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1. Introduction

This paper presents a kind of method for model reduction dedicated to non-linear
internal vibroacoustic problems. Modeling this problem still remains a heavy exer-
cise for industrial applications. The starting point is the formulation choice; structural
displacement and acoustic pressure (u, p) are employed in this paper. Using the finite
element method (FEM) leads to an unsymmetrical matrix system with large dimen-
sions. Symmetric formulation can also be obtained using mathematical techniques
leading to full matrices (Irons, 1970), or alternative formulation choices (Morand et
al., 1992; Tran, 2009) which are not relevant for damping introduction.

The unsymmetric character of the system associated to its large size implies high
computational times which are not compatible with optimization and robustness anal-
ysis. In this context, model reduction using projection bases is one of the ways to
reduce the calculation cost. Most of the applications in literature do not consider the
non-linear behaviour which is found in many examples. The few of them treating non-
linear effects use specific methods dedicated to non-linear dynamics. In particular the
proper orthogonal decomposition or the non-linear normal modes can be efficiently
applied to obtain a reduced model. (Amabili et al., 2007; Amabili, 2008). The use
of the harmonic balance method in a frequency study is found in many applications
(Nayfeh et al., 1995). Transient analysis require the implementation of an explicit or
implicit integration scheme (Géradin et al., 1997; Bathe, 1982). For external vibroa-
coustics, an iterative procedure dedicated to FEM/BEM coupling including non-linear
effects on the structure has been proposed by (Soares-Jr et al., 2005).

This study is based on the development of a reduction basis dedicated to inter-
nal non-linear vibroacoustic problems where geometrical non-linearities are localized.
The formulation of the non-linear vibroacoustic problemwith structural displacements
and acoustic pressure formulation is first presented. Reduced order model of the con-
sidered problem is presented in section 3 including an original association of the un-
coupled Ritz basis with both coupling and non-linear effects. Newmark algorithm
dedicated to time integration is studied in section 4 (Géradin et al., 1997; Bathe, 1982).
Section 5 presents the predictor indicators used for comparison with the full model.
Section 6 is finally dedicated to numerical illustrations of the proposed methodology.

2. Formulation of non-linear vibroacoustic problem

This section presents the formulation of the non-linear vibroacoustic problem. The
starting point is the variational formulation leading to the finite element formulation
of the problem.

The vibroacoustic problem considered in this work is presented in Figure 1. Let
us consider a fluid-filled domain Ωf coupled with a structure Ωs presenting large
displacements. Γfs is the coupling surface. The structure is submitted to volume and
surface loads fv(t) and fs(t).
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Figure 1. Vibroacoustic problem

2.1. Structural-acoustic formulation

The structural equation of motion is deduced from the virtual work principle writ-
ten as:

δ

∫ t2

t1

(U + T )dt = 0, [1]

where:

– T is the kinetic energy:

T =
1

2

∫
Ωs

ρsu̇u̇dΩ, [2]

ρs being the structural density and u being the structural displacement.
– U is the potential energy defined as the sum of the strain energyU strain and the

potential energy due to the applied load Upot:

Upot = −

∫
Ωs

fv(t)udΩ −

∫
Γs

fs(t)udΓ, [3]

Ustrain =
1

2

∫
Ωs

τT DτdΩ. [4]

D is the material stiffness matrix and τ is the 2nd order Green Lagrange strain
tensor related to the displacement field. Large displacement theory with small strain
is considered. This leads to a strain tensor written as follow:

τ(u) =
1

2
(∇u + ∇ut)︸ ︷︷ ︸

τ l

+
1

2
∇ut∇u︸ ︷︷ ︸

τnl

, [5]

where τ l and τnl respectively represent the linear and non-linear parts of the tensor.
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The constitutive equation of the linear-elastic material is:

S = Dτ, [6]

where S is the 2nd Piola-Kirchhoff stress tensor.

Writing the virtual work principle leads to the weak formulation of the problem
associated to the structure (Morand et al., 1992; Pérignon, 2004):

∫
Ωs

ST τ l(δu)dΩ +

∫
Ωs

ST τnl(u, δu)dΩ +

∫
Ωs

ρs

∂2u

∂t2
δudΩ =

∫
Ωs

fvδudΩ +

∫
Γs

fsδudΓ +

∫
Γfs

pnδudΓ.

