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The effective design of viscoelastic dampers as applied to real-world complex engineering structures can
be conveniently carried out by using modern numerical optimization and/or model updating techniques.
However, the large number of exact evaluations of the cost functions, combined with the typically high
dimensions of large finite element models of industrial structures incorporating viscoelastic materials,
makes the numerical processes very costly, sometimes unfeasible. Those difficulties motivate the study
reported herein, inwhich a general strategy to improve the standard condensationmethods by taking into
account a priori information of the modifications into the viscoelastic zones is introduced. The proposed
method can be used with any condensation procedure, including direct reductions and component mode
synthesis.
1. Introduction

The use of viscoelastic materials has been regarded as a con-
venient strategy in many types of industrial applications, where
these materials can be applied either as discrete devices or surface
treatments at a relatively lowcost [1–3]. However, it presents some
inherent drawbacks such as the influence of operational and en-
vironmental factors (frequency, temperature, pre-loads, etc.) [1].
Also, viscoelastic dampers (specially, surface treatments) are prone
to induce considerable mass additions. A typical example is the
application of viscoelastic constrained layer patches in compres-
sor systems. In fact, having selected a viscoelastic material with
optimum damping capability over the desired temperature and
frequency range of compressor’s operation, higher damping is
achieved by increasing the viscoelastic treatment that results in an
augmentation of the mass of the compressor [4]. This last feature
leads to the necessity of performing optimization aimed at achiev-
ing the desired performancewhile complyingwith design and con-
struction constraints. However, for finite element (FE) models of
engineering structures incorporating viscoelastic materials com-
posed by many thousands of degrees-of-freedom (DOFs) (for ex-
ample an aerospace structure can be composed by more than 106
DOFs) the time to compute the exact evaluations during the itera-
tive processes, performed on the full FE matrices, can become pro-
hibitive [5,6]. Those difficulties motivate the study reported herein
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with the intent to propose a general strategy to reduce the size of
the viscoelastic structures for mainly several reasons: the cost of
computation when one wants to extract the eigensolutions or to
predict the behavior of the full structure, the optimization ormodel
updating procedures and reliability-based optimization which re-
quire fast iterative techniques.
The difficulty of any model reduction procedure of viscoelastic

systems lies on the fact that the viscoelastic stiffness matrix de-
pends on frequency and temperature. Moreover, supplementary
difficulty is to complete the representation basis in order to reduce
truncation effects. One strategy is to generate a set of Ritz vectors
capable of representing with precision the structural behavior un-
der awide variety of structural modifications. For example, Balmès
and Germès [6] studied the possibility of using a constant Ritz ba-
sis to create parametric families of reduced models. Bouazzouni
et al. [7] developed an optimal method to construct additional vec-
tors by using the dynamic behavior of the structure before modi-
fication. The disadvantage of such approaches lies in the fact that
a basis of reduction composed by a great number of residual static
vectors is obtained, augmenting the computation effort involved in
the condensation.
The substructuring or also known as Component Mode Synthe-

sis (CMS) method currently plays a considerable role in the anal-
ysis of the viscoelastic systems, where a geometrically complex
structure can be subdivided into components called substructures
or superelements, which are analyzed and condensed separately,
while preserving the junction’s DOFs between the substructures.
The substructures are represented by their modes (in the sense of
Ritz vectors), including the normal, the rigid body, the static, and



the interfacemodes. The structural modifications of a substructure
make it possible to reanalyze the full system with a low cost of
computation and make it possible to prepare each component in-
dependently of the others. This advantage enables the analysis of
large-scale viscoelastic problems with the current data-processing
resources.
Several CMS methods have been developed for forty years, and

all of them make use of the vibration normal modes of the sub-
structures. Depending on the boundary conditions applied to the
substructure interfaces when these normal modes are obtained,
the CMS methods can be classified into four groups: fixed inter-
face methods [8–11]; free interface methods [10,11]; hybrid inter-
face and loaded interface methods [11]. The variants of each group
differ mainly in the choice of the supplementary Ritz vectors, and
in the coupling procedure. In this paper one proposes an improve-
ment of the classic Craig–Bampton Transformation (CBT) adapted
for viscoelastic systems, by the introduction of residual static vec-
tors associated to the external loads and the forces due to the vis-
coelastic damping.
In the remainder, after the various aspects related to the the-

oretical foundations, the description of a numerical application
composed by a stiffened panel treated by a passive constraining
damping layer demonstrates the effectiveness of the robust con-
densation strategy of viscoelastic systems.

