
HAL Id: hal-01511256
https://hal.science/hal-01511256v1

Submitted on 20 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Lightweight Video Packet Filtering for
Large-Scale Video Data Delivery

Xavier Corbillon, Florian Boyrivent, Grégoire Asselin de Williencourt,
Gwendal Simon, Géraldine Texier, Jacob Chakareski

To cite this version:
Xavier Corbillon, Florian Boyrivent, Grégoire Asselin de Williencourt, Gwendal Simon, Géraldine
Texier, et al.. Efficient Lightweight Video Packet Filtering for Large-Scale Video Data Delivery.
ICMEW 2016 : IEEE International Conference on Multimedia & Expo Workshops, Jul 2016, Seattle,
United States. pp.1 - 6, �10.1109/ICMEW.2016.7574700�. �hal-01511256�

https://hal.science/hal-01511256v1
https://hal.archives-ouvertes.fr

EFFICIENT LIGHTWEIGHT VIDEO PACKET FILTERING
FOR LARGE-SCALE VIDEO DATA DELIVERY

Xavier Corbillon? Florian Boyrivent? Grégoire Asselin De Williencourt?

Gwendal Simon? Géraldine Texier? Jacob Chakareski†
? Télécom Bretagne / IRISA, France † University of Alabama, USA

ABSTRACT

When the video bit-rate is greater than the available network
bandwidth, the video stream suffers from packet loss due to packets
that need to be dropped. A streaming server (or a network proxy)
can implement a proactive packet filtering strategy, which is to
voluntarily block (not forward) some packets in the event of such
bandwidth mismatch. The challenge is to decide which packets to
block so that the quality of the video at the client side is maximized
with regards to the available bandwidth. Previous proposals aimed
to use meta-information from the video encoding or to pre-process
the multimedia data. Our goal is to design a lightweight strategy,
which only uses video metadata available from the video file
container. We demonstrate on a set of HEVC videos that out
lightweight packet filtering algorithm performs as well as more
complex strategies. Moreover, the video quality remains high
despite a large number of blocked packets, while a random
selection of dropped packet leads to a significant quality drop.

1. INTRODUCTION

Content delivery providers have to deal with situations where the
average bit-rate of the video is greater than the available capacity of
the network link. In current adaptive streaming technologies, such
mismatch between the bit-rate and capacity happens for the
duration of a video segment, which ranges from 2 seconds (s) to
10 s. It can be due to an unexpected drop of bandwidth, the failure
of a too optimistic rate-adaptive strategy, an increase of the video
bit-rate for this video segment, or a combination of these causes. If
nothing is done, this bandwidth shortage results in drop of packets
at the bottleneck of the link regardless of the packet content and
without any control from the endpoints.

To conform the video bit-rate to the available bandwidth, the
streaming server can implement a proactive packet filtering strategy,
which is the process of blocking some data packets of the video
stream at the server side. Video packet filtering aims at minimizing
the impact of packet loss on the Quality of Experience (QoE) at the
client side. It blocks the packets that carry data from video frames
such that the loss of these frames minimizes the video distortion.
Packet filtering strategies based on the video structure lead to
improvement in the perceived QoE of the user [3].

The video packet filtering solutions proposed so far consider
either to pre-compute information on the video or to decode the
video to extract deep coding information [1, 9, 12, 15]. It is
challenging to implement such techniques for the popular content
providers, which manage a catalog of several millions videos and
thousands of new video requests per second.

The work of Jacob Chakareski was partially supported by the NSF award
CCF-1528030

We propose lightweight packet filtering strategies, which do not
require pre-processing, nor analysis of the encoded multimedia
content. The only inputs that we consider are the video metadata
(frame size, frame type, and frame dependencies) that can be
extracted from standard multimedia containers. We focus on the
most recent video encoding trends, including high-resolutions
(1080p) videos encoded with High Efficiency Video Coding
(HEVC), and the encoding settings that are now used in interactive
multimedia applications such as high frame-rate and customized
Group of Picture (GOP).

