
HAL Id: hal-01511131
https://hal.science/hal-01511131v1

Submitted on 20 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new open-source SIMD vector libm fully implemented
with high-level scalar C

Christoph Lauter

To cite this version:
Christoph Lauter. A new open-source SIMD vector libm fully implemented with high-level scalar C.
2016 50th Asilomar Conference on Signals, Systems and Computers , Nov 2016, Pacific Grove, United
States. pp.407 - 411, �10.1109/ACSSC.2016.7869070�. �hal-01511131�

https://hal.science/hal-01511131v1
https://hal.archives-ouvertes.fr


1

A new Open-Source SIMD Vector Libm Fully
Implemented With High-Level Scalar C

Christoph Lauter
Sorbonne Universités, UPMC Univ Paris 06,

UMR 7606, LIP6, F-75005, Paris, France
Email: christoph.lauter@lip6.fr

Abstract—Systems support mathematical functions like exp,
sin, cos through mathematical libraries (libm). With increas-
ingly parallel hardware, scalar libm functions do not suffice;
implementations that work on vectors in an element-by-element
(SIMD) fashion are required. Only few Open-Source implemen-
tations of vector libms exist. They are mostly written in assembly,
which hinders portability and maintenance. As they depend on
the scalar system libm for special case handling, the existing
vector libms may induce a source of non-reproducibility.

We present an Open-Source vector libm implemented with
high-level scalar C that a modern compiler can translate to SIMD
code. The error of all functions does not exceed 8 ulp, while a
performance gain of up to 278.5% is obtained. Our library is
fully free-standing, i.e. it does not depend on any other system
library.

I. INTRODUCTION

Operation Systems provide support for mathematical func-
tions such as exp, sin, cos, xy through mathematical libraries,
commonly called libm. As hardware becomes more and more
parallel, in particular through integration of hardware for
floating-point [1] SIMD instructions, a need for vector libms
arises. These parallelized libms work on vectors, applying the
respective mathematical functions in an element-by-element
(SIMD-like) manner.

The vector lengths vary: systems may choose to provide
only functions for fixed length vectors, typically for the vectors
sizes supported by the underlying SIMD hardware, or they
may provide APIs for arbitrary vector lengths, cutting the
vectors into chunks then mapped onto the SIMD units.

A first advantage of such vectorized libms is to give the
user an interface to leverage the full potential of their SIMD
hardware. Second, modern compilers such as gcc1 have sup-
port for auto-vectorization, where scalar loops are transformed
into SIMD operations and calls to SIMD-like libm functions.
Vectorized libms are hence required as support libraries of
modern compilers.

Vectorized libms are no new idea. Several such libms
already exist: Intel’s SVML2, AMD’s libm3, GNU glibc/gcc
recent addition libmvec4 or CERN’s VDT [2]. However, all
these existing libraries have certain shortcomings: some of
them are proprietary, which does not allow them to be used

1https://gcc.gnu.org/
2https://software.intel.com/en-us/node/583201
3http://developer.amd.com/tools-and-sdks/archive/libm/
4https://sourceware.org/glibc/wiki/libmvec

on a wider range of systems. Others are written in assembly,
which also hinders portability. The only library source code is
available for, CERN’s VDT, is a mere adaptation of an existing
scalar libm, with no optimization of the underlying algorithms
to a SIMD environment.

In this article, we present a new Open-Source vector libm
that was developed to fill the gap left by the existing libraries.
It was designed with the following goals in mind: first, our
library is written in plain C, making it fully portable and easier
to maintain and inspect. However, the C source is written
in a manner that allows a modern compiler such as gcc to
auto-vectorize the library code to any SIMD hardware unit
with reasonable floating-point support. Second, our library
uses newly optimized polynomial approximations [3], chosen
with parallelization in mind. Finally, the library is completely
freestanding, i.e. it does not require a classical scalar libm
to handle corner cases of the functions, like libmvec does
for example. This further improves code maintainability and
prevents certain issues of floating-point non-reproducibility.

This article is organized as follows: in Section II, we
analyze properties of existing vector math libraries. In Sec-
tion III, we give a short overview on the principal techniques
used to implement a mathematical function, such as exp(x),
in floating-point arithmetic. In Section IV, we describe the
auto-vectorization capabilities of modern C compilers and
identify certain issues arising with classical math function
implementation techniques with respect to auto-vectorization.
In Section V, we describe our approach to implementing vec-
torized math functions, before presenting experimental results
in Section VI. We conclude with an outlook in Section VII.