2. Finite element models incorporating viscoelastic damping

Consider the following finite element equations of motion of
a viscoelastic structure in the frequency domain containing N
DOFs [5]:[
Ke + Kv(ω, T )− ω2M

]
Q (ω, T ) = F(ω) (1a)

F(ω) = b u(ω); y(ω, T ) = cQ (ω, T ) (1b)

where M ∈ RN×N is the mass (symmetric, positive-definite) ma-
trix, and Ke ∈ RN×N and Kv(ω, T ) ∈ RN×N are the stiffness matri-
ces (symmetric, nonnegative-definite) corresponding to the purely
elastic and viscoelastic substructures, respectively. Q (ω, T ) ∈ RN
and F(ω) ∈ RN are, respectively, the vectors of displacements and
external loads. y(ω, T ) ∈ Rc is the vector of complex responses
and u(ω) ∈ Rf is the reduced vector of external loads. Matrices
b ∈ RN×f and c ∈ Rc×N are Boolean matrices which enable to
select, among the d.o.f.s, those in which the excitation forces are
applied and responses are computed, respectively. In expressions
(1), the other forms of damping and the dissipation of the original
structure are neglected.
It is widely known that the dynamic behavior of viscoelastic

materials depend on a number of factors, among which the most
relevant are the excitation frequency and the temperature [1].
Various mathematical models have been developed to represent
this behavior and have been shown to be particularly suitable
to be used in combination with FE discretization [12–15]. In this
paper, as the interest is confined to frequency-domain analy-
ses, the so-named Complex Modulus is used in combination with
the Frequency–Temperature Correspondence Principle and the Elas-
tic–Viscoelastic Correspondence Principle. According to the Complex
Modulus approach, the dynamic behavior of viscoelastic materi-
als in the frequency domain can be represented by introducing
frequency- and temperature-dependent complex material moduli
as follows [1]:

G(ω, T ) = G′(ω, T ) [1+ iηG(ω, T )] (2)

where ω and T denote, respectively, the excitation frequency and
the temperature of the viscoelastic material, G′(ω, T ), ηG(ω, T ) =
G′′(ω, T )/G′(ω, T ) and G′′(ω, T ) designate, respectively, the so-
named storage modulus, loss factor and loss modulus. It should be
noted that definition (2) apply to both longitudinal and trans-
verse moduli E(ω, T ) and G(ω, T ). However, it has been assumed
by most authors [5,6,12–15], that the Poisson ratio is independent
from frequency and temperature in such a way that E(ω, T ) and
G(ω, T ) are related to each other through the relation G(ω, T ) =
E(ω, T )/ [2(1+ ν)]. Such an assumption, which has been adopted
in this study, has been argued by [16], who verified experimentally
the variations of the Poisson ratio for PVC specimens.
The Frequency–Temperature Superposition Principle (FTSP), also

known asWilliams, Landell and Ferry (WLF) Principle [1], establishes
an equivalence between the effects of the excitation frequency and
temperature on the properties of a broad class of thermorheologi-
cally simple viscoelastic materials. This implies that the viscoelas-
tic characteristics at different temperatures can be related to each
other by changes (or shifts) in the actual values of the excitation
frequency. This leads to the concepts of shift factor and reduced fre-
quency, symbolically expressed as:

G(ω, T ) = G(ωr , T0) = G(αTω, T0),
η(ω, T ) = η(ωr , T0) = η(αTω, T0)

(3)

where T indicates an arbitrary value of the temperature, T0 is a ref-
erence value of temperature,ωr = αT (T )ω is the reduced frequency,
ω is the actual excitation frequency, and αT (T ) is the shift function.
Fig. 1 illustrates the FTSP, showing that having the modulus and
loss factor of an arbitrary viscoelastic material for different tem-
perature values, T−1, T0, T1, if horizontal shifts along the frequency
axis are applied to each of these curves, all of them can be com-
bined into a single one, namedmaster curve. The horizontal shift is
given by αT and depends on the temperature.
Functions G(ωr) and αT (T ) can be obtained from experimental

tests for specific viscoelastic materials [1]. Drake and Soovere [17]
suggest analytical expressions for the complex modulus and shift
factor for various commercial viscoelastic materials. Eqs. (4) repre-
sent the complex modulus and shift factor as functions of temper-
ature and reduced frequency in the intervals 210 ≤ T ≤ 360 K and
1.0 ≤ ω ≤ 1.0 × 106 Hz, for the 3MTM ISD112 viscoelastic mate-
rial, as provided by those authors. The 3MTM ISD112 is a rubber-like
viscoelastic polymer which is provided by the manufacturer in the
form of adhesive tapes [18].

G(ωr) = 430 700

+
1200× 106

1+ 3.241×(iωr/1543 000)−0.18+(iωr/1543 000)−0.6847
(4a)

log(αT ) = −3758.4×
(
1
T
−
1
290

)
+ 225.06

× log
(
T
290

)
+ 0.23273× (T − 290) (4b)

where T is the temperature in Kelvin, ωr is the reduced frequency
in rad/s, and G is the complex modulus in N/m2.
Fig. 2 depicts the standardized curves representing the varia-

tions of the storage and loss moduli, the loss factor and the shift
factor as functions of the reduced frequency and temperature,
respectively, as obtained from Eqs. (4a) and (4b).
According to the Elastic–Viscoelastic Correspondence Principle

