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Abstract—The IEEE754 Standard offers essentially two binary
floating-point formats, binary32 and binary64, natively supported
by current hardware. Whenever these precisions do not suffice,
developers are restricted to arbitrary precision libraries, such as
MPFR.

These libraries however leave a gap in the mid-precision range
(64 to 512 bits). Their very nature –as object code to be linked in–
prevents modern compilers from inlining the code or optimizing
it e.g. with loop unrolling.

We propose the libwidefloat software meant to fill this
gap. It offers precisions from 64 through 512 bits. It supports
all basic operations (+,−,×, /,√ ,FMA, comparisons etc.) It is
fully implemented in header files for automatic optimization.

I. INTRODUCTION

The IEEE754 Standard for Floating-Point (FP) Arithmetic
defines several binary and decimal FP formats [1]. The basic
ones, such as binary32 (single precision) and binary64 (double
precision), are natively supported in hardware by current
general-purpose processors. The IEEE754 binary128 (quad
precision) format is supported in the current FP environment
mainly through software emulation. The additional extended
formats defined by IEEE754, with precisions beyond quad-
precision, have no practical realization [1].

While binary32 and binary64 gear the majority of numer-
ical software, some applications need support for precisions
beyond quad-precision, i.e. with more than 113 bits of signif-
icand length. Examples for such applications include astron-
omy [2], [3], [4], computational physics [5] or experimental
mathematics [6]. In some cases the use of extended precision
might be overcome by subtle FP accuracy analysis and FP
tricks [7], [8]. However, some developers may simply prefer to
speed up development with extended precision, used in some
compute kernels, even if this means breaking a butterfly on a
wheel [9].

As we will discuss in more detail below, such applications
typically resort to arbitrary precision FP libraries, such as
MPFR1 or MPFUN2. These libraries are properly designed and
optimized: they offer very good, if not optimal, performance
in the precision range where arbitrary precision overhead be-
comes negligible [10]. This range typically starts at precisions
beyond a couple of hundreds to a thousand bits. This leaves
a gap in the mid-precision range between quad-precision and
a couple of hundred bits.

1http://www.mpfr.org/
2http://www.davidhbailey.com/dhbsoftware/

In this article, we propose the libwidefloat software
designed to filled this gap. The package offers FP types with
precisions between 64 and 512 bits, to be chosen at application
compile time in 32 bit steps. Our FP types come with a 32
bit wide exponent, which essentially eliminates the need for
support of subnormal numbers. They come with support for
IEEE754-like infinities, Not-A-Numbers, rounding modes and
FP flags [1]. The latter two features can be deactivated (resp.
set to default round-to-nearest mode) at application compile
time to allow for enhanced performance.

This article is organized as follows: in Section II, we first
present existing solutions to extended FP precision, analyzing
the causes of their shortcomings in the mid-precision range.
We then give an overview of modern compiler techniques that
we will leverage to overcome these shortcomings (Section III).
In Section IV, we present our libwidefloat library, de-
tailing the data-types and operations it supports. We briefly
describe the algorithms used in the library in Section V,
give experimental results in Section VI and conclude with
Section VII.

II. EXISTING EXTENDED PRECISION LIBRARIES AND
THEIR SHORTCOMINGS

We have claimed that the existing arbitrary precision li-
braries, such as MPFR, are very well optimized for higher
precisions (starting at about 1000 bits) but hindered by con-
siderable overhead in the low- and mid-precision range. This
overhead is due to several factors.

First, the very nature of arbitrary precision means that the
length of the limb arrays that hold the FP significands of the
different formats is not statically known. As a consequence,
all variables having a type defined by one of these arbitrary
precision libraries need not only be declared but also be initial-
ized, using a call to a certain initialization function [11]. This
function actually attributes a precision setting to the arbitrary
precision variable and calls a memory allocation function such
as malloc to provide space for the FP variable’s significand.
All accesses to a program’s arbitrary precision variables’
significands are in consequence indirect, requiring pointers to
be followed onto the stack. Together with the dynamic nature
of the significand length, this mostly prevents compilers from
performing any reasonable optimization involving the arbitrary
precision FP significands. In addition, for certain applications
the requirement to allocate the arbitrary precision data on the
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memory heap and not hold them on the stack induces impor-
tant overhead, as memory allocation may have significant cost
with respect to computations for smaller precisions.