Our contribution is threefold. First, we formally introduce the
packet filtering optimization problem, and we propose an algorithm
to compute the optimal solution based on a well-known distortion
model [2]. Second, we introduce our practical, lightweight
algorithms based on video metadata. We study the combination of
metadata that enables the identification of the least impacting
frames regarding QoE. We evaluate the Multiscale - Structural
Similarity (MS-SSIM) video quality metric [18] that can be
achieved when our packet filtering algorithm is implemented on a
set of videos for various bandwidth shortage conditions. Third, we
analyze the behavior of our packet filtering when the video streams
feature some emerging encoding formats: the open-GOP concept, a
frame-rate of up to 60 fps, and video encoding without
bi-directionally-encoded (B) frames.

The paper opens two new perspectives. From a practical
perspective, we show that efficient packet filtering solutions can be
implemented with minimum computational requirements. In
particular, our lightweight algorithm preserves a high QoE despite
significant bandwidth shortage, for example the average MS-SSIM
is higher than 0.95 when 10 % of the packets must be blocked. The
integration of packet filtering into new content delivery techniques
becomes an option that should be considered in the future. From a
theoretical perspective, the results call for new developments on the
distortion estimation, especially with regards to the new video
encoding settings.

2. STATE OF THE ART

The relation between the average subjective QoE and the packet
loss has been a research topic for years [19]. Predicting the video
quality can be based on the level of motion and the scene
complexity [5, 10] or using information on mismatched blocks [14].
The researchers focus on estimating the overall quality of the video.
However, they do not indicate which frames are best to block to
meet a bandwidth constraint while minimizing the impact on the
video quality. Another related research topic is about no-reference
video quality estimation models in case of frame losses, typically
the Commulative Mean Square Error (CMSE) or the Peak Signal
Noise to Ratio (PSNR) [2, 15]. Paluri et al. [15] typically estimate
CMSE for the loss of a unique frame using deep coding information

extracted during the encoding phase. Those techniques need
metadata available at the encoding time or high computational
resources for the computation.

By using machine learning approaches, Staelens et al. [17]
extract useful information from the compressed video to estimate
the perceived quality. The main goal of those studies is to be able to
estimate the visibility of packet loss at the client to get the average
perceived QoE. But they do not study frame level packet loss.

Mehdian and Liang [12] studied a scheduler to send a subset of
frames to respect bandwidth constraint while maximizing the
overall video quality. They characterize the properties of their
optimal transmission scheduler in terms of frame dependency and
they demonstrate that their exists a canonical form for the solution.
They also proposed a quadratic algorithm to solve the optimal
scheduling problem. To evaluate the overall quality, they consider
that a frame cannot be decoded if any dependency is missing while
we stick to the real conditions in which the decoder can partially
decode a frame even if some of its dependencies are missing.

Adaptive bit-rate streaming technologies such as the Dynamic
Adaptive Streaming over HTTP (DASH) standard aim at coping
with variable network conditions and maintaining the best QoE
during the playback. The server offers several video
representations, which differ by their spatial resolution and their
average bit-rate. Each representation is cut into segments, whose
duration ranges from 2 s to 10 s. The client must select one video
representation for each segment based on estimations of network
conditions in the next seconds. Once the client selects a given video
segment, this selection is irreversible, so the server streams this
video segment until the time to select the next segment. However,
as shown by Huang et al. [6], the segment selection is a hard task,
which is often inaccurate in commercial solutions. Despite research
efforts [16], mismatch selections still happen resulting in bandwidth
shortage. To the best of our knowledge, no previous work related to
adaptive streaming has dealt with adaptation during the segment
download. Our proposal addresses this gap.