[19] the derivation of the FE model accounting for the viscoelas-
tic behavior can be carried out in two distinct phases: first, the
element and global stiffness matrices are obtained by consider-
ing pure elastic behavior (hence, frequency- and temperature-
independent material moduli), accounting for the strain state
assumed; then, thematerialmoduli aremodified to account for the
viscoelastic behavior (according to the model expressed by Eq. (2),
in the present case). This implies that G(ω, T ) can be factored-out
of the matrix Kv(ω, T ) = G(ω, T )K̄v (where K̄v is a constant ma-
trix), which can be combined with Eqs. (1) to produce the recep-
tance or frequency response function (FRF) matrix:

H(ω, T ) = cZ(ω, T )−1b (5)
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Fig. 1. Illustration of the Frequency–Temperature Superposition Principle (FTSP).
Fig. 2. Master curves (— G; — · — η) for the 3MTM ISD112 viscoelastic material.
where Z(ω, T ) = Ke+G(ω, T )K̄v−ω2M is the so-named dynamic
stiffness matrix.
The difficulty in predicting the vibration response in the time

domain and performing eigenvalue analysis for the viscoelastic
systems comes from the fact that the viscoelastic stiffness ma-
trix depends on frequency and temperature. As a result, one
has a nonlinear eigenvalue problem that must be solved itera-
tively [20]. Some procedures for dealing with this problem have
been suggested, such as the recent contributions by Palmeri and
Ricciardelli [21], in which the eigenvalue problem of viscoelas-
tic systems has been derived in the time domain by the con-
cept of modal relaxation functions. Yuan and Agrawal [22] and
by Wagner and Adhikari [23] proposed an alternative state-space
approach for the time-domain analysis of viscoelastic systems.
Other alternatives have been proposed based on the adoption of
3

particular representations for the frequency-dependent behavior
of the viscoelastic materials, such as the Fractional Deriva-
tive [12], Golla–Hughes–McTavish [13,14] and Anelastic Displace-
ment Field [15]models,which enable to transform the equations of
motion of the viscoelastic systems in the time-domain into state-
space forms, with frequency-independent state matrices, at the
expense of a typically high increase in the order of the system
matrices.
The interest herein is focused on frequency-domain responses,

and with this aim, Eq. (5) can, in principle, be directly used for
calculating the steady-state harmonic responses of the viscoelastic
structures in the frequency domain. However, such a procedure
can be unfeasible when large-scale finite element models are dealt
with. In this case, the computations can be alleviated by using
model reduction techniques.



3. Robust condensation of viscoelastic systems for design
procedure

In the case of complex engineering structures of industrial
interest, FE models are usually constituted by a large number of
DOFs (hundreds of thousand or even millions). In such cases, it
becomes practically impossible to compute the FRFs directly from
Eq. (5), owing to the prohibitive computation times and storage
memory required. This fact motivates the use of model reduction
procedures, which aims at reducing the model dimensions (and
the associated computational burden), while keeping a reasonable
predictive capacity of the numerical models. This can be done
based on the assumption that the exact responses, given by the
resolution of Eqs. (1), can be approached by projections on a
reduced vector basis as follows:

Q (ω, T ) = T Q̂ (ω, T ) (6)

where T ∈ CN×NR is the transformation matrix formed column-
wise by a vector basis, Q̂ (ω, T ) ∈ CNR are generalized coordinates,
and NR � N is the number of reduced vectors in the basis. The
generalized coordinates representing the contribution of each col-
umn of T are chosen arbitrarily in which the reduce model pro-
vides a reasonable predictive capacity into a frequency bandwidth.
Frequency band of interest is taken into account by computing a
number of normal modes and retaining those below a certain fre-
quency (1.5 times the last frequency of interest is typically).
By considering Eqs. (1) and (6), the transfer function (5) can be

rewritten as:

Ĥ(ω, T ) = cẐ(ω, T )−1b (7)

where Ẑ(ω, T ) = T TKeT + G(ω, T )T T K̄vT − ω2T TMT . Ẑ(ω, T ) ∈
RNR×NR is the reduced dynamic stiffness matrix that must be com-
puted frequency by frequency and inverted in a direct way by
using efficient numerical algorithms. For models containing vis-
cous or structural damping, it is relatively common to use con-
stant projection basis formed by the eigenvectors of the associated
conservative structure, as the mass and stiffness matrices are in-
variant [1]. However, for viscoelastic systems, the selection of the
reduction basis is more delicate as this condition does not hold.
Owing to the dependence of the stiffness matrix with respect to
frequency and temperature, the reduction basis should be able to
represent the changes of the dynamic behavior as frequency and
temperature vary. Three procedures have been adopted regarding
the computation of the reduction basis: (i) one can simply neglect
this dependence by considering the stiffness matrix as being con-
stant [6]. In this case, the reduction basis is also constant; (ii) one
can use a constant reduction basis obtained by the resolution of
the nonlinear eigenvalue problem associated to a frequency- and
temperature-dependent stiffness matrix [20]; (iii) one can use an
iterative method for the re-actualization of the reduction basis ac-
cording to frequency [6].
In this work, the strategy proposed consists in using a reduction

basis formed by a constant modal basis (named herein nominal re-
duction basis), enriched by static residual vectors or equivalently
static responses to account for the static effects of the modal trun-
cation. These static responses are computed by using the tangent
stiffness matrix representing the static behavior of the viscoelastic
materials. As can be seen in Fig. 2(a), in the low frequency range, as
the modulus and loss factor curves are prolonged by asymptotes,
the extrapolation leads to the real values G0 and η0 = 0. On the
other hand, for high frequencies, the extrapolation gives the com-
plex values G∞ and η∞. The tangent stiffness matrix can thus be
calculated as follows [6]:

K0 = Ke + G0K̄v. (8)

The nominal basis can be obtained by the resolution of the
eigenvalue problem:
(K0 − λiM) φi = 0 i = 1, . . . ,N

φ0 =
[
φ1 φ2 . . . φNR

]
, Λ0 = diag (λ1, . . . , λNR) .

(9)

This basis is enriched by introducing the residues formed by the
static displacements associated to external forces,

R = K−10 b (10)

that must be further completed by the residual vectors associated
to the viscoelastic damping forces:

R0v = K−10 K̄vφ0. (11)
As detailed in Reference [6], these residuals are interpreted as

the columns of the flexibility matrix of the associated undamped
system, associated to the coordinates of application of two types of
forces to it: the external excitation forces and the damping forces.
These latter can be better understood by examining (1), noting that
the term involving the viscoelastic behavior can be moved to the
right-hand side, where it plays the role of additional forces applied
to the associated conservative structure. Thus, the enriched basis
of reduction for the viscoelastic system is given as follows:

T0 =
[
φ0 R R0v

]
. (12)

It is important to note that the time required to compute the
exact matrix K−10 for FE models composed by a large number of
DOFs can become prohibitive. The numerical technique considered
to be more accurate and time-effective consists in perform the
Cholesky decomposition into the product of a lower triangular
matrix and its conjugate transpose easier to be inverted [24].
Experience has demonstrated that the nominal basis (12) can be

used to reduce the viscoelastic systems with reasonable accuracy,
but is not capable of representing themodifications of the dynamic
behavior provoked by themodificationswhichmust be introduced
into the model during iterative optimization or model updating
processes. This means that the basis (12) should, in principle, be
updated successively to guarantee a satisfactory accuracy of vis-
coelastic model reduction while the model evolves during itera-
tions. However, this process would involve costly computations.
To cope with this difficulty, the strategy suggested herein consists
in performing a further enrichment of the nominal basis T0 by a
set of residual vectors calculated based on the knowledge of the
parametric modifications of the viscoelastic zones.

3.1. Robust static residual vectors

The robust condensation strategy lies in its use of a priori in-
formation of the nature and localization of the potential design
modifications, while keeping the amplitude of the modification
as a variable [25]. In such a way, for viscoelastic systems, the ob-
jective is to construct a set of robust frequency-independent Ritz
vectors, to complete the standard reduction basis (12). By consid-
ering the Eqs. (1) and (5), for the modified structural configuration
on the viscoelastic zones, the dynamic equilibrium equation in the
frequency domain can be written as follows:
[1Zv(ω, T )+ Z(ω, T )]Q (ω, T ) = F(ω) (13)

where1Zv(ω, T ) = 1Kv(ω, T )−ω21Mv is the variation of the dy-
namic stiffness matrix associated to the viscoelastic modifications.
Eq. (13) can be interpreted as the dynamic equilibrium equation
of the nominal viscoelastic model, subjected to the forces F1(ω, T )
associated to the structural modifications:

Z(ω, T )Q (ω, T ) = F(ω)+ F1(ω, T ) (14a)

where:

F1(ω, T ) = −1Zv(ω, T )Q (ω, T ). (14b)
At this point, it is important to consider that, in the context of

the present study, the modifications are introduced on a set of ge-
ometrical design parameters associated to the viscoelastic zones
4



that intervene in a rather complicated nonlinear fashion in those
dynamic matrices. In an attempt to compute the modified matri-
ces involved in the further condensation, it becomes interesting to
perform a parameterization of the FE model, which is understood
as a means of making them to appear explicitly in the finite ele-
ment mass and stiffness matrices. This procedure enables to ac-
count for such modifications and/or uncertainties in the values of
the design parameters in a straightforward way during iterative
processes. Also, it facilitates, to a large extent, the evaluation of the
sensitivities of the responses with respect to the design parame-
ters [26–28]. In general, the parameters of mass and stiffness in-
tervene nonlinearly into the FE matrices, and after manipulations
the perturbedmatrices having the design parameters factored-out
can be expressed symbolically as follows:

1Kv(ω, T ) = G(ω, T )
zones⋃
i=1

K̄vi, 1Mv =

zones⋃
i=1

Mvi (15a)

K̄vi =
1pi
pi

∑
α

α(pi)α αK̄vi, Mvi =
1pi
pi

∑
β

β(pi)β βMvi. (15b)