[7]

The term
∫
Γfs

pnδudΓ corresponds to the action of the fluid on the structure, p being
the acoustic pressure.

Concerning the fluid domain Ωf , the equilibrium state is expressed by the equa-
tion:

Δp =
1

c2

∂2p

∂t2
, [8]

where c is the sound of speed in the fluid.

The boundary condition applied on the coupling area Γ fs corresponds to the slid-
ing condition:

−
∂p

∂n
= ρf

∂2u

∂t2
, [9]

where ρf is the density of the fluid.

By applying the Green formula, the variational formulation of the fluid can be
written as (Morand et al., 1992):

1

ρf

∫
Ωf

∇p∇δpdΩ +
1

ρfc2

∫
Ωf

∂2p

∂t2
δpdΩ +

∫
Γfs

∂2u

∂t2
nδpdΓ = 0. [10]

Coupling Equations [7] and [10] leads to:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
Ωs

ST τ l(δu)dΩ +

∫
Ωs

ST τnl(u, δu)dΩ +

∫
Ωs

ρs

∂2u

∂t2
δudΩ−

∫
Γfs

pnδudΓ =

∫
Γs

fsδudΓ +

∫
Ωs

fvδudΩ,

∫
Ωf

∇p∇δpdΩ + 1

c2

∫
Ωf

∂2p
∂t2

δpdΩ + ρf

∫
Γfs

∂2u
∂t2

nδpdΓ = 0.

[11]
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2.2. Finite element formulation

Using the finite element method, the problem can be written as follows:[
Ms 0

ρfCT Mf

] [
Ü

P̈

]
+

[
Ks(U) −C

0 Kf

] [
U

P

]
=

[
F

0

]
, [12]

where:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ms →
∫
Ωs

ρs
∂2u
∂t2

δudΩ,

Ks(U) →
∫
Ωs

ST τ l(δu)dΩ +
∫
Ωs

ST τnl(u, δu)dΩ,

Mf → 1

c2

∫
Ωf

∂2p
∂t2

δpdΩ,

Kf →
∫
Ωf

∇p∇δpdΩ,

C →
∫
Γfs

pnδudΓ,

F →
∫
Γs

fsδudΓ.

[13]

– Ms is the mass matrix of the structure.
– Ks is the stiffness matrix of the structure. Ks is a function of U ; for geometrical

non-linearities it is the sum of a linear term arising from the linear problemK l
s and a

non-linear term. For localized non-linearity case,K s can be written as:

Ks(U) = K l
s + Knl

s diag(U)n−1, [14]

where Knl
s is the hardening coefficient of the non-linearity and n is the degree of

non-linearity.
– Mf and Kf are the matrix corresponding respectively to the discretization of

kinematic energy and the compressibility of the fluid.
– C is the coupling matrix corresponding to the action of the structure on the fluid

or vice versa.
– F is the structure excitation function of the time t.

The matrix system can be expressed as a differential equation written as:

MẌ + K (X)X = f (t) . [15]

Solving this kind of equation depends on the nature of f(t). Using the modal decom-
positionmethod to diagonalize the problem is not possible, this is due to the non-linear
character of the system.

If f(t) is harmonic, one of the efficient techniques to solve the problem is the
harmonic balance method (Nayfeh et al., 1995).

Using an arbitrary excitation requires the implementation of time integration
method (Géradin et al., 1997; Bathe, 1982).

In both cases, solving the problem is time consuming. In the next section, a re-
duced order method dedicated to this kind of problem is presented. The projecting
basis should take into account both non-linear and coupling effects.
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3. Reduced order method

This section presents the strategy used for elaborating the reduced base. The start-
ing point is the classical approach based on the creation of the reduced Ritz basis
issued from the uncoupled problems. Non-linear and coupling effects are considered
as a perturbation of the non-coupled problem. Enriching the basis by residues issued
from these perturbations leads to a robust reduced basis dedicated to vibroacoustic
problems. The original contribution of this work is in the combination of different
bases associated to a singular value decomposition to ensure good conditioning.

3.1. Uncoupled modal basis

As it was mentioned in the previous paragraph, a reduced order method is required
for modeling non-linear vibroacoustic problem. The proposed basis should be robust
and easy to implement. A first approximation model corresponds to the use of an
uncoupled modal basis issued from the in vacuo linear structural problem (K nl

s = 0)
and the rigid wall cavity problem. This leads to a finite element approximationwritten
as follows:[

U

P

]
≈

[
Tsmb 0

0 Tfmb

] [
qs

qf

]
, [16]

where Tsmb and Tfmb respectively represent the truncated structure and fluid modal
bases.