II. EXISTING VECTOR MATH LIBRARIES

As already mentionned, several vectorized libms provided
by different parties exist: Intel’s SVML and VML libraries,
AMDs libm, GNU’s libmvec and CERN’s VDT. None of these
existing libraries fully satisfies all users’ needs, in particular
in the Open-Source world.

First of all, the libraries provided by Intel and AMD are
closed-source and particularly optimized for each vendor’s
hardware. Alhough libmvec, recently added to the GNU glibc
to support auto-vectorization in gcc, is Open-Source software,
it is not fully portable: as a matter of fact, the library is
provided as an assembly source for x86-64 systems only.
Porting it to other hardware, such as ARM systems is next



2

to impossible. Maintenance and code-inspection (e.g. to derive
bounds on maximum approximation error) are hindered by the
assembly nature of libmvec.

CERN’s VDT library [2] is Open-Source and fully written
in high-level languages (C and C++). It hence portable across
systems and allows for code maintenance and inspection.
However, VDT is not a full redevelopment: for its core, i.e. the
polynomial and rational approximations of the mathematical
functions it implements, it is based on the legacy Cephes
library5. This means that its developers could not optimize
these approximations (in terms of degree etc.) with respect to
vectorization. Finally VDT has a C++ interface, which makes
it unsuitable for certain C-based projects and hinders its use
as a support library for a C compiler.

All existing vector libraries share one common issue: they
all depend on a scalar libm to implement certain special
cases of certain functions. For example, most vector libraries
implement the trigonometric functions such as sin(x) only
in a limited domain around zero. For larger input values,
they call respective function in the scalar math library. While
this approach is reasonable with respect to performance, as
large input values to trigonometric functions are rare in well-
written codes, reproducibility issues may arise for input values
around the limit when the vector library switches from internal
handling to calling the scalar library: the code-base and hence
floating-point properties (such as maximum error) for both im-
plementations of the same mathematical functions are not the
same. Reproducibility issues, such as monotonicity problems,
may hence arise. These issues are even more widespread for
non-freestanding vector libms that choose to call the scalar
math library for all elements of a vector if at least one of the
vector elements requires special case handling.

III. IMPLEMENTATION OF MATHEMATICAL FUNCTIONS

The implementation of a mathematical function, such as
exp(x), sin(x) or atan(x), in the floating-point environment
provided by IEEE754-2008 has been extensively studied and
described in the literature [4], [5], [6], [7], [8], [9], [10]. Clas-
sically, a mathematical function on a floating-point argument
is computed in four or five steps.

In the first step, the inputs are filtered for special values such
as infinities or Not-A-Number data, as well as for numeric
input values that lie outside of the function’s definition domain
or surely provoke overflow or underflow. These special inputs
are handled appropriately.

All unhandled numeric floating-point inputs proceed to the
second step, called argument reduction step. In this step,
algebraic properties of the implemented function, such as
ea+b = ea · eb or sin(x + 2kπ) = sin(x), k ∈ Z, are used to
reduce the domain the function needs to be actually computed
on to some small interval, mostly around zero. In cases when
the function does not allow for algebraic reduction of its input
domain or when the domain obtained after algebraic argument
reduction is still to large, the domain is simply split into
subdomains. Such subdomain splitting gets reflected in the

5http://www.netlib.org/cephes/

function’s implementation by a sequence of memory reads and
conditional branches.

In the third step, called polynomial approximation step, the
function’s value gets approximated by evaluation of an approx-
imation polynomial. In some cases, a rational approximation
may also be used. This part of the code is fully straight-line but
may be optimized in terms of degree of the polynomial used
and of amount of memory to be read in for the polynomial’s
coefficients [3].

In a fourth and final step, the function’s value on its
original argument is recovered by “inverting” the effects of the
argument reduction step. This final code sequence commonly
is pretty short.

In cases when addressing a slightly larger (about 8 to
24 kbytes) amount of memory with indirect addressing is
possible, an additional step, executed in parallel with the
polynomial approximation step, called table lookup step, may
be used [4]. The use of a lookup table with precomputed
values allows the reduced argument’s domain to be yet smaller,
which decreases the degree of the approximation polynomial
and hence evaluation latency.

IV. LEVERAGING COMPILER SUPPORT FOR
AUTOVECTORIZATION

In Section II, we have expressed our concern with the use
of assembly in different vector libms on the one hand. On the
other hand, if we wish to increase portability with the use of
a high-level language to implement a vector libm, we need to
find a way to express the SIMD parallelism in that high-level
language. A good compiler can then perform SIMD instruction
selection, hence may avoid us the use of assembly.

