Thus, the fact
that m′ is the furthest k-neighbor of Q on P contradicts Lemma 5 applied to c,
m and d.
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Fig. 3. Illustration of the proof of Lemma 3

We therefore have w /∈ B(P, k). Consider then the last node x in B(P, k) on
the path from u to v. By assertion 4. of the definition of a hub-laminar decompo-
sition, there exist a hub center h such that x ∈ B(h, r), and thus d(u, h) ≤ K+r.

Proof of Lemma 4

Consider three paths Pi,Pk,Pl of P with h as an endpoint and vertices x′i,x
′
j ,x
′
l

on those paths, each at distance r +K + 3k + 2 from h.

Assume first that those three vertices are at distance at most K of respec-
tively xi, xj , xl, vertices of Q. None of the last three vertices belongs to the hub
B(h, r) as d(h, xi) ≥ d(h, x′i)− d(x′i, xi) ≥ r+ 3k+ 2. Moreover, we may assume
w.l.o.g that xj , xi and xl are in that order in Q. There exist therefore a maximal
subpath Qce of Q that is part of B(Pi, k) \B(h, r) and that contains xi.

Let c′ and d′ be vertices of Pi such that d(c, c′) ≤ k and d(d, d′) ≤ k. Then
d(h, c′) ≤ d(h, c) + k ≤ r + k + 1 and similarly for e′. As d(h, x′i) > r + k + 1,
Lemma 5 applies to c, xi and e and implies that d(c, xi) ≤ 3k or d(d, xi) ≤ 3k. In
both cases, as d(h, c) = d(h, d) = r+1 and d(xi, x

′
i) ≤ K, d(h, x′i) ≤ r+K+3k+1,

which is a contradiction.

One of the three vertices x′i, x
′
j or x′k is therefore at distance more than K

from Q, for instance xi. When following Pi from h to xi, let v be the last vertex
at distance K from Q, w the following vertex of Pi and x a vertex of Q such
that d(x, v) = K. Then d(Q,w) = K + 1 and, assuming w.l.o.g that x ∈ Qu,b,

d(h, v) ≤ r +K + 3k + 2 (3)

d(u, x) ≤ d(u, h) + d(h, v) + d(v, x) ≤ r + 3K + 3k + 2 (4)

d(x, b) = d(u, b)− d(u, x) ≥ K + 6k (5)
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Proof of Lemma 5

The following relations derive easily from the hypothesis:

dG(b′,m′) = dG(b′, a′) + dG(a′,m′) (6)

dG(b, a) = dG(b,m) + dG(m, a) (7)

dG(b, a) ≤ dG(b′, a′) + 2k (8)

dG(b′,m′) ≤ dG(b,m) + 2k (9)

dG(m, a) ≤ d(m′, a′) + 2k (10)

It follows from equations 7 and 8 that

dG(m, a) ≤ dG(b′, a′) + 2k − dG(b,m) (11)

Using Equation 6,

dG(m, a) ≤ dG(b′,m′)− dG(a′,m′) + 2k − dG(b,m) (12)

Using Equation 9,
dG(m, a) ≤ 4k − dG(a′,m′) (13)

Using Equation 10,
dG(m, a) ≤ 6k − dG(m, a) (14)

Finally, we get,
dG(m, a) ≤ 3k (15)



Proof of Lemma 6

(i) This is a direct result of lemma 3.

(ii) Let f be added to A at line 19.

By induction, d is in a laminar L with endpoints h and h′, such that B(h, r)
is in B(a,R). Therefore Pd,f is such that f is in L or Q goes through h′.

Assume h′ of degree at least 2. Then there exists a second laminar L′ incident
to h′, with path P ′ = (h′ = v′0, v

′
1, ...v

′
l′). Moreover,

d(d, f) ≥ d(d, v′l′) ≥ d(d, h′) + d(h′, v′l′)− 2r ≥ d(d, h′) + l − 2r (16)

so that

d(h′, f) ≥ d(d, f)− d(d, h′) ≥ l − 2r (17)

As any path from d to f has a vertex in B(h′, r), h′ is not of degree at least 3,
as otherwise Lemma 4 (K ≥ 2r) would imply that h′ should have been detected
at line 11.