3.2. Non-linear enriching

Localized non-linear behaviour is considered as a perturbation modifying the lin-
ear response. This perturbation is assimilated to a residual excitation force. In order
to take into account this force in the non-linear reduced model, a linear static response
of the in vacuo structure due to a unit load on each non-linear degree of freedom is
considered:

ΔT i
snl = (K l

s)
−1f i, [17]

where i is the ith non-linear degree of freedom and

f i = [0...1...0]
T

. [18]

Orthogonalization is necessary to ensure good conditioning of the problem. This is
realized with a singular value decomposition (SV D):

Ts = [Tsmb|ΔTsnl]SV D . [19]

This leads to a new finite element approximation written as follows:[
U

P

]
≈

[
Ts 0
0 Tfmb

] [
qs

qf

]
. [20]
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3.3. Coupling enriching

The main goal of this section is to propose a modal synthesis method that can take
into account coupling effects. The homogeneous matrix formulation associated to the
Equation [12] in the frequency domain is written as:([

Ks(U) −C

0 Kf

]
− ω2

[
Ms 0

ρfCT Mf

]) [
U

P

]
=

[
0
0

]
. [21]

The term ρfCT U can be interpreted as an excitation of the fluid due to the struc-
ture. For the fluid part, we have :(

Kf − ω2Mf

)
P = ω2ρfCT U. [22]

This excitation is not known but it can be approximated by projecting the displace-
ment on the structural basis introduced in the previous section [19]. Updating the fluid
basis by including this response leads to a new reduced basis. This new residual basis
is written as (Tran, 2009; Tran et al., 2010):

ΔTfs =
(
Kf − ω2

cMf

)
−1

CT Ts, [23]

and should be decomposed in singular value to ensure orthogonality:[
U

P

]
≈

[
Ts 0
0 Tf

] [
qs

qf

]
, [24]

where:

Tf = [Tfmb|ΔTfs]SV D
. [25]

3.4. Coupling with heavy fluid

The reduced order method presented above is dedicated to the non-linear vibroa-
coustic problem with light coupling. In the case where the fluid density can not be
neglected compared to the structure, the coupling is considered strong. The fluid be-
haviour impacts the structure and should be considered in the modal synthesis. Linear
static response of the structure due to the fluid effect is written as:

U = (K l
s)

−1CP. [26]

This excitation is not known but it is approximated by projecting the pressureP on
the fluid basis introduced in the section bellow [25]. Enriching the structural basis by
the static residual response due to the heavy fluid impact leads to a new basis written
as follows (Tran, 2009; Tran et al., 2010):[

U

P

]
≈

[
Tshf 0

0 Tf

] [
qs

qf

]
, [27]
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where

Tshf = [Ts|ΔTsf ]
SV D

. [28]

and

ΔTsf = K l−1
s CTf . [29]

Once the reduced basis has been established, the model reduction is performed as
follows:

X =

[
U

P

]
= T

[
qs

qf

]
= Tq [30]

T is the reduction basis defined in the sections above. Dynamics equilibrium defined
in Equation [15] becomes:

Mr q̈ + Kr (q) q = fr (t) , [31]

where:

– Mr is the reduced mass matrix: Mr = T TMT

– Kr is the reduced stiffness matrix: Kr = T TKT

– fr is the reduced force vector: fr = T Tf

4. Computation of non-linear temporal response: Newmark algorithm

In this section, the well known Newmark algorithm is recalled. As it was men-
tioned before, the strategy to solve the dynamic equations depends on the excitation.
Equilibrium equation in presence of dissipative energy modeled by a damping matrix
D is written as:

r(X) = MẌ(t) + DẊ(t) + K(X)X(t)− f(t) = 0. [32]

In the case of an arbitrary excitation, numerical integration in the time domain
is required. It consists in calculating the iterative state of the system (displacement,
velocity and acceleration) as a function of time progress. A widely used technique
is the Newmark algorithm; compared to other numerical integration, the Newmark
algorithm is relatively stable. It uses the following state description:

An =

⎡
⎣Xn

Ẋn

Ẍn

⎤
⎦ =

⎡
⎣X(tn)

Ẋ(tn)

Ẍ(tn)

⎤
⎦ , [33]

where An represents the system state calculated at time tn. An+1 represents the sys-
tem state at one time step later, it is written as (Géradin et al., 1997; Bathe, 1982):

⎧⎪⎨
⎪⎩

Xn+1 = Xn + hẊn + h2(1

2
− β)Ẍn + h2βẌn+1

Ẋn+1 = Ẋn + (1 − γ)hẌn + γhẌn+1

Ẍn+1

[34]
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where h is the chosen time step, γ and β are the parameters of the Newmark algorithm.
Ẍn+1 is calculated through the dynamic Equation [32].