3. PROBLEM DESCRIPTION

We denote by P the set of data packets for the whole video, each
packet being the size of the Maximum Transmission Unit (MTU) of
the link. We suppose the streaming server has a way to estimate the
available bandwidth on the link (for example by probing the
link [13] or by using network parameters [11]). According to this
prediction, the total number of packets that can be delivered on time
is less than |P|. Let N be this difference, i.e. N is the minimum
number of packets in P that must be blocked to fit with the
bandwidth constraints. We aim at selecting the set of packets to
block so that the distortion is minimized. To achieve this objective,
we take into account the frame structure of the video.

We work with the HEVC/H.265 codec. The HEVC encoding,
like Advanced Video Coding (AVC)/H.264, uses a hierarchical
structure to exploit temporal and spatial redundancies in the video
to efficiently compress it. Pictures from the original video are
encoded into three types of frames: intra-predicted (I) frames,
inter-predicted (P) frames and bidirectional (B) frames. The
encoder splits each pictures into different slices, which contains
different lines of the encoded picture, and can also split them into
different tiles (rectangular area of the picture that can be decoded
independently from each other).

Let F be the set of frames for the whole video. Each frame is
carried out by a subset of packets. We denote by nj the number of
packets that carry out the data related to frame j ∈ F . The

management of a packet loss (also known as error concealment)
depends on the strategies the decoder implements and on the
information contained in the packet. The decoder is sometimes able
to extrapolate the missing information, but most frequently it has to
drop the whole frame because key information are missing. To stick
to the universality of this study, we consider that any packet loss in
an encoded frame leads to the whole frame not being decodable,
which results in a distortion.

Let D(F ′) be the distortion due to the loss of the set of frames
F ′ ⊆ F . It is important to recall that the distortion function is not an
additive function of the frames: D({j1, j2}) is not always equal to
D({j1})+D({j2}). Indeed, Liang et al. [8] have demonstrated that
the distortion generated by the loss of frames close to each other is
greater than the sum of the distortion generated by the isolated loss
of the same frames. The linear approximation is valid only when lost
frames are far enough from each other (typically in different GOPs).

Problem Formulation. We aim at deciding the set of packets P ′ ⊆
P such that |P ′| ≥ N and the distortion generated by the frame
losses due to the non-delivery of packets in P ′ is minimum. Since
the loss of only one packet in a frame results in the whole frame
being decodable, it is obvious that the decision of blocking a packet
in a frame j means that all the packets related to frame j are blocked
too. Therefore, the problem can be re-formulated at a frame level:
we aim at deciding the set of frames F ′ ⊆ F such that the distortion
due to the loss ofF ′ is minimum and the sum of all packets related to
the frames in F ′ is greater or equal to N . Let xi be a binary variable
such that:

xj =

{
1, if frame j is blocked
0, otherwise , ∀j ∈ F

The problem is formally defined as:

minimize
F′∈2F

D(F ′) (1a)

subject to j ∈ F ′ if xj = 1 (1b)∑
j∈F′

xj × nj ≥ N (1c)

Problem Analysis. The computation of the optimal solution
requires pre-computing all the possible distortion values. This
pre-computation increases exponentially with the number of frames
in F since there exist 2|F| possible subsets of frame losses. This
problem is a variant of the 0-1 knapsack problem, which is
NP-complete [7]. The objects are the frames and the sack
corresponds to the available bandwidth. The weight of each frame
j ∈ F is nj (the number of packets related to j) and the value of
each frame j is the distortion due to the loss of j. This problem is a
variant of the original knapsack problem because the value of each
frame (here the distortion) depends on the other lost frames. Note
that the 0-1 knapsack problem is a special case of this variant where
the distortion function is the sum of the distortions of the lost
frames, so it is easy to prove that this problem is also NP-complete.