By induction we deduce that there is no hub of degree more than 3 in G \
B(a,R) and that any path in G \ B(a,R) starting on d goes through the same
set of hubs in the same order. This set either end with an hub of degree 1 or
with the hub h (the last laminar intersects B(a,R)).

In the second case, let v0, v1, ...vz be the path associated with the laminar,
and vj the vertex closest to vz and not in B(a,R).

d(d, vj) ≥ d(d, v0) + d(v0, vj)− 2r (18)

d(d, f) ≤ d(d, vf ) + k ≤ d(d, v0) + d(v0, vf ) + k (19)

d(d, v0) + d(v0, vf ) + k ≥ d(d, v0) + d(v0, vj)− 2r (20)

d(v0, vf ) ≥ d(v0, vj)− 2r − k (21)

d(vf , a) ≤ R+ 2r + k (22)

d(f, a) ≤ R+ 2r + 2k (23)

In the first case, let h′′ be the ending hub of degree 1 and v′′0 , v
′′
1 , ...h

′′ be the
path associated with the laminar.

If v′′0 = h (Pd,f doesn’t intersect an hub of degree 2) then :

d(d, f) ≤ d(vd, vf ) + 2k (24)

d(d, f) ≥ d(d, h′′) ≥ d(vd, h
′′)− k (25)

d(vd, vf ) + 3k ≥ d(vd, h
′′) (26)

d(f, h′′) ≤ 4k (27)

Else,



d(d, f) ≤ d(d, v′′0 ) + d(v′′0 , vf ) + k (28)

d(d, f) ≥ (d, h′′) ≥ d(d, v′′0 ) + d(v′′0 , h)− 2r (29)

d(v′′0 , vf ) + k + r ≥ d(v′′0 , h) (30)

d(f, h′′) ≤ 2k + 2r (31)

Proof of Lemma 7

Let a,a′ be vertices added to A at line 19 or line 11, by lemma 6 they are at
distance at most 2K of some hubs h,h′. If h 6= h′, then h and h′ are distant of
at least l and a,a′ distant of at least l − 4K, we have the result.

Assume h = h′ and a was added first in A. Every vertex at distance r + K
of h was colored with color col(a), in particular a′. Furthermore, a′ is a vertex
computed with the function stopBFS, this contradicts the fact that stopBFS
returns a path of vertices uncolored or with color lam.

To prove the rest of the lemma, let us show the following :
Claim: For every vertex m added in A at line 14, m is distant of at least

l − 3R−K + r − 2 of any other vertex of A.

Let m be a vertex added in A at line 14, Pd,f such that m was selected as
the middle of the path.

Case 1: Pd,f doesn’t meet an hub. Then d and f are in the same laminar
L with path P = v0, v1, ...vz. Let a be the vertex of A such that d is at distance
R+ 1 of a, we have

d(d, f) ≤ d(d, a) + d(a, f) ≤ 2R+ 2 + 2K (32)

Let vf (resp. vd) be a vertex of P at distance k of f (resp. d). Assume that
the shortest path of length 2R+ 2 + 2K is in L, then

d(vd, vf ) ≤ d(vd, d) + d(d, f) + d(f, vf ) ≤ 2R+ 2 + 2K + 2k (33)

Else, the path goes through a hub, meaning that d and f are at distance less
than 2R + 2 + 2K + r of an hub center. W.l.o.g, assume that the hub center is
v0.

d(v0, vd) ≤ d(v0, d) + d(d, vd) ≤ 2R+ 2 + 2K + r + k (34)

Similarly, d(v0, vf ) ≤ 2R+ 2 + 2K + r + k (35)

So that d(vd, vf ) ≤ 2R+ 2 + 2K + r + k (36)

In both cases vd and vf are at distance at most 2R+ 2 + 2K + r + k.
Let vm be a vertex of P at distance at most k of m. If the vertices vp, vm

and vd are not in that order in P , m is at distance at most 3k of f and d by
lemma 5. This contradicts the fact that Pd,f is of length at least 2R+ 4K + 2.