In the equations above, symbol
⋃
indicates matrix assembling,

subscript i indicate the modified zones (most frequently encom-
passing various viscoelastic elements) in which the parameter pi
intervenes. K̄vi and Mvi designate the stiffness and mass matrices
corresponding to those viscoelastic zones, respectively. These later
are decomposed according to Eq. (15b) by identifying the matrices
αK̄vi and βMvi from which the α- and β-order exponentials in the
parameter pi can be factored-out.
As can be seen in Eq. (14b) the vector of forces associated to

the structural modifications depends on the dynamic response of
the modified structure, Q (ω, T ). Since this response is unknown a
priori, those forces cannot be computed exactly. The essential con-
cept of the robust condensation is expressed in the following [25]:
(i) Eq. (14b) is used to generate a vector of forces which, even
though it does not contain the exact forces associated to the modi-
fications, will at least represent a subspace containing these vec-
tors. This is accomplished by introducing the response of the
nominal system into Eq. (14b); (ii) the resulting vector of forces
is used to generate static responses, once again on the basis of the
nominalmodel; (iii) the first two steps are repeated for each design
parameter subjected to modifications. Many types of responses
may be introduced into Eq. (14b), including the normal modes and
the sensitivity vectors. If the vector introduced is composed by a
truncated basis of normal modes, Eq. (14b) assumes the following
form:

F1(ω, T ) ≈ −1Zv(ω, T )φ0Q̂ (ω, T ). (16)
For example, for a parameter pi intervening in the viscoelastic

mass and stiffness matrices, the basis of forces can be expressed
under the following form:

F1pi =
[
FMvi
1pi F K̄vi

1pi

]
(17)

where FMvi
1pi = Mviφ0Λ0 and F

K̄vi
1pi = G0K̄viφ0 are the basis of forces

associated to the viscoelastic mass and stiffness modifications.
After obtaining the basis of forces, one can calculate a series of
static responses of the nominal viscoelastic system based on the
tangent stiffness matrix as follows:

R1pi = K−10 F1pi , i = 1, 2, . . . , np. (18)
The final robust condensation basis taking into account a priori

knowledge of the viscoelastic modifications can be expressed as
follows:
T =

[
T0 R1

]
(19)

where R1 =
[
R1p1 R1p2 . . .R1pnp

]
, and np indicates the number

of design parameters to be modified. The residue matrix R1 is not
5

Fig. 3. Block-diagram of a reanalysis process combining robust condensation.

necessarily of maximum rank. Thus, with the aim of obtaining a
limited number of independent residue vectors, it is appropriate to
select the dominating directions of this basis, which can be done
by performing the Singular Value Decomposition (SVD) of R1 to
identify its dominant singular values.
Fig. 3 illustrates a comparison between a cycle of optimization

and/or model updating processes by using a standard reduction
and the proposed robust condensation strategy. The robust strat-
egy is used to approximate the behavior of the modified viscoelas-
tic structures without the re-actualization of the nominal basis of
reduction, leading to a drastic reduction of the time required for
computing the responses. Moreover, this approach can be advan-
tageously adapted to several other structural domains based on it-
erative processes: stochastic structural dynamics [28], nonlinear
mechanics, and reliability-optimization-based design.
In the case of global modifications, for which the whole struc-

ture fully treated by viscoelastic materials is modified by using
the same level of perturbation, the standard condensation proce-
dure by using the reduction basis (12) is robust and do not need to
be improved. In this case, there is only a frequency shift between
the nominal model and the perturbed model, so that transforma-
tion (12) can represent correctly the perturbed viscoelastic model.
But when the local modifications are introduced that is the case of
structures partially treated by passive constraining layer damping,
experience shows that the precision of this solution degenerates
rapidly with the amplitude of the perturbation, demonstrating the
interest in using the robust basis (19).

4. CMS combining robust condensation for viscoelastic systems

The objective of the substructuring methods is to calculate
the dynamic behavior of a complex engineering structure, start-
ing from the knowledge of the dynamic behavior of its substruc-
tures [8,9]. The principal differences between the substructuring
methods are the choice of the basis of reduction for each sub-
structuring, and the assembly techniquebetween them. Theprinci-
pal sources of errors when implementing a substructuringmethod
are: (i) the use of incomplete Ritz basis; (ii) errors in the discretiza-
tion process of the geometry of an interface between two compo-
nents; (iii) and the inequality of displacements and the balance of
forces over an interface.
Fig. 4 illustrates two substructures finite element mesh whose

DOFs can be partitioned in two subsets: an internal domain
composed by all internal nodes belonging to the mesh (exception
of the right edge), represented by the subscript i, and the nodes of
the right edge defining the junction, represented by the subscript j.
The DOFs of the displacement vector Q (ω, T ) of a viscoelastic

substructure SS2 are partitioned into two subsets: one related
to the junction DOFS, Qj(ω, T ), and the others associated to the
interior DOFs, Qi(ω, T ), according to the expression:

Q (ω, T ) =
{
Qj(ω, T )
Qi(ω, T )

}
. (20)



Fig. 4. Illustration of two substructures FE mesh with partitioned DOFs.