4. SOLUTION WITH DISTORTION CHAIN MODEL

4.1. Distortion Chain Model

Solving the optimal problem introduced in Section 3 requires the
full knowledge of the function D, i.e. the pre-computation of all
2|F| possible distortion values. In practice, the exponential time
complexity prevents the use of the real D function. To have a

reference to which we can compare our lightweight algorithm, we
use the Distortion Chain model first introduced by Chakareski
et al. [2] for computing an estimated function D̃ of D. We use the
order 1 Distortion Chain model (DC1). We denote by D̃(F ′) the
estimated distortion that is generated by the loss of the set of frames
F ′ ⊆ F and by D(j | j′) the additional distortion generated by the
loss of the frame j knowing that frame j′ was lost:
D(j | j′) = D({j′, j}) − D(j′) with j′ < j and (j′, j) ∈ F2.
Then, the DC1 distortion can be expressed as follow:

D̃({jn1 , jn2 , . . . , jnN }) = D(jn1) +

N∑
i=2

D(jni |jni−1) (2)

Please note that if |F ′| 6 2, D̃(F ′) = D(F ′).
When the distortion estimation model is used instead of

computing the distortion for all subsets, the accuracy of the model
is lower, especially if the packet loss rate is greater than 8%, but the
number of distortion computation is significantly lower: O(|F ′|2)
against O(2|F

′|).

4.2. A Dynamic programming solution

In Section 4.1, we introduced the model used to estimate the
distortion generated by any set of frame loss in the video. We now
discuss the technique we use to solve the problem of finding the
optimal set of frames to block, subject to the minimum number of
packets that have to be dropped.

When the weight of the objects (here the number of packet
needed to transport the frames) is an integer, the knapsack problem
can be solved using dynamic programming with a pseudo
polynomial time and memory complexity. We cannot directly use
classical dynamic programming algorithm to solve our problem
because it supposes the value of each object to be a constant. In the
case of the DC1 model, the distortion depends on which other
frame is blocked.

Dynamic programming can be used if the optimal solution of our
problem can be computed from the combination of optimal solutions
of sub-problems. We define m[i, P] to be the minimum distortion
that can be generated if the last frame lost in F is the frame with id
i such that at most P packets are sent. Then the minimal distortion
for the whole problem is :

|F|
min
i=0

(m[i, |P| −N −
|F|∑

j=i+1

nj]) (3)

Each m[i, P] can be recursively computed as follow:

m[0, P] =

{
0, if P > 0
+∞, otherwise (4a)

m[i, P] =
i−1

min
k=0

(m[k, P −
i−1∑

j=k+1

nj] +D(i | k)) (4b)

With D(i | 0) = D(i).
The time complexity of this dynamic programming algorithm is

O(|F|2|P|) and the memory complexity is O(|F||P|). To know
which frame is blocked in the minimum distortion solution, we only
need to store in the vectorm the list of frames we block at each step.

Name
Frame
Type
Tj

Depen
dencies
Dj

Frame
Size
S+
j

Frame
Size
S-
j

Random
R

Random +++++
Type ++++ +
Dependencies ++++ +
DropSmall +++++
DepDropSmall ++++ +
DepDropBig ++++ +
HybridDropBig ++ +++ +

Table 1. Algorithms parameters

5. OUR LIGHTWEIGHT ALGORITHMS

5.1. Evaluation Function

An efficient packet filtering relies on an evaluation function that
singles the blocking frames out according to their importance. The
more important a frame is, the higher this impact on the QoE will
be. We identified three relevant indicators to estimate the
importance of a frame j ∈ F , namely the frame type (Tj), the
number of dependent frames (Dj), and the frame size (S+

j). Those
three indicators are transformed to real numbers normalized
between 0 and 1.

Frame Type Selecting the frames to block according to their
frame types favors the blocking of B frames rather than P frames
or I frames. An I frame contains by itself the full description of
an image and so can be decoded independently of any other
frames. Moreover, it is generally the start of a dependency chain
in the video, so a missing I frame has a strong impact on the QoE
because multiple other frames have direct or indirect references
to it.