With modern C compilers, such as gcc, the SIMD paral-
lelism actually does not need to be expressed explicitly: when
enabling so called auto-vectorization, the compiler is able to
map scalar code sequences that get executed repeatedly with in
a loop onto SIMD instructions. As a matter of course, both the
loop with its length and memory access pattern and the scalar
code inside that loop need to satisfy certain conditions in order
to allow the compiler to perform the auto-vectorization.

In our use-case, the implementation of mathematical func-
tions, the loop around the scalar floating-point code is of
statically known length (most commonly a small multiple
of the underlying hardware’s native SIMD vector length).
The access pattern to the input and output vectors is strictly
linear. Satisfying the compiler’s constraints is easy toward this
respect.

The constraints on the scalar code inside the loop are
more restricting for our purpose. We were unable to find any
(formal) specification of the actual constraints required by an
autovectorizing C compiler such as gcc but we were able, by
experiment, to guess the following constraints:

• The scalar code inside the loop needs to be free of
conditional branches. Conditional expression evaluation
(thru the C operator cond ? a : b) is possible in
very easy cases: both expressions are integer constants.
This constraint typically has the effect that argument
reduction by domain splitting cannot be used for the
implementation of vector math functions.



3

• All memory accesses need to be either to a constant
address (e.g. to load literal constants) or to consecutive
addresses, linearly depending on the loop variable. Hence
it is of course possible to read a function’s argument in a
vector and to write the function’s value back to an output
vector. The constraint however prohibits the use of lookup
tables for argument reduction, as the index to the lookup
table does not merely depend on the loop variable but on
the floating-point values given in the argument vector.

We are going to explain the next Section which approach
we propose for the implementation of mathematical functions
whilst still satisfying these constraints on the code, set out by
the capabilities of auto-vectorizing compilers.

V. A FREESTANDING VECTOR MATH LIBRARY

Our goal is to propose a freestanding vector math
library, fully written in C, with code that can be
auto-vectorized with a modern compiler, such as gcc.
We strive at providing the most common functions,
namely exp, log, sin, cos, tan, asin, acos, atan, 3

√ in both the
IEEE754-2008 binary32 and binary64 format. In this paper, we
concentrate on the IEEE754-2008 binary64 format, leaving out
the binary32 format. We do this for two reasons: one an auto-
vectorizable algorithm is known for a function in the binary64
format, transcribing it to the binary32 format is a pure matter
of software development. Second, as we are going to explain
in more detail below, a scalar implementation of each function
is required as a fallback in certain cases. While this doubles
development work for the binary64 format, performance is not
of an issue for that fallback. The binary32 format can hence
reuse the same fallback functions, converting hence and forth
from binary32 to binary64.

A. A Bird’s Eyes View on the Proposed Algorithms

The algorithms in our proposed vector libm keep the princi-
pal structure of an implementation of a mathematical function,
as described in Section III: special case handling, argument
reduction, polynomial approximation and reconstruction. As
set out in Section IV, no conditional branches are possible
inside the loop to be vectorized. We therefore cut the loop on
the vector into two loops.

First, a loop passes over all vector elements and determines
if the corresponding inputs lie inside the main definition
domain of the function. This test is implemented using in-
teger operations that work on the memory representation of
IEEE754-2008 binary floating-point numbers. The outputs of
each vector element’s boolean test result are considered integer
numbers that are summed. Autovectorizing compilers are able
to translate this construction into a vector reduction operation.
If at least one of the elements lies outside the main definition
domain of the function, a fallback function is called (see
Subsection V-B for details).

If all vector inputs lie inside the main definition domain
of the function, a second loop is started that will compute
the mathematical function in a SIMD-parallel manner. Manual
analysis of the generated assembly shows that no memory
accesses to the input vector are needed for this loop, as the

vector elements have already been loaded for the first, domain-
check loop. Inside the function computation loop an argument
reduction will first be performed. That argument reduction is
always based on an algebraic property of the implemented
function, at least for the 9 functions currently implemented.
No subdomain splitting is performed, no tables are used. We
are going to give more details in Subsection V-C.

