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This paper deals with the state and output feedback stabilization problems for a family of nonlinear time-delay systems satisfying some relaxed triangular-type condition. A new delay-dependent stabilization condition using a controller is formulated in terms of linear matrix inequalities (LMIs). Based on the Lyapunov-Krasovskii functionals, global asymptotically stability of the closed-loop systems is achieved.

Finally, simulation results were shown to illustrate the feasibility of the proposed strategy.

Introduction

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation, or transport phenomena in shared environments, economic model [START_REF] Ben Hamed | On the robust practical global stability of nonlinear time-varying systems[END_REF][START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF], biological systems [START_REF] Lili | Guaranteed cost control for uncertain genetic regulatory networks with interval time-varying delays[END_REF], and in competition in population dynamics [START_REF] Muroya | Stability analysis of a delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure[END_REF]. In literature, there are two categories: delay-dependent [START_REF] Benabdallah | A separation principle for the stabilization of a class of time delay nonlinear systems[END_REF][START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF], and delay-independent criteria. For criteria dependent delay give information on the length of delays. This model is more frequent than delay-independent ones. For delay-dependent criteria see [START_REF] Cao | Delay-dependent robust stabilization of uncertain systems with multiple state delays[END_REF][START_REF] De Souza | Delay-dependent robust H∞ control of uncertain linear state-delayed systems[END_REF][START_REF] Kim | Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty[END_REF][START_REF] Li | Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach[END_REF][START_REF] Moon | Delay-dependent robust stabilization of uncertain state-delayed systems[END_REF][START_REF] Wu | Delay-dependent Stabilization for Systems with Multiple Unknown Timevarying Delays[END_REF][START_REF] Wu | Delay-dependent criteria for robust stability of time-varying delay systems[END_REF][START_REF] Zhang | Delay-dependent stabilization of linear systems with timevarying state and input delays[END_REF] and their references. For free-delay system, under control laws with high gain observers, asymptotic stability is achieved by [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF][START_REF] Atassi | Separation results for the stabilization of nonlinear systems using different high-gain observer designs[END_REF][START_REF] Qian | Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm[END_REF]. The analysis of nonlinear systems under time delays is typically more difficult compared to systems without time delays [START_REF] Shiping | Observer-based synchronization of memristive systems with multiple networked input and output delays[END_REF][START_REF] Minsong | Delay-dependent stability analysis and H∞ control for LPV systems with parameter-varying state delays[END_REF]. The study of the stabilization of the system with delay was the object of many researcher, see for example [START_REF] Ibrir | Observer-based control of a class of time-delay nonlinear systems having triangular structure[END_REF][START_REF] Jankovic | Recursive predictor design for state and output feedback controllers for linear time delay systems[END_REF][START_REF] Thuan | Trinh Observer-based controller design of time-delay systems with an interval time-varying delay[END_REF] and references therein. In [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], under the Lyapunov-Krasovskii functional approach and the LMI based design method, treated the stability problem for time-delay systems. [START_REF] Benabdallah | A separation principle for the stabilization of a class of time delay nonlinear systems[END_REF] has established a principle of separation in a class of systems inspired by [START_REF] Lim | Global Exponential Stabilization of a Class of Nonlinear Systems by Output Feedback[END_REF] and which covers the class of systems considered by [START_REF] Ibrir | Observer-based control of a class of time-delay nonlinear systems having triangular structure[END_REF]. Under an output feedback controller the global asymptotic stability is obtained. In [START_REF] Zhang | Global stabilization of a class of time delay nonlinear systems[END_REF] and [START_REF] Zhang | Output feedback control of a class of time delay nonlinear systems[END_REF] under the linear growth condition, has been studied global stabilization by state feedback and output feedback For a class of nonlinear time delay systems. In this regard, [START_REF] Tsinias | A theorem on global stabilization of nonlinear systems by linear feedback[END_REF] and [START_REF] Qian | Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm[END_REF] used a linear high gain observer to achieve global stabilization by output feedback for a class of nonlinear systems under the same condition of [START_REF] Zhang | Global stabilization of a class of time delay nonlinear systems[END_REF] and [START_REF] Zhang | Output feedback control of a class of time delay nonlinear systems[END_REF]. For a system without delay [START_REF] Lim | Global Exponential Stabilization of a Class of Nonlinear Systems by Output Feedback[END_REF] used a new condition to ensure overall stabilization by a linear output reaction. In [START_REF] Moon | Delay-dependent robust stabilization of uncertain state-delayed systems[END_REF],

1 presented an algorithm for the design of a time-dependent state-feedback controller to stabilize the system under LMI constraints. To solve the problem of synthesis for control systems with time-varying delay we use the result of [START_REF] Wu | Delay-dependent criteria for robust stability of time-varying delay systems[END_REF] as well as the algorithm of [START_REF] Moon | Delay-dependent robust stabilization of uncertain state-delayed systems[END_REF].