Non-linear behaviour can lead to bad predictions. A residue evaluation is consid-
ered to ensure dynamic equilibrium. The residual equation is evaluated at each time
step through the linearized first order equation:

rn+1 + Si
n+1ΔX = 0, [35]

where Si
n+1 =

[
∂r
∂X

]
Xi

n+1

= Kt + γ
βh

Dt + 1

βh2 M is the Jacobian matrix of r; K t and
Dt are respectively the Jacobian matrices ofK and D while ΔX = −(S i

n+1)
−1rn+1

is the displacement correction. i is the ith iteration of the residue evaluation (correc-
tion). Experience shows that for a null acceleration at the beginning of every iteration,
and by correcting the approximation during iterations, this can provide stable and fast
process. For the same reason, a constant Jacobian matrix can be used in the correction
algorithm. The advantage compared to the evaluation of the Jacobian matrix at each
step is the inversion procedure. Otherwise, convergence to the equilibrium state will
be longer. Choosing one of these techniques will depend on the application.

The same algorithm is used for the integration of the reduced model [ 31]. Matrices
M ,K andD and vectorsX and f are replaced by their corresponding reduction (M r,
Kr, Dr, q and fr respectively). Once a reduced state is evaluated, physical response
is performed using Equation [30].

The numerical integration algorithm is resumed as follows:

Prediction
Xn+1 = Xn + hẊn + h2(1

2
− β)Ẍn

Ẋn+1 = Ẋn + (1 − γ)hẌn

Ẍn+1 = 0

↓
Residues evaluation

ε, rn+1

while |rn+1| > ε

rn+1 = MẌn+1 + DẊn+1 + K(Xn+1)Xn+1 − fn+1

↓
Correction

ΔX = −(Si
n+1)

−1rn+1

X i+1
n+1 = X i

n+1 + ΔX

Ẋ i+1
n+1 = Ẋ i

n+1 + γ
βh

ΔX

Ẍ i+1
n+1 = Ẍ i

n+1 + 1

βh2 ΔX

end while
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5. Prediction indicators

Results comparison tools are based on statistic indicators associated to the struc-
ture and fluid responses in addition to the energy indicators that result from acoustic
and kinetic energies.

5.1. Temporal moments

Temporal moments are used in transient responses in order to quantify the com-
parison between different models. It is used to qualify the model response. The i th

order of the temporal moment of a response y(t) is defined as (Masson et al., 2006):

Mi =

∫ +∞

−∞

(t − ts)
i
(y (t))

2
dt, [36]

where ts represents the temporal shift and i the moment index order.

In this work, the following temporal momentM i is used with ts = 0 and normal-
ized as follows:⎧⎪⎪⎨

⎪⎪⎩
E = M0: Energy (m2s),

T = M1

M0
: Central time (centroid) (s),

D2 = M2

M0
−

(
M1

M0

)2

: Root mean square duration (s2).

[37]

5.2. Energy indicators

The indicators that are used are the acoustic energy and the mean square velocity.
The acoustic energy is defined as the sum of the kinetic and potential energies in the
fluid domain. The discretized form is expressed as follows:

Ea =
1

2ρf

PKfP +
1

2ρf

ṖMf Ṗ . [38]

The discretized form of the mean square normal velocity is defined as:

V̄n
2

=
1

|Ss|
V Mvn

V, [39]

where Mvn
comes from the discretization of

∫
v2

ndS.