Polynomial approximation follows argument reduction. Its
SIMD auto-vectorization is trivial to achieve. The degrees of
the used polynomials are pretty high, as the use of no tables
for argument reduction requires the polynomials to be accurate
on larger domains. For certain functions, in particular the
inverse trigonometric functions (asin, acos and atan) that have
either infinite derivatives at one point or derivatives that tend
toward zero, we use more than one approximation polynomial.
Their results are then combined in the last, reconstruction step.
We have optimized all our polynomials coefficients using the
techniques described in [3]. None of our polynomials uses
coefficients with higher precision than the working precision,
whilst other library tend to use floating-point expansions at
least for the coefficients of lower degree [8], [10].

Function reconstruction typically requires no branching nor
table access and is hence also easy to auto-vectorize. We
always restrict the main path of the function to a domain where
the function’s value surely does not underflow. This way, we
avoid any handling of subnormals on the main path, which is
to be autovectorized.

We shall signal a particularity of our implementation of
the cubic root function 3

√ . We implement this function as
3
√
x = 2log8(x) with additional handling for the sign of x. The

particularity is that we use the sequence of argument reduction,
polynomial approximation and reconstruction twice: once for
z = log8 x, once for 2z .

B. Special Case Handling

As mentionned, we call a fallback function to handle special
and other particular cases, such as subnormal inputs, whenever
at least one element in the given input vector lies outside the
main definition domain of the function. This general approach
gives convincing results in terms of average performance but
requires two parameters to be determined: first, what is the
main definition domain of a given function, and, second, which
SIMD vector length is appropriate for our approach.

The first parameter is pretty easy to determine: for most
functions, it is given by their mathematical definition domain
and the properties of the floating-point format –with its ex-
ponent width defined by IEEE754-2008. Only for some func-
tions, typically the trigonometric functions sin, cos and tan,
a choice must be made by design. Essentially, their argument
reduction r = x − k · π with k the integer nearest to x/π
becomes increasingly harder for x becoming larger in terms
of required working precision. Specialized argument reduction
schemes, such as Payne-Hanek argument reduction [11], exist
for large input values x. Their SIMD parallelization is hard
to achieve. In contrast, large input values to trigonometric
functions are not quite common in scientific codes. It is hence
reasonable to handle only a certain main definition domain



4

around zero in a SIMD vectorized manner and to handle all
other (larger) inputs only in the scalar fallback code. We chose
to handle inputs x smaller in magnitude than

(
214 − 1

)
· π

on the main path and to perform Payne-Hanek argument
reduction only in the scalar fallback function. This choice is
motivated by error analysis but stays a somewhat arbitrary
design decision.

The second parameter to determine with respect to our
approach to special case handling is the vector length. Our
approach is to call a fallback function as soon as at least one
of the input vector elements does not lie in the main evaluation
domain. That fallback code is not SIMD-parallelized and
hence significally slower. The average performance of our
vector functions is hence determined by two parameters:
the probability p to encounter a out-of-main-domain input
(amongst a supposedly large number of inputs) and, of course,
the vector length n. With n increasing, the probability for
the main-domain SIMD-parallelized code to be used becomes
lower, typically (1− p)n. Further, when the fallback function
gets called, with increasing vector length n, its evaluation
time increases. In contrast, when no fallback is necessary,
the SIMD-parallelized function typically gets more efficient
with increasing vector length, as most compilers are able
to interleave several SIMD evaluations, to make them run
simultaneously. As the probability p of out-of-domain inputs
is typically unknown, it is hard to answer that second question
of determining the vector length n. We performed some
experiments with some assumptions on the distribution of
floating-point numbers, in particular equidistribution of the
exponents. We could determine that a vector length of n = 8
seems to be most efficient on average. Anyway, as our code
is written in a high-level language, adapting it to other vector
lengths is pretty easy.

C. Avoiding the Use of Lookup Tables

The constraint that code to be auto-vectorized must not use
any indirect memory accesses where the addresses depend on
the input vector implies that we may not use any lookup tables
in our implementations. This has several consequences:

Most approaches for argument reduction found in the lit-
erature for the implementation of mathematical functions do
use tables [4], [7]. We have to revise the argument reduction
techniques. For certain functions, this may involve nothing
but dropping the table lookup step, increasing the interval the
reduced argument may fall in and hence increasing the degree
of the approximation polynomial. The functions exp(x) and
log(x) are examples for this situation.

For other functions, like cos(x), not having access to lookup
tables –combined with the required avoiding of conditional
branches– requires overcoming issues of computing and writ-
ing evaluation code for polynomials approximating a function
that has a zero elsewhere than at zero. However, approaches
for this issue do exist [12].