If vf , vm and vd are in that order in P ,

dB(Pvd,vm ,k)(d,m) ≤ d(d, vd) +
d(vd, vf )

2
+ d(vm,m) ≤ 2R+ 2 + 2K + r + k

2
+ 2k

(37)

Similarly, dB(Pvf ,vm ,k)(f,m) ≤ 2R+ 2 + 2K + r + k

2
+ 2k (38)

As B(Pvd,vm , k) is included in B(Pd,m,K), Lemma 2 implies that the length
of Pd,m is at most R+ 1 +K + (r+ k)/2 + 2k, leading again to a contradiction.

Case 2: Pd,f meets an hub h′. Assume that h′ is at distance r of Pf,m.
Then

d(d,m) ≥ d(f, h′) + d(h′,m)− 2r (39)

and thus

d(a,m) ≥ d(f,m)− d(a, h)− d(h, f)

≥ d(f, h′) + d(h′,m)− 2r − d(a, h)− d(h, f)

≥ d(h, h′)− d(h, a)− d(a, f) + d(h′,m)− 2r − d(a, h)− d(h, f)

≥ l − 3R−K + r − 2

A symmetric reasoning can be done if h′ is at distance r of Pd,m.
As any path from m to a vertex of G\B(Pd,f ,K) goes through B(a,R+4K),

we have the final result.

Proof of Lemma 8

Let y be an uncolored vertex at distance more than 3R+ 4K+ 1 of a and x0 the
closest colored vertex. We denote by Q = (x0, x1, ..., xt = y) the shortest path
from x0 to y. All vertices in Q but x0 are then uncolored.

x0 cannot have been colored by a vertex of A, as x1 would have been selected
at line 3 and thus colored. x0 has therefore color lam. It cannot have been colored
at Line 7 as y would then also be colored. It has therefore been colored by a
path Pd,f .

x0 is at distance K of some vertex u in Pd,f , otherwise x1 would have been
colored by u. It implies that u is at distance less than 3K of d or f , otherwise x1
would have been colored at line 11. We may suppose w.l.o.g that it is at distance
at most 3K from d, so that d(d, x0) ≤ 4K.

We have that d is at distance R + 1 of some a ∈ A. Vertices added to A at
line 15 have no uncolored vertex at distance R+1. Indeed, Lemmas 3 and 7 imply
that a vertex would then have been added at line 11. By Lemma 6, a is thus
at distance more than r + K of some hub center h ∈ H, so that R > 2(K + r)
implies that d is at distance at least K + r from h. By definition of an hub-
laminar decomposition, d is in a laminar L, which associated path is denoted by
P = (v0 = h, v1...vr).



Let vid and vi1 be vertices of P at distance less than k of d and x1. As

d(d, y) ≥ d(a, y)− d(d, a) ≥ 3R+ 4K + 1−R− 1 ≥ 2R+ 4K, (40)

d(d, f) ≥ min(d(d, y), l − 2R+ 2) ≥ 2R+ 4K (41)

Lemma 2 thus implies that every vertex at distance k of the path vid , ...vid+2R+4K−2k
isK covered by Pd,f . So i1 is either lower than id or greater than id+2R+4K−2k.

But

d(vid , vi1) ≤ d(vid , d) + d(d, x1) + d(x1, vi1) ≤ 4K + 2k + 1 (42)

d(h, vi1) ≤ d(h, vid) + 4K + 2k + 1 ≤ d(h, vid) + 2R+ 4K − 2k (43)

Thus, i1 ≤ id.
As B(vid+2R,K) disconnects L and is entirely colored, Q is entirely in L. Let

us denote vij a vertex of P at distance k of xj for every 2 ≤ j ≤ t. Then for
every 1 ≤ j < t, d(vij , vij+1

) ≤ 2k + 1, so that all indices ij are lower than i or
all are greater than i+ 2R+ 4K − 2k. It follows that they are all lower than id.

But

id = d(h, vi) ≤ d(h, a) + d(a, d) + d(d, vid) ≤ 2R+ 2k − r

so that d(h, vit) ≤ 2R+ 2k − r.
Finally,

d(a, y) ≤ d(a, h) + d(h, vit) + d(vit , y) ≤ R− r+ 2R+ 2k− r+ k < 3R+ 4K + 1

which is a contradiction.