The dynamic equilibrium equation of the substructure SS2
characterized by the tangent stiffness matrix (according to Eq. (8)
in Section 3), can be written by taking into account the partition
(20) as follows:([

K0jj K0ji
K0ij K0ii

]
− Λ

[
Mjj Mji
Mij Mii

]){
Qj
Qi

}
=

{
Fj
0

}
(21)

where Λ = diag(λ1, . . . , λNS), NS is the number of DOFs of the
substructure.
The assembly properties of the reduced mass and stiffness

matrices depend on the type of selected modes and the assembly
process. In the case of assembly level of reducedmatrices of several
viscoelastic substructures, in this paper, one uses the method
suggested by Craig and Bampton [8], which imposes the continuity
of displacements on the interface between the substructures,
according to the following expression (for the system illustrated
in Fig. 4):

Q (SS1)
j = Q (SS2)

j (ω, T ) . (22)

In dynamic analysis of complex viscoelastic structures with a
large number of DOFs, the Craig–Bampton can be used to drasti-
cally reduce the overall number ofDOFswhen combinedwith com-
ponent mode synthesis technique. The condensation basis known
as traditional Craig–Bampton Transformation (CBT) is composed
by the vectors associated to the forced modes enriched by nor-
mal modes for a substructure with blocked junction. The constraint
modes correspond to the static response of the substructure when
a unit displacement is imposed on one selected DOF of the contour,
and the others DOFs are blocked. For a viscoelastic substructure,
they form the solution of the following equation:[
K0jj K0ji
K0ij K0ii

]{
Ijj
Gij

}
=

{
Fj
0

}
(23)

where Ijj represents a unit vector at DOF j, that is a vector with zero
entries except at the DOF j that is equal to one. It represents a unit
displacement imposed on the DOF j of the junction. Vector Gij rep-
resents the static displacements due to zero forces at the interior
DOFs. The resolution of Eq. (23) yields:

Gij =
(
−K−10ii K0ij

)
Ijj, Fj =

(
K0jj − K0jiK−10ii K0ij

)
Ijj. (24)
The normal modes correspond to the eigensolutions of the vis-
coelastic substructure. There are three different types of normal
modes according to the boundary conditions imposed on the inter-
face [9]. In this work, one uses themodes associated to the blocked
interface, ψi, obtained by the resolution of the homogeneous vis-
coelastic problem associated to the internal DOF i, for which the
DOF j is subjected to the boundary conditions. The vector rep-
resenting the generalized coordinates are then composed by the
physical coordinates Qj and the modal coordinates Qm associated
to the normal modes with blocked interfaces ψ. The CBT transfor-
mation for a viscoelastic substructure is defined as follows:

QSS2 =
{
Qj
Qi

}
=

[
Ijj 0
Gij ψ

]{
Qj
Qm

}
(25a)

where:

TCBT =
[
Ijj 0
Gij ψ

]
. (25b)

The reduced problem is obtained by substituting Eq. (25b)
into Eq. (1a) and premultiplying the resulted system equation by
the transpose of the basis TCBT . However, for the same reason as
explained in the previously section, for a viscoelastically damped
substructure, the basis (25b) must be enriched by static residues
associated to the external loads, and the forces associated to the
viscoelastic modifications. The normal modes of the viscoelastic
substructure chosen to construct the first order static residues are
the modes associated to the blocked interface, and the residual
vectors representing the static displacements related to the
external forces,R, according to Eq. (10), and the residues associated
to the viscoelastic modifications with blocked junction, R0v and R1,
calculated according to Eqs. (11) and (18), respectively. Thus, the
robust enriched CBT, TCBTE , for a viscoelastic substructure is:

TCBTE =

T0CBTE︷ ︸︸ ︷[
Ijj 0 0 0
Gij ψ R R0v

0
R1

]
. (26)

The strategy for improving the robustness of the classical CBT
basis (25b) with respect to structural viscoelastic modifications to
obtain the basis (26), is similar to that described in Section 3.1,
in which the optimal set of Ritz vectors R1 are constructed
based on the introduced modifications on the nominal viscoelastic
model, to complete the standard enriched CBT basis T 0CBTE for the
viscoelastically damped substructure.

5. Numerical application

In this section, a numerical application is presented to illustrate
the main features of the proposed robust condensation strategy of
viscoelastic systems. Fig. 5 depicts the test structure composed by
a freely suspended stiffened panel containing four stringers. The FE
modelwithout viscoelastic treatment is composed of 928 elements
having a total number of 5940 DOFs. The viscoelastic treatment,
Fig. 5. FE model of the test structure (a); Substructure definition (b).
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Fig. 6. FRF amplitudes of the reference and reduced systems by using the nominal basis T01(a), T02 (b) and T03 (c).
also indicated on Fig. 5(a), is composed by 10 viscoelastic patches,
each one comprising 16 three-layer sandwich plate elements
developed according to References [27,28]. The FE model of
the partially viscoelastically treated panel contains 6840 DOFs.
The geometric dimensions are: internal radius: 938 mm; length:
720 mm; arc length: 680 mm; thicknesses of the panel and
the stringers: 1.5 mm and 0.75 mm, respectively; height of the
stringers: 30 mm. The material properties for both panel and
stringers are: Young modulus E = 2.1 × 1011 N/m2; mass
density ρ = 7800 kg/m3; Poisson’s ratio, υ = 0.3. The material
properties of the constraining layer are the same as those of the
stiffened panel, and for the viscoelastic core, one uses the modulus
function of the 3MTM ISD112 (ρ = 950 kg/m3), as shown in
Fig. 2(a). The nominal values of the thicknesses of the viscoelastic
and constraining layers are 0.0254 mm and 0.5 mm, respectively.