Finally, some other functions, like asin(x), acos(x) or
atan(x), have derivatives that become infinite at some point or
that tend towards zero for the input argument going to infinity.
In this cases, using polynomials for approximation is most

inappropriate. Classical argument reduction techniques for
these functions with lookup tables try to hide the singularities
of the derivatives in the tables. For our work, we had to
find other argument reduction schemes. The guiding idea is
that an accurate evaluation of the inverses of these tricky
functions is easy to obtain with polynomial approximation
and evaluation. Argument reduction may hence proceed as
follows: first evaluate a low-degree polynomial approximation
of the direct function, yielding a pretty inaccurate result. Then
compute an accurate approximation of the inverse function at
the point found by the inaccurate approximation. Last compute
a reduced argument out of the original evaluation point and
the result of the inverse function evaluation. Finally accurately
evaluate the function of the reduced argument, which will be
bounded in magnitude by some upper bound related to the
accuracy of the initial inaccurate approximation.

D. Example: Implementation of the Logarithm Function

Let us now detail the implementation of the logarithm
function as an example for the functions in our vector libm.
The function log x is defined for all inputs x > 0. On output,
it may not produce any underflow nor overflow [7].

We remove the handling of subnormal input from the main
path: the test loop checking whether special case handling is
required tests whether all IEEE754-2008 binary64 inputs x
are between 2−1021 and 21023 ·

(
2− 2−52

)
(bounds included).

Since we implement this test with two integer comparisons
on the IEEE754-2008 memory representation, the same test
eliminates all zeros, infinities and Not-A-Numbers as well.

All inputs x in that range are then split into an exponent E,
stored on an integer variable, and a significand m, stored on an
IEEE754-2008 binary64 variable, such that x = 2E · m and
0.75 ≤ m < 1.5. The uncommon range for the significand
m between 0.75 and 1.5 requires extra work but allows a
catastrophic cancellation to be avoided [7]. It is possible to
perform that split of the input x into the exponent E and
the significand m without using branches, merely with integer
operations on the IEEE754-2008 memory representation, even
when targeting the uncommon significand range between 0.75
and 1.5.

A constant value of 1 is then subtracted from the significand
m, yielding r = m − 1. This subtraction does not provoke
any rounding, as per Sterbenz’ lemma. The argument of the
logarithm function is hence reduced as follows:

log x = E log 2 + log (1 + r) ,

where r varies in the interval r ∈ [−0.25; 0.5].
On this domain, the function log (1 + r) can be replaced

by a polynomial p(r) of degree 20 to achieve the required
accuracy for IEEE754-2008 binary64.

Reconstruction involves converting the exponent E, origi-
nally represented on an integer variable, to a IEEE754-2008
variable and multiplying it by the constant log 2. The conver-
sion is performed using the appropriate machine instruction,
available in most SIMD instruction sets. It is expressed as
a cast in C and runs in parallel with polynomial evaluation.
The constant log 2 is stored with some extra precision as an



5

Function Vector libm System libm Vector libm Speed-up
max error cycles cycles
in ulps per element per element

exp 2.6695 40.2041 10.6208 278.5%
log 1.0825 84.7105 31.6007 168%
sin 2.3300 263.1053 176.7726 48.8%
cos 2.4221 251.0564 204.5421 22.7%
tan 3.0352 280.7870 234.8114 19.5%
asin 4.9627 24.3864 14.1950 71.7%
acos 2.4031 23.2520 15.7615 47.5%
atan 2.1013 16.7001 8.7906 89.9%
cbrt 1.1638 48.9236 28.2182 73.3%

Table I
MEASURED MAXIMUM ERROR OF VECTOR LIBM AND MEASURED

PERFORMANCE OF SYSTEM AND VECTOR LIBM

unevaluated sum of two IEEE754-2008 numbers with some
zero trailing bits in their significand to make the multiplication
by the exponent E exact.

VI. EXPERIMENTAL RESULTS

The vector libm we propose was developed targeting a max-
imum error of the functions of at most 8 ulp with respect to
the corresponding precision of the function. While this target
means that our functions are clearly less accurate than standard
scalar libms, which commonly provide correct rounding [1],
[8], [13], it well corresponds to the accuracy requirements
of High-Performance Computing e.g. for Physics [2]. In any
case, providing correct rounding for vectorized transcendental
functions is extremely hard, due to the divergence of the
execution paths in the different SIMD slots created by the
rounding test [13]. Non-exhaustive measurements show that
our library fulfills that accuracy target. Most functions actually
have a maximum error below 5 ulp (see Table I).