Dependency Blocking a frame that is needed by a large number of
other frames increases the QoE degradation since errors are
propagated to all the dependent frames. To avoid complex
pre-computation, we restrict the frame dependency metric to the
first order dependency, that is, a frame dependency corresponds
to the number of frames that directly need the current frame to be
decoded.

Frame Size The size of the frame gives an indication on the
quantity of information provided. Moreover two frames have
rarely the same size. Hence the frame size can help to decide
which frame can be blocked when several are eligible. However,
it is difficult to establish if bigger frames should have a high or a
small evaluation value. Given the minimum number of packets
N that must be blocked, we cannot tell a priori if it is better to
lose many small frames or a few big frames. Thus, we introduce
two versions of the frame size evaluation: S+

j where bigger
frames have a higher evaluation value compare to small frames
and S-

j = 1− S+
j where smaller frames have a higher evaluation

value compare to big frames.

Finally we introduce a random number Rj uniformly taken
between 0 and 1 to decide which frame to block between equivalent
candidates.

The evaluation function is defined as a multi-criteria linear
function with the constants τ, δ, σ+, σ-, and ρ, and is denoted as:

E{τ,δ,σ+,σ-,ρ}(j) = τTj+ δDj+σ
+S+

j +σ
-S-

j +ρRj , ∀j ∈ F

The evaluation function is defined at the frame level but the
blocking decision is performed at the packet level. Therefore, the
evaluation value for a packet is the evaluation value of the
transported frame. Recall that any missing packet in a frame leads
to the complete loss of the frame (it is equivalent to lose every
packet of the frame).

5.2. Algorithms parameters

We now introduce the eight evaluation function parameter sets we
selected to emphasize the influence on the QoE of the different
indicators introduced in Section 5.1. Those evaluation function are
summarized in Table 1.

First we introduce the random evaluation function Random,
defined as E{0,0,0,0,5}, that sets a random evaluation value for each
frame. This function simulates the behavior of random packet loss
in the video, which is the typical behavior at a bottleneck link.

We define the function DropSmall as E{0,0,5,0,0}, Type as
E{4,0,0,0,1}, and Dependencies as E{0,4,0,0,1} to emphasize the
influence of a single indicator, respectively the frame size, the
frame type, and the frame dependencies. The HybridDropBig
function, defined as E{2,3,0,1,0}, is based on our intuition that a
good evaluation function should consider the frame type and the
frame dependencies. The first discriminating indicator is the
number of dependencies. In case of a draw, we look at the type of
the frame and then we prefer to lose big frames. The functions
DepDropSmall, defined as E{0,4,1,0,0}, and DepDropBig, defined
as E{0,4,0,1,0} focus on the way to prioritize frames according to
the packet size in case of a draw in the frame dependencies metric.

6. OUR TESTBED

We now describe the testbed that we set up to evaluate the behavior
of our lightweight packet filtering proposals. To improve the
universality of our study, we work with eleven raw YUV videos of
10 s, which are representative of the diversity in multimedia videos,
including crowd, water, explosion, and sport. Our testbed emulates
the streaming of HEVC videos.

6.1. Video transmission chain

Our testbed is represented in Figure 1. It is divided into six main
components. First the encoder compresses the original YUV video
into an HEVC video using the ffmpeg encoder. Then, we recover
the metadata from the HEVC video, i.e. the number of frames in
the video, the frames coding identifier, their types (I, P, B), their
sizes, and their numbers of dependencies. Using such metadata, we
then apply the chosen blocking strategy to select which packets to
block in order to meet the bandwidth shortage constraint. We then
remove from the original HEVC video any encoded frame that
contains a blocked packet. This HEVC video with missing frames
is given to the libav / libx265 decoder in order to generate a YUV
representation of the decoded video (as a client would have decoded
it). When the decoder is not able to generate a picture because too
much information is missing, an error concealment strategy is used:
we repeat the last displayed picture.