5.1. Evaluation of the robust condensation basis

The interest here is to verify the robustness of the reduced vis-
coelastic model generated by the use of the proposed condensa-
tion method described in Section 3.1. The first test is intended
to evaluate the nominal enriched basis of reduction by using the
static residues associated to the external loads and the viscoelastic
forces. The computations consisted in obtaining the driving point
FRFs associated to point P indicated on Fig. 5(a), assuming a tem-
perature of the viscoelastic material of 25 ◦C, and a frequency band
of interest [135–210 Hz]. To verify the direct condensation, one
considers the following nominal basis: T01 =

[
φ0
]
(60 eigenvec-

tors); T02 =
[
φ0 R

]
(60 eigenvectors, plus one residual vector

computed by Eq. (10)); T03 =
[
φ0 R R0v

]
(60 eigenvectors, one

residual vector computedby Eq. (10), 54 residual vectors computed
according to Eq. (11) after SVD filtering). The residues R0v were
computed based on the largest singular values, for which the re-
lation σ1/σi ≤ 1× 105, for i = 1 to 60 holds.
Fig. 6(a), (b) and (c) show the FRFs computed by using the

three nominal basis, as compared to the amplitudes of the re-
sponse computed by using a reference basis formed by a far larger
7

number of eigenvectors (600) and residual vectors (600). The FRF
amplitudes in [dB] have been computed by using a convenient
reference factor through the relation Amplitude [dB] = 20 ×
log10 (|H(ω, T )| /1e− 6). It can be clearly seen that the accuracy
is continuously improved upon successive enrichment of the re-
duction basis by the inclusion of residual vectors accounting for
the static residues associated to the external loading and damp-
ing forces, to form the nominal basis T02 and T03, respectively. This
is confirmed by the analysis of the relative errors between the ap-
proximations of the FRFs computed for the three basis of reduction,
as shown in Fig. 7(a). Fig. 7(b) confirms that the use of first order
residues associated with external forces and viscoelastic loads are
sufficient to represent with accuracy the dynamic behavior of the
viscoelastic damped system.
The interest now is to evaluate the robustness of the nominal

basis further enriched to account for structural modifications
introduced into the nominal model, according to Eq. (19). The
modification considered consists in increasing the thickness of the
constraining layer of the nominal system by 90%. Fig. 8 enables us
to compare the amplitudes of the frequency response functions for
the nominal and perturbed damped systems both computed using
the same reference reduction basis, without further enrichment for
structural modifications. It can be seen that the dynamic behavior
of the perturbed viscoelastic damped system does not differ too
much from that of the nominal system, although viscoelastic
damping levels are strongly influenced.
In Fig. 9(a), the FRF of the perturbed reference system is

compared to the counterpart computed by using the nominal
basis T03, containing 115 vectors. The observed differences lead to
conclude that this basis is not capable of accurately representing
the changes of the dynamic behavior induced by the structural
modifications introduced. Fig. 9(b) enables us to compare the FRF
of the perturbed reference system to the counterpart computed by
using the basis T4 =

[
T03 R1

]
containing 146 vectors (including

31 SVD-filtered residual vectors associated to the structural
modifications). This time, one can observe a very satisfactory



Fig. 7. Comparison between the relative errors on the FRF amplitudes computed for the three reduction basis (a); relative errors computed for the basis T03 (b).
Fig. 8. FRF amplitudes computed for the nominal and perturbed systems using the
reference reduction basis.

agreement between the amplitudes of the dynamic responses of
both systems. This leads to conclude that the reduction basis T4 is
robust enough to represent the dynamic response of the perturbed
viscoelastic structure in the frequency band of interest, yielding a
significantly more accurate prediction. Fig. 9(c) confirms that the
use of residual vectors associated to the structural modifications is
sufficient to represent with accuracy the dynamic behavior of the
modified viscoelastic system.

5.2. Component mode synthesis

To verify the dynamic substructuring condensation strategy
of viscoelastic structures, one uses the substructure definition
represented in Fig. 5(b). The first substructure is composed by 551
shell finite elements, having 4350 DOFs (180 DOFs of junction),
whose 160 finite elements are treated by 3MTM ISD112 viscoelastic
material with the temperature of 25 ◦C, and the FE model of the
second substructure is composed by a total of 377 finite elements,
having 2520 DOFs, without viscoelastic treatment.
By using the enriched CBT basis (26), the nominal model of

the first substructure is condensed to a substructure having 221
vectors described as follows:

T 0CBTE =
[
I180×180 0180×20 0180×1 0180×20
G4170×180 ψ4170×20 R4170×1 R0v 4170×20

]

a b

c

Fig. 9. FRF amplitudes computed for the nominal and perturbed systems using different reduction basis: (a) T03; (b) T4 .
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Fig. 10. FRF amplitudes computed for the reference and reduced systems by using the enriched Craig–Bampton transformation.
Table 1
Computing time for direct and CMS reduction methods.