Second, the fact that existing arbitrary precision software
comes packaged as software libraries adds to their overhead.
While operations on IEEE754 binary32 and binary64 data-
types are “inlined” as basic operations into the code, each
and every use of an arbitrary precision operation involves
a function call with all its cost in terms of register usage,
variable spills, instruction cache misses etc. In addition, the
correspondence between function names and the code behind
them gets lost to optimization. Typically, when calling the
arbitrary precision library, the compiler does not know of
the functions’ use cases and when compiling the application
code, it does not anything about the library functions but their
name. Due to the use of assembly in the underlying libraries
such as GMP3, the arbitrary precision libraries even push this
issue further to a point where the compiler can almost no
optimization, even when using Link-Time-Optimization [12],
[11].

III. LEVERAGING COMPILER OPTIMIZATION TECHNIQUES

In order to take the observations described in the previous
Section II into account, the following requirements to a soft-
ware package for mid-precision FP arithmetic seem sensible.

First, the piece of software should not be packaged as a
library to be linked in but should come in the form of code to
be directly integrated into the application code. With modern
compilers, such as gcc, this can be achieved by condensing
the mid-precision FP library into header files that contain the
functions provided by the software package declared static
and inline. This way, the compiler4 will be able to inline
the FP functions into the application, propagating constants as
far as possible, eliminating all unnecessary parts (such as NaN
handling where no NaNs are possible) and optimizing loops
by unrolling them.

Second, the software package should not use any micro-
optimizations resorting to inline assembly or linking with
objects written in assembly. While it is tempting for perfor-
mance optimization at a function level, the use of assembly
prevents compilers from propagating the information about
the program it needs for optimization through the assembly
sequence [12]. In most cases, modern compilers have sufficient
support for doubled-precision integer arithmetic, in particular
full 64 × 64 bit multiplication, through builtins (such as the
__uint128_t type in gcc5), so that resorting to assembly
is no longer necessary.

Finally, all wide integer and FP data-types to be declared by
a FP software package optimized for the mid-precision range
should be statically sized, in order to be held directly on the
stack. In addition, the data should be properly aligned in order
to avoid cache misses. As a matter of course, the endianess of
wide integers, represented as limbs of a statically sized array
should match the system’s natural endianess, allowing the

3see https://gmplib.org/
4see e.g. https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
5see e.g. https://gcc.gnu.org/onlinedocs/gcc/ 005f 005fint128.html

compiler to make use of up-converting and down-converting
memory move operations [13]. In order to help the compiler,
all accesses to these data-types involving pointers (or indexing
in an array) should be done in a manner that allows for
optimization. For instance, functions taking references on
such data-types should be declared in a way that makes the
compiler understand6 that the pointers are not aliased (using
the restrict keyword) and constant (using const) [14],
[15].

As a matter of course, the last requirement of using statically
sized types in a FP mid-precision software package supporting
more than one precision comes at the cost of a combinatorial
explosion of functions to be provided. Indeed, if the ease
of mixing FP types of different precisions that is provided
by arbitrary precision libraries is to be maintained, where
an arbitrary precision library provides one function for, say,
addition, a software package with statically sized types has
to provide several functions, one per combination of input
and output types that is possible and sensible. In our work
on libwidefloat, we have made extensive use of macro-
programming and code generation to overcome this issue of
combinatorial explosion.

IV. THE libwidefloat LIBRARY

The libwidefloat software was implemented with
the shortcomings of the existing arbitrary precision libraries
and modern compiler technology in mind. The software
is implemented with two header files only, using modern
C99/C11 [14], [15] but no assembly in order not to break the
compiler’s opportunities to optimize the code. All functions
are declared in a way that allows them to be inlined and then
optimized in their use context by the compiler.

The libwidefloat header starts by declaring statically
sized data-types for libwidefloat FP values with preci-
sions between 32 and 512 bits, by 32 bit increments. All these
types support the basic IEEE754 FP data, such as positive and
negative real numbers, signed zeros, signed infinities and Not-
A-Number (NaN) data. The significand length is adapted in
size according to the type’s precision; the exponent width is
kept at 32 bits for all precisions. Since this exponent width is
pretty wide, we chose not to provide support for subnormal
numbers in the libwidefloat types. The NaNs are signed
but do not provide support for payload. They are all quiet
NaNs; signaling NaNs are not supported.