Under condition delay-dependant, global exponential stability of a class of nonlinear time-delay systems is achieved by [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF] . The condition on the nonlinearity to cover the time-delay systems given by [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF], is generalization of condition considered by [START_REF] Benabdallah | A separation principle for the stabilization of a class of time delay nonlinear systems[END_REF][START_REF] Ibrir | Observer-based control of a class of time-delay nonlinear systems having triangular structure[END_REF][START_REF] Zhang | Global stabilization of a class of time delay nonlinear systems[END_REF][START_REF] Zhang | Output feedback control of a class of time delay nonlinear systems[END_REF]. Moreover, this condition the generalized condition cover the systems given by [START_REF] Lim | Global Exponential Stabilization of a Class of Nonlinear Systems by Output Feedback[END_REF][START_REF] Tsinias | A theorem on global stabilization of nonlinear systems by linear feedback[END_REF] for a class of nonlinear free-delay systems.

In this paper, we investigate the problem of output feedback stabilization of a class of nonlinear time delay system which cover the systems considered by [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF]. Motivated by [START_REF] Moon | Delay-dependent robust stabilization of uncertain state-delayed systems[END_REF] and [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF], we use appropriate Lyapunov-Krasovskii functionals to establish globally asymptotically stability of the closed loop systems.

Then, it is used to obtain a new state and input delay dependent criterion that ensures the stability of the closed-loop system with a state feedback controller. The rest of this paper is organized as follows. In the next section, some preliminary results are summarized and the system description is given. Main results are stated in section 3: Firstly, parameter dependent linear state and output feedback controllers are synthesized to ensure global asymptotical stability of the nonlinear time delay system. Finally, an illustrative example is discussed to demonstrate the effectiveness of the obtained results.

System description and preliminary

Consider time delay system of the form:

ẋ(t) = f (x(t), x(t -τ )) x(θ) = ϕ(θ) (1) 
where τ > 0 denotes the time delay ϕ ∈ C is the initial function where C denotes the Banach space of continuous functions mapping the interval [-τ, 0] → R n equipped with the supremum-norm: Definition 1 The zero solution of (1) is called

ϕ ∞ = max
• stable, if for any ε > 0 there exists δ > 0 such that

ϕ ∞ < δ ⇒ x(t) < ε, ∀t ≥ 0.
• Attractive, if there exists σ > 0 such that

ϕ ∞ < σ ⇒ lim t→+∞ x(t) = 0. (2) 
• Asymptotically stable, if it is stable and attractive.

• Globally asymptotically stable, if it is stable and δ can be chosen arbitrarily large for sufficiently large ε, and (2) is satisfied for all σ > 0.

Sufficient conditions for stability of a functional differential equation are provided by the theory of Lyapunov-Krasovskii functionals [START_REF] Hale | Introduction to Functional Differential Equations[END_REF], a generalization of the classical Lyapunov theory of ordinary differential equations [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hales form[END_REF]. Let us recall here that a function α :

R+ → R+ is of class K if it is continuous, increasing and α(0) = 0, of class K∞ if it is of class K and it is unbounded.
The following theorem provides sufficient Lyapunov-Krasovskii conditions for global asymptotic stability of the zero solution of system (1) (see [START_REF] Khalil | Nonlinear Systems[END_REF]).

Theorem 2 Assume that there exist a locally Lipschitz functional V : C → R+, functions α1, α2 of class K∞, α3 a function of class K, such that:

(i) α1( x(t) ) ≤ V (xt) ≤ α2( xt ∞), (ii) V (xt) ≤ -α3( x(t) ),
then the zero solution of system (1) is globally asymptotically stable.