Proof of Lemma 9

(i) Assume that h is at distance more than max(R+ r+ 5K + 9k+ 3, 3R+ 4K)
of every vertex a of A. By Lemma 8, h is of color lam. Therefore there is a path
Pd,f and vertices a, a′ in A, u in Pd,f such that :

d(d, a) ≤ R+ 1 (44)

d(f, a′) ≤ R+ 1 (45)

d(h, a) ≥ R+ r + 5K + 9k + 3 (46)

d(h, a′) ≥ R+ r + 5K + 9k + 3 (47)

d(u, h) ≤ K (48)

By combining those inequalities :

d(d, u) ≥ d(h, a)− d(d, a)− d(u, h) ≥ r + 4K + 9k + 2 (49)

d(f, u) ≥ d(h, a′)− d(d, a′)− d(u, h) ≥ r + 4K + 9k + 2 (50)



By Lemma 4, there is vw ∈ E(G) and x at distance more than K + 6k from
d and f such that d(x, v) = K, d(P,w) = K + 1. It results that h should have
been detected at line 20 and colored by a vertex of A.

Assume that h is at distance less than R+ r+ 5K+ 9k+ 3 of a vertex a of A
added at line 19. By lemma 6, there exist a hub of degree 1 of center h′ such that
d(a, h′) ≤ K + r. Therefore, d(h, h′) ≤ d(h, a) + d(a, h′) ≤ R+ 2r+ 6K + 9k+ 3,
which is impossible.

Let h be at distance less than R + r + 5K + 9k + 3 of a added at line 11. a
is at distance at most K + r of a hub h′ of degree 3 or more. We then have :

d(h, h′) ≤ R+ 2r + 6K + 9k + 3 < l (51)

Thus h = h′, so that h is at distance at most K + r of a.

ii) Let h be an hub of degree 1. Suppose first that h is at distance less than
3R+ 4K of a vertex a of A. By a proof similar to (i), a was added at 19 and is
at distance at most K + r of h.

Assume now that h is at distance more than 3R+ 4K of every vertex a of A.
Then there is a path Pd,f , and u in Pd,f at distance at most K of h. We have,

d(d, u) ≥ d(a, h)− d(a, d)− d(u, h) > 3k (52)

d(f, u) > 3k (53)

Let y and y′ be the vertices of Pd,f at distance 3k + 1 of u. Let L be the
laminar having h as an endpoint and P the path associated to L.

As 3k + 1 < l, y and y′ are in L. Let v (resp. v′) a vertex of PL at distance
at most k of y (resp. y′). Assume w.l.o.g that v is closest to h than v′.

Then v ∈ Ph,v′ , which leads to a contradiction by lemma 5. Thus, h cannot
be at distance more than 3R+ 4K of every vertex a of A.

Proof of Lemma 10

Denote by S the graph obtained by taking the union of all the paths of P. We
define S1 = S \ ∪a∈AB(a, 4K) and S2 = S \ ∪a∈AB(a,R).

Let us first prove some intermediate claims concerning S1 and S2.

Claim 1: S1 is a union of disjoint paths and every vertex of S1 is either in
a laminar or in a hub of degree 2.

The only vertices of S of degree different from 2 are then exactly the vertices
of H corresponding to hubcenters of degree different from 2. By Lemma 6, there
exist a vertex a of A at distance et most 2K of every such vertex h, implying
B(h, 2K) ⊂ B(a, 4K).

Claim 2: S2 corresponds to the set of deletable vertices of S. Moreover, every
maximal path of S2 corresponds to a maximal path in S1, which R − 4K first
and last vertices have been deleted.



It is a direct consequence of R > 4K.

Claim 3: Every deletable vertex is either in a hub of degree 2 or in B(S1, k)

Vertices in a hub of degree 6= 2 are undeletable by the same reasoning that
for Claim 1. Consider now a vertex v, k-covered by a vertex v′ on a path of
P. If v is not k-covered by S1, there exist a ∈ A with d(a, v′) ≤ 4K and thus
d(a, v) ≤ 4K + k < R. v is thus undeletable.

In G\∪a∈AB(a,R), we call principal components the components containing
a path of S2. By Lemma 3, a principal component contains no hub of degree
three and is therefore either a protion of laminar or a succession of laminars and
hubs of degree two, the first and last of them beeing incomplete. Moreover, every
path Q built has to cross a principal component by Lemma 7.