Finally, we use a full reference objective metric named
MS-SSIM to compare the YUV video generated by the emulation
chain with the original YUV. The MS-SSIM is computed for each
frame with the Video Quality Measurement Tool (VQMT) [4] and
we keep only the average result.

6.2. Encoding parameters

In our first set of evaluations, we use four videos encoded with
HEVC at a spatial resolution of 1920×1080 pixels (p), an average
bit rate of 20 Mbps, and a temporal frame rate of 25 frames per
second (fps). We set a static pyramid GOP structure of 32 frames
IPBBB. The distance between two consecutive anchor frames (I
or P) is four frames; the distance between two I frames is 32 frames.

In our second set of evaluations we study the impact of different
GOP structures on our blocking strategies. For that we used the same
four original YUV used to encode the video from the first set of
evaluation except that here we encoded those video using different
HEVC parameters. We used three different GOP structures. First,
we use libx265 dynamic scene cut parameter to allow an adaptive I
frame placement in the video and we keep the frame rate at 25 fps.
Second, we keep the static GOP structure from the previous set of
evaluation but we switch to a frame rate of 60 fps. Finally, we test
the HEVC no delay profile by having no encoding B frames. We
keep one I frame every 32 frames.

7. EXPERIMENTAL RESULTS

7.1. Impact of Indicators

We first compare the different blocking strategies per indicator
(frame type, size, and dependency). First we evaluate the impact of
the different indicators individually to identify the one that gets the
best average video quality; then we combine this best indicator with
others to study their impact; finally we compare the best
combination of indicators with the Distortion Chain model results.
Each sub-figure in Figure 2 displays the average MS-SSIM for the
four representative videos.

We first show that any of the three indicators individually (Type,
Dependencies or DropSmall) enables deciding the frames to block
such that the quality of the received video is significantly better than
random dropping. The average MS-SSIM for Type, Dependencies
and DropSmall on Figure 2a are always over the average MS-SSIM
of random packet loss. The indicator that provides the best result is
the number of dependencies: Dependencies. It is an intuitive result
because the more dependencies a frame has, the more frames are
impacted if it is dropped. A packet filtering strategy only based on
dependencies can block up to 17 % of the video packets but still
have the same QoE as the video with 2 % of randomly chosen packet
losses.

We now aim at selecting the second best indicator to use (after
the frame dependency) instead of using random to address frame
ties. We observe in Figure 2b that, when two frames have the same
number of dependencies, blocking the biggest frames is better than
blocking the smallest frames. This is counter-intuitive, since the
size of a frame represents the amount of key multimedia
information transported by the frame. Chang et al. [3] also had the
same conclusion: the best strategy to decide which frame to block
among two frames being tied, is to block the biggest frame.

Finally, Figure 2c compares our best evaluation function results
DepDropBig with the results using the Distortion Chain model. We
observe that DepDropBig results are close to the Distortion Chain
model results. This result demonstrates the efficiency of our
DepDropBig evaluation function. Please note that the Distortion
Chain results are always under those for DepDropBig. This can be
explain by two facts: first the Distortion Chain is a model that
estimates the distortion but it was only validated for AVC videos,
not HEVC; second the Distortion Chain model estimates the
distortion using the CMSE not using the MS-SSIM.

encoder
1 2 3 4

YUV

metadata
extractor

algorithm decoder error
concealment

MS-SSIM
result

VQMT

HEVC HEVC
1 2 4

YUV
1 2 2 4

YUV

1 2 3 4
YUV

Fig. 1. Testbed: In this example, the algorithm decides to block the packets related to the third frame of the HEVC video. It results in a
missing third frame and a decoding problem on the fourth frame in the YUV video. The error concealment adds another second frame to
replace the third frame, but it cannot fix the decoding problem on the fourth frame.