Notation 3 Throughout the paper, the time argument is omitted and the delayed state vector x(t-τ ) is noted by x τ . A T means the transpose of A. λmax(A) and λmin(A) denote the maximal and minimal eigenvalue of a matrix A respectively. P > 0 means that the matrix P is symmetric positive definite. I is an appropriately

dimensioned identity matrix, diag[• • • ] denotes a block-diagonal matrix.
Lemma 4 (Schur complement [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]) Let M, P, Q be the given matrices such that Q > 0, then

P M T M -Q < 0 ⇔ P + M T Q -1 M < 0.
Lemma 5 For any vector a, b ∈ R n and scalar ε > 0, we have

2a T b ≤ εa T a + ε -1 b T b.
In this paper, we consider the time delay nonlinear system

ẋ(t) = Ax(t) + Bu(t) + f (x(t), x(t -τ ), u(t)) y(t) = Cx(t) (3) 
where x ∈ R n is the state vector, u ∈ R is the input of the system and y ∈ R is the measured output and τ is a positive known scalar that denotes the time delay affecting the state variables. The matrices A, B and C are given by,

A =          0 1 0 • • • 0 0 0 1 • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • 1 0 0 0 • • • 0          , B =          0 0 . . . 0 1          , C = 1 0 • • • 0 0 ,
and the perturbed term is

f (x(t), x(t -τ ), u(t)) = [f1(x(t), x(t -τ ), u(t)), • • • , fn(x(t), x(t -τ ), u(t))] T
The mappings fi :

R n × R n × R → R, i = 1, . . .

, n, are smooth and satisfy the following assumption:

Assumption 1: There exists functions γ1(ε) > 0 and γ2(ε) > 0 such that for ε > 0,

n i=1 ε i-1 |fi(x, y, u)| ≤ γ1(ε) n i=1 ε i-1 |xi| + γ2(ε) n i=1 ε i-1 |yi| (4) 
This section presents the delay-dependent stabilization conditions obtained by means of the Linear Matrix Inequalities method. The state feedback controller is given by

u = K(ε)x (5) 
where

K(ε) = [ k 1 ε n , .
. . , kn ε ] and K = [k1, . . . , kn] such that AK := A + BK is Hurwitz. Theorem 6 Suppose that Assumption 1 is satisfied, there exist symmetric positive definite matrices S, Q, Z and there exists positive constant ε such that the following LMI's holds:

1 ε Ψ + a(ε)I < 0 (6) -1 ε Q + b(ε)I < 0 ( 7 
)
where

Ψ =       A T K S + SAK + Q S τ A T K Z τ A T K Z S -I 0 0 τ ZAK 0 -τ I 0 τ ZAK 0 0 -τ Z       a(ε) = εn 2 (τ ( Z + 1) + 1)γ1(ε)(γ1(ε) + γ2(ε)) b(ε) = εn 2 (τ ( Z + 1) + 1)γ2(ε)(γ1(ε) + γ2(ε))
then the closed loop time-delay system (3)-( 5) is asymptotically stable for any time-delay τ satisfying 0 ≤ τ ≤ τ .

Proof. The closed loop system is given by ẋ = (A + BK(ε))x + f (x, x τ , u).

For ε > 0, let D(ε) = diag[1, ε, . . . , ε n-1 ] and χ = D(ε)x.

Using the fact that

A + BK(ε) = 1 ε D(ε) -1 AK D(ε) we get χ = 1 ε AK χ + D(ε)f (x, x τ , u)
Let us choose a Lyapunov-Krasovskii functional candidate as follows

W (χt) = W1(χt) + W2(χt) + W3(χt) (8) 
where

W1(χt) = χ T Sχ W2(χt) = ε 0 -τ t t+β χT (s)Z χ(s)dsdβ W3(χt) = 1 ε t t-τ χ T (s)Qχ(s)ds Since S is symmetric positive definite then for all χ ∈ R n , λmin(S) χ 2 ≤ χ T Sχ ≤ λmax(S) χ 2 .
This implies that on the one hand,