Let us therefore consider a path Q joining a to a′ and P2 a maximal path
of S2 which principal component is crossed by Q. Let P1 be the maximal path
corresponding to P2 and C the connected component of G \ ∪a∈AB(a, 4K) that
contains P1.

C is then composed of a succession of laminars or parts of laminars contained
in B(S1, k) and hubs of degree 2 and hubs of degree 2 hit by S1.

Claim 4: Every deletable vertex in C is deleted
Let w be a deletable vertex in C.

Case 1: w is in a hub of degree 2
As the hub disconnects C, Q hits the hub in some vertex u. w is then 2r-

covered by u and 2r < K, so that w is deleted.

Case 2: w ∈ B(S1, k) but in no hub of degree 2
w is included in a laminar L, and is thus k-covered by a path P = p0, . . . , ps

in P which is included or partially included in S1.
Note that if a (or a′) has been added to A at line 15, a may be in L. For the

sake of simplicity, we then still call L the part of L \ B(a,R) containing w and
P the corresponding subpath of P starting at a vertex p0 at distance at most k
from a. Such a vertex exists as a is then k-covered by P .

Let x and y be the first and last vertex of Q in L, and iw, ix and iy be such
that d(z, piz ≤ k,∀z ∈ {w, x, y}. We may suppose w.l.o.g. that ix < iy.

Subcase 2.1: ix ≤ iw ≤ iz
Then by Lemma 2, w is K-covered by Q and is thus deleted.

Subcase 2.2: iw < ix , p0 ∈ H
Then Q has to enter L by the hub B(p0, r), so that d(p0, x) = r+ 1 and thus

ix ≤ r + k + 1.

2d(u, v) ≤ [d(x, pix) + d(pix , piw) + d(piw , w)] + [d(u, p0) + d(pi0 , piw) + d(piw , w)]

≤ 3k + r + 1 + r + 1 + k as d(p0, piw) + d(piw , pix) = ix

≤ 2R

d(u, v) ≤ R



and v is thus deleted.

Subcase 2.3: iw < ix, p0 /∈ H
This case corresponds to the case where a ∈ L has been added at line 15.

Lemma 2 can then be applied between a and z , implying that w is K-covered
by Q and thus deleted.

Subcase 2.4: iw > iy
Symmetrical arguments of those used for Subcases 2.2 and 2.3 can be used.

Every deletable vertex is thus deleted in C. This implies that v can not be a
deletable vertex of C. To prove the lemma, it is therefore sufficient to prove the
following last claim.

Claim 5: B(Q,K + 1) ⊂ C ∪B({a, a′}, R)
Suppose it is not the case. W.l.o.g., suppose that there exist a vertex v neither

in B(a,R) nor in C which is at distance R+ 1 of a and at most K + 1 of q ∈ Q,
the shortest path from v to q hitting B(a,R). Let moreover denote by w the first
vertex of Q.

Case 1: d(a,H) ≤ 2K
Then there exist h ∈ H with B(h, r) ⊂ B(a,R). As ` > 2R + K, v and w

are in laminars. Moreover, as d(a, h) ≤ 2K < R − r − (K + 2), v and w are at
distance at least K + 2 of B(h, r). By lemma 5, Q cannot hit w first and cross
again B(h, r) to hit q.

Therefore, q is on the the subpath of Q between a and w and thus

d(a, v) + d(v, w) ≤ d(a, q) + d(q, v) + d(v, q) + d(q, w) ≤ d(a,w) + 2K + 2

R+ 1 + d(v, w) ≤ R+ 1 + 2K + 2

d(v, w) ≤ 2K + 2

As v and w are in distinct laminars and at distance at least K+ 2 of B(h, r),
this is impossible.

Case 2: d(a,H) > 2K
In that case, a has be added to A at line 15 and a belongs to a laminar L

of path P = p0, . . . , ps. Let pi be such that d(a, pi) ≤ k. Then 2K − k ≤ i ≤
s − 2K + k. As K > 3k, B(a,K) contains the subpath of P between pi−k and
pi+k and all vertices k-dominated by it. This set disconnects L (any edge from
one side to the other would lead to a chortcut for the path P ), ans so does
B(a,K).

The same reasoning that in Case 1 can then be done by replacing B(h, r) by
B(a,K).