Random Type Dependencies DropSmall
DepDropSmall DepDropBig Distortion Chain

0 10 20 30
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

M
S-

SS
IM

(a) One active indicator

0 10 20 30
0.7

0.8

0.9

1

Bandwidth shortage (% of the video bitrate)
(b) Two active indicators

0 10 20 30
0

0.2

0.4

0.6

0.8

1

(c) Comparaison with the Distortion Chain model

Fig. 2. Influence of the different indicators (the legend applies for all three sub-figures)

7.2. Evaluation on New Encoding Structures

We now deal with some recent trends regarding encoding settings.
We study the impact of the GOP structure on the blocking strategy
as introduced in Section 6.2.

For the dynamic scene cut option (Figure 3a) and the 60 fps
(Figure 3b), we observe similar results as in Section 7.1.
DepDropBig and the Distortion Chain results are close to each other
and the gap between DepDropBig and random packet losses is
significant (0.9 instead of 0.5 for 10 % bandwidth shortage).

The results for the videos with the no-delay option (Figure 3c)
frames are different. Indeed, in this scenario, the videos have no B
frames and the frame dependency structure is simple. Each frame is
only needed by at most one other frame. For the first 2 % of loss, the
frame with zero dependencies are blocked (the last P in each block).
But for a loss ratio greater than 2 %, all remaining frames in the video
have the same dependencies indicator and so DepDropBig selects
the biggest frame to be blocked without any distinction between I
frames and P frames. By introducing a distinction between I frames
and P frames in HybridDropBig, we preferentially block P frames,
which improves the results because no I frames are blocked. Finally
we observe that the gap between the Distortion Chain model results
and HybridDropBig is significant, which means that our blocking
strategies are not efficient for videos without B frames.

8. CONCLUSION

We studied lightweight packet filtering strategies to decide which
frames to block in the case of network bandwidth shortage. The
goal is to minimize the QoE degradation for the end-user while

using only video metadata (frame type, dependencies, and size). We
show that the blocking strategies that use a combination of these
video metadata are as efficient as more complex distortion
estimation strategies. In particular, the best strategy is to block the
frames with the smallest number of direct dependencies and, among
them, the biggest frames. However, the efficiency of our lighweight
strategy drops when the video is encoded with the no delay option
(without B frames and more linear GOP).

Our paper is the first step of a richer research line. The
efficiency of lightweight blocking strategy opens perspectives for
their integration within large-scale content delivery technologies.
One of our future studies will be to add a mechanism that blocks
some frames in an adaptive bit-rate streaming during transient
bandwidth drops. Indeed, the adaptive algorithms sometimes
over-reacts to a few seconds of bandwidth drop, for example abrupt
switch to a much lower-quality video representation or re-buffering
with another representation. Instead, blocking frames can be an
option to keep on streaming at the same apparent quality and to
save some time before a reaction. Such frame blocking option
requires predicting throughput for the next seconds and extracting
the video metadata of the segment live.

Another future study is to design blocking strategies for video
encoded with no-delay option. We typically aim at providing the
right algorithm for the streaming server of a cloud gaming service.
Today, the streaming server can use rate control mechanisms to find
a match between the video bit-rate and the actual bandwidth, but
switching from one bit-rate to another requires some time at the
video encoder. A blocking strategy can enable a smooth transition
from one bit-rate to another.

Random DepDropBig HybridDropBig Distortion Chain

0 10 20 30
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

M
S-

SS
IM

(a) Dynamic GOP

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Bandwidth shortage (% of the video bitrate)
(b) 60 fps

0 10 20 30
0

0.2

0.4

0.6

0.8

1

(c) No B frames

Fig. 3. Comparison of different GOP structures (the legend applies for all three sub-figures)

References
[1] J. Chakareski and P. Frossard. Rate-distortion optimized

distributed packet scheduling of multiple video streams over
shared communication resources. IEEE Trans. Multimed., 8
(2):207–218, 2006.