Direct method CMS method
T01 (s) T02 (s) T03 (s) T4 (s) T 0CBTE (s) TCBTE (s)

Matrix assembly and reduction 18.3 18.4 19.9 3.3a 14 3.8a
Time to compute the reduced system (7) 2.8 s 2.9 3.7 5.8 17 19.9
Total computing time 21.1 21.3 23.6 9.1 31 23.7
a Time to compute only the residues associated to the structural modifications and to perform the reduction.
(221vectors) (27)

where G4170×180 represents the constrained modes; ψ4170×20
represents the normal modes associated to the blocked interface;
R4170×1 is the residues associated to the external loads; and
R0v 4170×20 represents the residues associated to the viscoelastic
forces.
In the same manner, the condensed model of the second

substructure (purely elastic) is composed by 190 vectors, forwhich
the classical CBT is expressed as:

TCBT =
[
I180×180 0180×10
G2340×180 ψ2340×10

]
(190 vectors). (28)

Fig. 10(a) shows the FRF amplitudes of the reference system
and those obtained for the condensedmodel by using the enriched
CBT. It is shown that the enrichment of the classical CBT basis
of reduction associated to the external loads and the viscoelastic
effects improves the results in the frequency band of analysis.
The modifications imposed on the nominal model consist in

perturbing the viscoelastic zones of the damped substructure, by
increasing the constraining layer thickness by 90%. The reduction
of the modified system is made by using the nominal basis
of reduction associated the nominal system (compound by 221
vectors), enriched by static residues evaluated on the modified
matrices, to take into account themodifications on the viscoelastic
parameters.

TCBTE =
[
T 0CBTE R1

]
(246 vectors). (29)

Fig. 10(b) enables us to compare the dynamic responses of
the perturbed systems computed for the reference and reduced
systems, respectively. Again, by this figure, one can conclude
that the first order static correction associated to the viscoelastic
modifications is robust enough to represent correctly the dynamic
response of the perturbed system in the frequency band of interest.
To provide a sense of the additional computation effort associ-

ated with the enrichment process, Table 1 provides the compar-
ison between the direct and CMS reduction methods. The most
immediate use of the enrichment process is the increase of the total
time required to compute the reduced system response (7). Also,
the assembly of the matrices and their reduction take more time
9

of the total computing time for the direct reduction, which moti-
vates the use of a parameterization of the FE model, leading to sig-
nificant time savings in iterative processes. The results shown in
Table 1 demonstrate that the CMSmethod is a little bit more costly
than a direct method in term of computation but definitely more
economic than an exact reanalysis when dealing with very large
models having a large number of subassemblies. Moreover, one
can take advantage of this enriched substructuring scheme when
only one component incorporating surface viscoelastic treatment
is subject to local modifications. In this case, there is no need for
re-assembling or projecting on the reduction basis (27) the matri-
ces of the others elastic components. Thus, the iterative processes
would give better results in terms of computing time.

6. Concluding remarks

A robust condensation procedure combinedwith a substructur-
ing technique, intended to be used for dealing with large-scale vis-
coelastically damped systems was suggested and evaluated. The
original aspects of the procedure lies in the adaptation of the con-
cept of robust condensation, initially developed for undamped
structures, for systems containing viscoelastic materials, and the
extension of the proposedmethodology to the case of CMSmethod.
This approach allows design parameters of a superelement to be
modified, for example in the context of an optimization and/or
model updating processes, without the necessity to perform a
complete superelement analysis at each point in parameter space.
Thus, the improved model reduction transformation can be pre-
pared in advance for each substructure and then used directly dur-
ing the iteration processes to avoid the exact recalculation of the
modified zones.
For viscoelastic structures the proposed robust condensation

methodology can be integrated in a variety of component mode
synthesis techniques and we have illustrated its use in the context
of the Craig–Bampton condensation procedure. Moreover, this ap-
proach is particularly effective when dealing with very large-scale
FE viscoelastic models having a large number of substructures. At
the present time, proposed design process is not constrained solely
to the viscoelastic elements, and can already be used to approxi-
mate reanalysis of linear elastodynamic behavior to substructure
technology.



An academic example derived from the aeronautic engineer-
ing interest was used to illustrate the efficiency of the robust con-
densation procedure in representing the modified behavior of the
perturbed viscoelastic zones. The obtained results demonstrated
the effectiveness of the two robust condensation strategies mainly
in terms of the drastic reduction of the number of DOFs, which
demonstrates that the suggested technique is well adapted to be
applied to complex viscoelastic structures.
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