W (χt) ≥ λmin(S) χ 2 ,
and on the other hand,

W (χt) = W1(χt) + W2(χt) + W3(χt) = χ T Sχ + ε 0 -τ t t+β χT (s)Z χ(s)dsdβ + 1 ε t t-τ χ T (s)Qχ(s)ds = χ T Sχ + ε 0 -τ 0 β χT (s + t)Z χ(s + t)dsdβ + 1 ε 0 -τ χ T (s + t)Qχ(s + t)ds ≤ λmax(S) χ 2 + ε 0 -τ λmax(Z) 0 β χt(s) 2 dsdβ + 1 ε λmax(Q) 0 -τ χt(s) 2 ds ≤ λmax(S) χ 2 -ετ λmax(Z) β 0 χt(s) 2 ds + 1 ε λmax(Q) 0 -τ χt 2 ∞ ds ≤ (λmax(S) + τ ε λmax(Q)) χt 2 ∞ .
The time derivative of W1 is

Ẇ1(χt) = 1 ε χ T (A T K S + SAK )χ + 2χ T SD(ε)f (x, x τ , u)
So by Assumption 1 we get

D(ε)f (x, x τ , u) ≤ n i=1 ε i-1 |fi(x, x τ , u)| ≤ γ1(ε) n i=1 ε i-1 |xi| + γ2(ε) n i=1 ε i-1 |x τ i | ≤ nγ1(ε) D(ε)x +nγ2(ε) D(ε)x τ ,
which implies that

D(ε)f (x, x τ , u) ≤ nγ1(ε) χ +nγ2(ε) χ τ . (9) 
Using Lemma 5 we deduce that

W1(χt) ≤ 1 ε χ T (A T K S + SAK )χ + 1 ε χ T SSχ + ε D(ε)f (x, x τ , u) 2 ≤ 1 ε χ T (A T K S + SAK )χ + 1 ε χ T SSχ + ε(nγ1(ε) χ +nγ2(ε) χ τ ) 2 ≤ 1 ε χ T (A T K S + SAK )χ + 1 ε χ T SSχ + εn 2 γ 2 1 (ε) χ 2 +εn 2 γ 2 2 (ε) χ τ 2 +εn 2 γ1(ε)γ2(ε)( χ 2 + χ τ 2 ) ≤ 1 ε χ T (A T K S + SAK )χ + 1 ε χ τ SSχ + εn 2 γ1(ε)(γ1(ε) + γ2(ε)) χ 2 +εn 2 γ2(ε)(γ1(ε) + γ2(ε)) χ τ 2
Using Lemma 5 and ( 9), the time derivative of W2 is

Ẇ2(χt) = ε( 0 -τ ( χT (t)Z χ(t) -χT (t + β)Z χ(t + β))dβ = ετ χT (t)Z χ(t) -ε t t-τ χT (s)Z χ(s)ds ≤ ετ [ 1 ε AK χ + D(ε)f (x, x τ , u)] T Z[ 1 ε AK χ + D(ε)f (x, x τ , u)] ≤ τ ε χ T (A T K ZAK )χ + 2τ χ T A T K ZD(ε)f (x, x τ , u) +ετ Z D(ε)f (x, x τ , u) 2 ≤ τ ε χ T (A T K ZAK )χ + τ ε χ T A T K ZZAK χ + ετ D(ε)f (x, x τ , u) 2 +ετ Z D(ε)f (x, x τ , u) 2 ≤ τ ε χ T (A T K ZAK + A T K ZZAK )χ + ετ ( Z + 1)n 2 γ1(ε)(γ1(ε) + γ2(ε)) χ 2 +ετ ( Z + 1)n 2 γ2(ε)(γ1(ε) + γ2(ε)) χ τ 2
The time derivative of W3 is

Ẇ3(χt) = 1 ε χ T Qχ T - 1 ε (χ τ ) T Qχ τ
Hence, we have that

Ẇ (χt) ≤ 1 ε χ T (A T K S + SAK + SS) + τ (A T K ZAK + A T K ZZAK ) + Q χ -1 ε (χ τ ) T Qχ τ + a(ε) χ 2 + b(ε) χ τ 2 (10)
Then, using the Lyapunov-Krasovskii stability Theorem 2 and Schur complement Lemma 4, we can conclude that the the closed loop time-delay system (3)-( 5) is asymptotically stable if ( 6) and ( 7) hold.

Global stabilization by output feedback

In [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF], under Assumption 1 and condition does not depend on the delay τ , globally exponentially stable by the dynamic output feedback control is achieved. In this subsection, we study the problem global asymptotic stability by output feedback control under Assumption 1 and condition delay-dependent. The following system is proposed:

ẋ(t) = Ax + Bu(t) -L(ε)(y -C x) ( 11 
)
where

L(ε) = [ l 1 ε , . . . , ln ε n ] T and L = [l1, . .