[2] J. Chakareski, J. Apostolopoulos, W.-t. Tan, S. Wee, and
B. Girod. Distortion chains for predicting the video distortion
for general packet loss patterns. In Proc. of IEEE ICASSP,
2004.

[3] Y.-L. Chang, T.-L. Lin, and P. C. Cosman. Network-based
H. 264/AVC whole-frame loss visibility model and frame
dropping methods. IEEE Trans. Image Process., 21(8):3353–
3363, 2012.

[4] EPFL’s VQMT software. http://mmspg.epfl.ch/vqmt.
Accessed on: Nov. 2015.

[5] L. Hu and H. Wildfeuer. Use of content complexity factors in
video over ip quality monitoring. In Proc. of IEEE QoMEX,
2009.

[6] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and
R. Johari. Confused, timid, and unstable: picking a video
streaming rate is hard. In J. W. Byers, J. Kurose, R. Mahajan,
and A. C. Snoeren, editors, Proc. of ACM SIGCOMM IMC,
2012.

[7] H. Kellerer, U. Pferschy, and D. Pisinger. Introduction to NP-
Completeness of knapsack problems. In Knapsack Problems,
pages 483–493. Springer, 2004. ISBN 978-3-642-07311-3.

[8] Y. J. Liang, J. G. Apostolopoulos, and B. Girod. Analysis of
packet loss for compressed video: does burst-length matter? In
Proc. of IEEE ICASSP, 2003.

[9] T.-L. Lin, S. Kanumuri, Y. Zhi, D. Poole, P. C. Cosman, and
A. R. Reibman. A versatile model for packet loss visibility
and its application to packet prioritization. IEEE Trans Image
Process., 19(3):722–735, 2010.

[10] A. Liotta, D. C. Mocanu, V. Menkovski, L. Cagnetta, and
G. Exarchakos. Instantaneous Video Quality Assessment for
Lightweight Devices. In Proc. of ACM MoMM, 2013.

[11] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and
A. Terzis. CQIC: Revisiting Cross-Layer Congestion Control
for Cellular Networks. In Proc. of ACM HotMobile, 2015.

[12] S. Mehdian and B. Liang. Jointly optimal selection and
scheduling for lossy transmission of dependent frames with
delay constraint. In Proc. of IEEE IWQoS, 2014.

[13] F. Michelinakis, N. Bui, G. Fioravantti, J. Widmer, F. Kaup,
and D. Hausheer. Lightweight mobile bandwidth availability
measurement. In Proc. of IFIP Networking, 2015.

[14] N. Montard and P. Brétillon. Objective quality monitoring
issues in digital broadcasting networks. IEEE Trans
Broadcast., 51(3):269–275, 2005.

[15] S. Paluri, K. K. R. Kambhatla, B. A. Bailey, P. C. Cosman,
J. D. Matyjas, and S. Kumar. A low complexity model
for predicting slice loss distortion for prioritizing H.264/AVC
video. Multimed. Tools Appl, 75(2):961–985, 2016.

[16] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and
P. Tran-Gia. A Survey on Quality of Experience of HTTP
Adaptive Streaming. IEEE Commun. Surv. Tutor., 17(1):469–
492, 2015.

[17] N. Staelens, D. Deschrijver, E. Vladislavleva, B. Vermeulen,
T. Dhaene, and P. Demeester. Constructing a No-Reference
H.264/AVC Bitstream-Based Video Quality Metric Using
Genetic Programming-Based Symbolic Regression. IEEE
Trans Circuits Syst Video Techn, 23(8):1322–1333, 2013.

[18] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale
structural similarity for image quality assessment. In Proc. of
IEEE Asilomar Conf. Signals, Systems and Computers, 2003.

[19] K. Yamagishi and T. Hayashi. Parametric packet-layer model
for monitoring video quality of IPTV services. In Proc. of
IEEE ICC, 2008.