Concerning performance, the speed-up (in terms of cycles
per element computed) provided by our library, compiled with
gcc 4.9.2, compared with respect to a scalar libm, for instance
the GNU glibc 2.19-18+deb8u4 running Debian 3.16.0-4-
amd64 on a x86-64 Intel i7-5500U at 2.4GHz, is pretty
convincing: for certain functions, such as exp(x) we obtain a
speed-up of up to 278.5%. For certain functions, like tan(x),
which we optimized less, we obtain a speed-up of at least
19.5%. See Table I for details. Additional experiments showed
that about half of the speed-up is due to a better utilization
of the hardware (SIMD processing, decreasing function call
overhead etc.); the other half stemming from optimization of
the approximation polynomials.

VII. CONCLUSION AND FUTURE WORK

We presented a vectorized mathematical library (libm)
that is fully implemented in modern C, allowing for good
code maintenance and portability. The library is Open-Source,
which is not commonly the case for its competitors. It provides
reasonable speed-up with respect to a scalar libm, attaining
up to 278.5% of speed-up per vector element. It is fully free-
standing as it does not require any scalar libm as a support
library. The maximum error of the functions provides stays
well below 8 ulp, corresponding to accuracy requirements of
High Performance Computing.

As it stands now, the library is not fully completed with
respect to the functions provided by a classical scalar libm.
We currently concentrated our efforts on the IEEE754-2008
binary64 format. We still need to derive an implementation
of the functions for IEEE754-2008 binary32 format from the
algorithms we proposed. Research and design work is also
ongoing for certain functions that are hard to implement in
a vectorized manner, such as the power function xy , the bi-
variate arctangent atan

(
y
x

)
or the Gauß error function erf(x).

REFERENCES

[1] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, Aug. 2008.

[2] D. Piparo, V. Innocente, and T. Hauth, “Speeding up hep experiment
software with a library of fast and auto-vectorisable mathematical
functions,” Journal of Physics: Conference Series, vol. 513, no. 5, p.
052027, 2014. [Online]. Available: http://stacks.iop.org/1742-6596/513/
i=5/a=052027

[3] N. Brisebarre and S. Chevillard, “Efficient polynomial L∞-
approximations,” in 18th IEEE SYMPOSIUM on Computer Arithmetic,
P. Kornerup and J.-M. Muller, Eds. Los Alamitos, CA: IEEE Computer
Society, June 2007, pp. 169–176.

[4] P.-T. P. Tang, “Table-driven implementation of the exponential
function in ieee floating-point arithmetic,” ACM Trans. Math. Softw.,
vol. 15, no. 2, pp. 144–157, Jun. 1989. [Online]. Available:
http://doi.acm.org/10.1145/63522.214389

[5] S. Gal and B. Bachelis, “An accurate elementary mathematical library for
the IEEE floating point standard,” ACM Transactions on Mathematical
Software, vol. 17, no. 1, pp. 26–45, March 1991.

[6] M. Cornea, J. Harrison, and P. T. P. Tang, Scientific Computing on
Itanium-Based Systems. Intel Press, 2002.

[7] F. de Dinechin, C. Q. Lauter, and J.-M. Muller, “Fast and correctly
rounded logarithms in double-precision,” RAIRO, Theoretical Informat-
ics and Applications, vol. 41, pp. 85–102, 2007.

[8] C. Lauter, “Arrondi correct de fonctions mathématiques, fonctions uni-
variées et bivariées, certification et automatisation,” Ph.D. dissertation,
École Normale Supérieure de Lyon, Lyon, 2008.

[9] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-
Point Arithmetic. Boston: Birkhäuser, 2010.

[10] N. Brunie, F. de Dinechin, O. Kupriianova, and C. Lauter, “Code
generators for mathematical functions,” in 22nd IEEE Symposium on
Computer Arithmetic, 2015, pp. 66–73.

[11] M. Payne and R. Hanek, “Radian reduction for trigonometric functions,”
SIGNUM Newsletter, vol. 18, pp. 19–24, 1983.

[12] C. Lauter and M. Mezzarobba, “Semi-automatic floating-point imple-
mentation of special functions,” in Proceedings of the 22nd IEEE
Symposium on Computer Arithmetic, 2015.

[13] F. de Dinechin, C. Lauter, J.-M. Muller, and S. Torres, “On Ziv’s
rounding test,” ACM Trans. Math. Softw., vol. 39, no. 4, pp. 25:1–25:19,
Jul. 2013.