. , ln]

T such that AL := A + LC is Hurwitz. The output feedback controller is given by

u = K(ε)x ( 12 
)
Theorem 7 Suppose that Assumption 1 is satisfied, there exist symmetric positive definite matrices P, M, N and there exists positive constant ε such that the following LMI's holds:

Φ =       A T L P + P AL + N P τ A T L M τ A T L M P -I 0 0 τ M AL 0 -τ I 0 τ M AL 0 0 -τ M       < 0 (13) 1 ε Ψ + (a(ε) + c(ε))I < 0 (14) -1 ε Q + (b(ε) + d(ε))I < 0 (15) where c(ε) = εn 2 (τ ( M + 1) + 1)γ1(ε)(γ1(ε) + γ2(ε)) d(ε) = εn 2 (τ ( M + 1) + 1)γ2(ε)(γ1(ε) + γ2(ε))
then the closed loop time-delay system (3)-( 12) is asymptotically stable for any time-delay τ satisfying 0 ≤ τ ≤ τ .

Proof. Defining e = x -x. We have

ė = (A + L(ε)C)e + f (x, x τ , u) (16) 
For ε > 0, let

D(ε) = diag[1, ε, . . . , ε n-1 ] and η = D(ε)e.
Using the fact that

A + L(ε)C = 1 ε D(ε) -1 ALD(ε), we get η = 1 ε ALη + D(ε)f (x, x τ , u) (17) η 
= 1 ε ALη + D(ε)f (x, x τ , u)
Let us choose a Lyapunov-Krasovskii functional candidate as follows

V (ηt) = V1(ηt) + V2(ηt) + V3(ηt) (18) 
where

V1(ηt) = η T P η V2(ηt) = ε 0 -τ t t+β ηT (s)M η(s)dsdβ V3(ηt) = 1 ε t t-τ η T (s)N η(s)ds
The time derivative of V1 is

V1(ηt) = 1 ε χ T (A T L P + P AL)η + 2η T P D(ε)f (x, x τ , u) ≤ 1 ε η T (A T L P + P AL)η + 1 ε η T P P η + ε D(ε)f (x, x τ , u) 2 ≤ 1 ε η T (A T L P + P AL)η + 1 ε η T P P η + ε(nγ1(ε) χ +nγ2(ε) χ τ ) 2 ≤ 1 ε η T (A T L P + P AL)η + 1 ε η T P P η + εn 2 γ 2 1 (ε) χ 2 +εn 2 γ 2 2 (ε) χ τ 2 +εn 2 γ1(ε)γ2(ε)( χ 2 + χ τ 2 ) ≤ 1 ε η T (A T L P + P AL)η + 1 ε η T P P η + εn 2 γ1(ε)(γ1(ε) + γ2(ε)) χ 2 +εn 2 γ2(ε)(γ1(ε) + γ2(ε)) χ τ 2
The time derivative of V2 is

V2(ηt) = ε( 0 -τ ( ηT (t)M η(t) -ηT (t + β)M η(t + β))dβ = ετ ηT (t)M η(t) -ε t t-τ ηT (s)M η(s)ds ≤ ετ [ 1 ε ALη + D(ε)f (x, x τ , u)] T M [ 1 ε ALη + D(ε)f (x, x τ , u)] ≤ τ ε η T (A T L M AL)η + 2τ η T A T L M D(ε)f (x, x τ , u) +ετ M D(ε)f (x, x τ , u) 2 ≤ τ ε η T (A T L M AL)η + τ ε η T A T L M M ALη + ετ D(ε)f (x, x τ , u) 2 +ετ M D(ε)f (x, x τ , u) 2 ≤ τ ε η T (A T L M AL + A T L M M AL)η + (1 + M )n 2 γ1(ε)(γ1(ε) + γ2(ε)) χ 2 +ετ (1 + M )n 2 γ2(ε)(γ1(ε) + γ2(ε)) χ τ 2
The time derivative of V3 is

V3(ηt) = 1 ε η T N η - 1 ε (η τ ) T N η τ So, we have that V ≤ 1 ε η T (A T L P + P AL + P P + τ A T L M AL + τ A T L M M AL + N )η -1 ε (η τ ) T N η τ + c(ε) χ 2 + d(ε) χ τ 2 (19) 
Let