6. Numerical illustration

In order to illustrate the proposed idea, two applications are presented in this sec-
tion. A parallelepipedic acoustic cavity fixed with a thin plate presenting non-linear
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localized behaviour and an exhaust filled of air with non-linear links. Two types of
excitation are studied. For the acoustic cavity, the response of the system due to an
impact of 500N is considered. For the exhaust, a sweep sine in the frequency band
of the model is exciting the system. The full model response is compared to the re-
sults obtained with several reduction bases. The reduced order methods used in these
applications are the following:

– reduced model using the uncoupled modal basis of the system (Modal basis);
– enrichment of the uncoupled structural modal basis by the static response of the

structure due to the unit forces on the non-linear degrees of freedom (NL residues);
– enrichment of the uncoupled fluid basis only by the static response of the fluid

due to the presence of the structure (Coupling residues);
– enrichment of the uncoupled structural modal basis by the static response of the

structure due to the unit forces on the non-linear degrees of freedom and enrichment
of the uncoupled fluid basis by the static response of the fluid due to the presence of
the structure and by taking into account the non-linear behaviour (Coupling + NL
residues).

6.1. Acoustic cavity

The first example is an academic application to illustrate the non-linear coupling
effects. Let us consider a thin plate (0.654 × 0.527 × 0.003m3) with localized non-
linearities (17 at all) fixed on an acoustic cavity (0.654×0.527×0.6m3) filled with air.
Figure 2 shows the finite element model of the system. The model size is about 11000
dofs (3000 structural 8000 fluid dofs). The model frequency band is [0 − 300Hz];
reduced model size is about 150 dofs against 11000 for the full model. Dissipation
energy is introduced by modeling a proportional damping deduced from the first four
structural mode with a damping ratio of 0.1%. Structure is excited using an impact
excitation of 500N in a period of 10 ms; Figure 3 shows the temporal and spectral
representation of the impact.

The temporal moments for a period of 0.1s of the structural displacement and
the acoustic pressure for the considered model reduction strategies are presented in
Tables 1 and 2. Structural displacement at non-linear dofs and prediction indicators
are presented in Figures 4 and 5. The linear model response is also presented on the
same figures to illustrate the impact of the non-linear effects.

In this application, results show the need to enrich the bases. More precisely,
temporal moments for structural displacements show the need to take into account
non-linear effects and temporal moments for acoustic pressure show the need to take
into account the coupling effects. In both cases modal bases do not include enough
information to properly represent the behaviour of the system.

In the case of strong coupling, when a heavy fluid as water is considered in the
acoustic domain, the reduced order method should take into account heavy fluid be-
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Figure 2. Acoustic cavity
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Figure 3. Impact spectrum

Table 1. Temporal moments for structural displacements
T E D

Full model 0.0439 6.3637e-06 8.48869e-04
Modal basis 0.0438 6.1156e-06 8.4772e-04
Error / Full model (%) -0.2 -3.9 -0.1
Coupling residues 0.0438 6.0208e-06 8.4647e-04
Error / Full model (%) -0.2 -5.4 -0.3
NL residues 0.0439 6.3331e-06 8.4906e-04
Error / Full model (%) 0 -0.5 0.02
Coupling + NL residues 0.0439 6.3633e-06 8.4882e-04
Error / Full model (%) 0 -0.00 -0.00

Table 2. Temporal moments for acoustic pressure
T E D

Full model 0.0529 2.7754e+06 8.1539e-04
Modal basis 0.0538 2.8350e+06 8.0777e-04
Error / Full model (%) 1.7 2.1 -0.9
Coupling residues 0.0532 2.7550e+06 8.0692e-04
Error / Full model (%) 0.6 -0.7 -1.03
NL residues 0.0540 2.8928e+06 8.1152e-04
Error / Full model (%) 2.1 4.2 -0.5
Coupling + NL residues 0.0529 2.7745e+06 8.1512e-04
Error / Full model (%) 0 -0.03 -0.03
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Figure 4. Displacement as a function of time. a) in a period of 0.1s with the linear
model, b) in the period [0.09-0.1]s

haviour as it was mentioned before. Figure 6 presents the predictive indicators of the
full model compared to the reduced model with and without taking into account the
heavy fluid. Results show the need to take into account heavy fluid effects. The non-
convergence of the model that do not consider the heavy fluid effect compared to the
full model can be observed in Figure 6.
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Figure 5. Prediction indicators - light coupling

14



0.09 0.092 0.094 0.096 0.098 0.1
3.5

4

4.5

5

5.5

6

6.5

7
x 104

Time (s)

Ac
ou

st
ic

 e
ne

rg
y 

(J
)

Full model
Coupling + NL residues
Heavy fluid residues

0.09 0.092 0.094 0.096 0.098 0.1
0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

Time (s)

M
ea

n 
sq

ua
re

 v
el

oc
ity

 (m
/s

)²

Full model
Coupling + NL residues
Heavy fluid residues

Figure 6. Prediction indicators - heavy coupling

6.2. Exhaust

Let us consider an air cavity in a fold exhaust suspended with 18 non-linear
springs. The exhaust dimensions are L1 + L2 + L3 = 0.2 + 0.25 + 0.2m,
R1 = R3 = 0.05m and R2 = 0.125m (Figure 7). The finite element model con-
tains 8500 dofs (5000 for the structure and 3500 for the fluid). The model is valid in
the frequency band [0 − 450Hz]. A sweep sine in the frequency band of interest is
used to excite the structure with a 1N amplitude. Figure 8 shows the temporal and
spectral representations of the excitation. Proportional damping is used to introduce
dissipation in the model. It is deduced from the first four structural damped modes
with a damping ratio of 0.1%. Reduced order methods presented previously are com-
pared to the full model. The reduced model size is 200 dofs. The temporal moments
of structural displacements and acoustic pressure are presented in Tables 3 and 4. The
acoustic energy and the mean square velocity are presented in Figures 9 and 10.
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Figure 7. Exhaust
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Figure 8. Excitation sine sweep

Table 3. Temporal moments for structural displacements
D E T

Full model 4.1211E-04 1.1772E-04 0.0650
Modal basis 4.1025E-04 1.1633E-04 0.0646
Error / Full model (%) -0.5 -1.2 -0.6
Coupling residues 4.1026E-04 1.2074E-04 0.0651
Error / Full model (%) -0.4 2.6 0.2
NL residues 4.1018E-04 1.1627E-04 0.0646
Error / Full model (%) -0.5 -1.2 -0.6
Coupling + NL residues 4.1197E-04 1.1739E-04 0.0649
Error / Full model (%) -0.03 -0.3 -0.2

16



Table 4. Temporal moments for acoustic pressure
D E T

Full model 4.3529E-04 1.2554E+05 0.0670
Modal basis 4.2964E-04 1.2277E+05 0.0663
Error / Full model (%) -1.3 -2.2 -1.0
Coupling residues 4.2312E-04 1.4276E+05 0.0676
Error / Full model (%) -2.8 13.8 0.9
NL residues 4.2961E-04 1.2276E+05 0.0663
Error / Full model (%) -1.3 -2.2 -1.0
Coupling + NL residues 4.3179E-04 1.2583E+05 0.0669
Error / Full model (%) -0.8 0.2 -0.1
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Figure 9. Mean square velocity - a) t = [0 − 0.1]s, b) t = [0.085− 0.1]s
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Figure 10. Acoustic energy - a) t = [0 − 0.1]s, b) t = [0.085− 0.1]s

This application illustrates once again the poor efficiency of the uncoupled project-
ing bases. Residual terms are required to ensure good convergence, but enrichment
can also sometimes lead to divergence of the solution. This is the case in the simula-
tion with the reduced model using the coupling effects. In the same time, enriching
using only non-linear effects seems to be insufficient. It predicts the same behaviour
as the reduced model using the modal basis.

Both applications show the need for a reduced model tool independently of the
excitation type. In both cases the necessity of enriching to ensure good converging
propreties has been illustrated. Using the reducedmodel tool provides a benefit in time
consuming: in these applications the calculating time was divided by 10 compared
to the full model. Concerning the result precision, the temporal moments show the
necessity on enriching the bases. In fact, according to the response, enriching should
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take into account non-linear and coupling effects to converge to the solution of the full
model. In the case of heavy fluid, numerical results show the limit of the proposed
method and the need to consider the heavy fluid in the reduced basis to ensure good
predicting.

7. Conclusion

A reduced order method adapted to non-linear coupling problems has been pre-
sented. It is required for localized geometrical non-linear problems and is in the
process of being extended to other types of non-linearities. It consists in enriching
the uncoupled modal basis by residues taking into account non-linearity and coupling
conditions. It was mentioned that associating conditions is very important to ensure
convergence. Examples in the temporal space with different types of excitations have
been studied. An application of the approach in the frequency domain is conceivable
using the harmonic balance method adapted for geometric non-linearities.
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