U (ηt, χt) = αV (ηt) + W (χt)
where W is given by [START_REF] De Souza | Delay-dependent robust H∞ control of uncertain linear state-delayed systems[END_REF]. Using [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF] and [START_REF] Minsong | Delay-dependent stability analysis and H∞ control for LPV systems with parameter-varying state delays[END_REF], we get U (ηt, χt) ≤ α ε η T (A T L P + P AL

+ P P + τ A T L M AL + τ A T L M M AL + N )η -α ε (η τ ) T N η τ + {αc(ε) + a(ε)} χ 2 + {αd(ε) + b(ε)} χ τ 2 + 1 ε χ T (A T K S + SAK + SS) + τ (A T K ZAK + A T K ZZAK ) + Q χ -1 ε (χ τ ) T Qχ τ
Finally, we select α such that

α < min - 1 ε λmin(Ψ) + εa(ε) c(ε) , 1 ε λmax(Q) -εb(ε) d(ε)
Remark 8 The nonlinear matrix inequalities which appeared in the criteria are successfully transformed into linear matrix inequalities (LMIs) to solve easily by various effective optimization algorithms [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] or using MATLAB LMI Control Toolbox [START_REF] Gahinet | LMI Control Toolbox Users Guide[END_REF].

Remark 9 Compared with [START_REF] Moon | Delay-dependent robust stabilization of uncertain state-delayed systems[END_REF] and [START_REF] Li | Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach[END_REF], our new criteria overcome some of the main sources of conservatism, and contain the criteria in [START_REF] Moon | Delay-dependent robust stabilization of uncertain state-delayed systems[END_REF] and [START_REF] Li | Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach[END_REF] as a special case for class of linear delay-system. Furthermore, the new criteria also contain the well-known delay-independent stability condition in [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF], and [START_REF] Zhang | Global stabilization of a class of time delay nonlinear systems[END_REF].

Remark 10 In [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF], state feedback and output controllers for a certain class of nonlinear timing systems that cover the class of systems satisfying a linear growth condition [START_REF] Qian | Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm[END_REF], using the Lyapunov-Krasovskii functions.

Authors derived delay-independent conditions to ensure global exponential stability of the closed-loop systems.

In this paper, In order to reduce the conservatism, a new delay-dependent stability criterion is obtained in Theorem 6 and Theorem 7 by constructing a new Lyapunov-Krasovskii functional given by (8) and (18).

Numerical example

To check the effectiveness of the result, consider the following system:

ẋ1 = x2(t) + 1 10 x2 sin x3 cos u + 1 10 x2(t -τ ) cos u ẋ2 = x3(t) ẋ3 = u (20)
It is easy to check that system (20) satisfies Assumption 1 with γ1(ε) = γ2(ε) = The above system is asymptotically stable for any τ satisfying 0 ≤ τ ≤ 1.1125 and 0 ≤ τ ≤ 0.2594. So, Z = 0.3306 and M = 0.0830. This implies that condition ( 14) is satisfied for all ε > 0.2279 and condition [START_REF] Khalil | Nonlinear Systems[END_REF] is satisfied for all ε > 0.2189. For our numerical simulation, we choose delay τ = 0.2, and ε = 0.4.

Conclusion

In this paper, has been concerned with the problem of global asymptotic stability for a certain class of nonlinear time-delay systems, written in triangular form, satisfying a linear growth condition [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF][START_REF] Qian | Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm[END_REF][START_REF] Zhang | Global stabilization of a class of time delay nonlinear systems[END_REF] and [START_REF] Zhang | Output feedback control of a class of time delay nonlinear systems[END_REF]. In [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF], authors derived delay-independent conditions to ensure global exponential stability of the closed-loop systems. Using the LyapunovKrasovskii functionals given by ( 8) and ( 17), we have derived delay-dependent conditions, using a controller is formulated in terms of linear matrix inequalities (LMIs), to ensure global asymptotically stability of the resulting closed-loop systems. The obtained result extends for global exponential stability. 

  -norm. The map f : R n × R n is smooth and satisfies f (0, 0) = 0. The function segment xt is defined by xt(θ) = x(t + θ), θ ∈ [-τ, 0]. For ϕ ∈ C, we denote by x(t, ϕ) or shortly x(t) the solution of (1) that satisfies x0 = ϕ. The segment of this solution is denoted by xt(ϕ) or shortly xt.
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