Even though the libwidefloat types appear to be
IEEE754-compliant from a programmer’s perspective, their
encoding is an ad-hoc one and does not respect the provisions
of the IEEE754 Standard on extended precision types [1].

The libwidefloat software has provision for all five
IEEE754 exception flags (inexact, invalid, overflow, underflow
and division-by-zero) as well as for all four IEEE754 rounding
modes (round-to-nearest-ties-to-even, round-down, round-up,
round-towards-zero) [1]. The software can be configured at
compile time in a way that allows this FP state, made of the
flags and the rounding-mode, to be either

• held in a global variable,

6see e.g. https://gcc.gnu.org/onlinedocs/gcc/Restricted-Pointers.html
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• passed as a handle to any of the libwidefloat
functions or

• omitted, assuming round-to-nearest as the rounding-mode
and setting no flags.

The code is written in a way such that the compiler is able
to eliminate all unnecessary computation steps that are not
required when no flags are to be set and the rounding mode
is statically set to round-to-nearest.

Currently, libwidefloat includes 1303 functions cover-
ing the following types of operations:

• Conversion between all combination of libwidefloat
types. The up-conversions are exact, the down-
conversions are correctly rounded.

• Conversion from and to the IEEE754 binary32 and
binary64 formats [1]. These conversions are correctly
rounded and signal all required exceptions, in particular
inexact when rounding is necessary. These exceptions
are signaled in and the rounding mode is taken from
the FP environment of the type the conversion con-
verts to. For instance, when converting from IEEE754
to libwidefloat, rounding is done according to the
libwidefloat rounding mode and not the IEEE754
one.

• Conversion from and to signed and unsigned integer
types. These conversions are provided in all variants
(signaling inexact or not, taking the rounding mode from
an immediate or from the FP state) that are defined by
the IEEE754 Standard.

• Rounding to integral as defined by the IEEE754 Stan-
dard [1].

• Signaling and quiet comparisons, returning the compari-
son result as a enumerated type [1].

• Homogeneous-type absolute value and negation opera-
tions. The heterogeneous variants, where the operands’
type differs from the one of the result can be provided
through composition with a conversion operation [1].

• Operations to access the libwidefloat FP environ-
ment with respect to flags and rounding modes.

• And finally, addition, Subtraction, Multiplication, Divi-
sion, Fused-Multiply-And-Add (FMA) and Square Root
with correct rounding. All these operations are provided
in a homogeneous variant, where all operands and the
result have the same type and in all heterogeneous
variants, where the result is of a smaller type, such that
all correctly rounded heterogeneous operations required
by IEEE754 can be provided through composition with
the conversion operations [1].

V. ARITHMETICAL ALGORITHMS USED IN
libwidefloat

There is no real novelty in the algorithms used in
libwidefloat. In order to manage the combinatorial ex-
plosion due to support for the 16 formats covering the preci-
sions from 32 to 512 bits in homogeneous and heterogeneous
operations, the final rounding step towards any of the sup-
ported formats has been factored into final rounding functions.
These final rounding functions receive an intermediate result

that has undergone already some rounding with respect to the
mathematically exact result.

We shall hence explain the techniques used for intermediate
and final rounding first, before detailing the algorithms behind
multiplication, addition, FMA, division and square root.

Let us just note that libwidefloat also contains conver-
sion functions from and to integer and the IEEE754 binary32
and binary64 formats. These conversions have been coded in
ad-hoc ways, which are not described inhere.

A. Intermediate and Final Rounding

In order to provide correct rounding ◦(y) = ◦(f(x)) for
a function f , an intermediate result ỹ must be computed
in such a way that ◦(ỹ) = ◦(y) [16]. For all operations
supported by libwidefloat, computing such an approx-
imation ỹ is pretty easy: it is either possible to compute
the exactly representable result f(x) (multiplication), or to
compute a good approximation together with a flag indicating
inexactness. Indeed, for division and square root, the backward
error can be exactly computed and compared to zero to yield
the inexactness predicate. For addition and FMA, it is just
necessary to control the part of the significand that gets
discarded during the alignment shift.

However, when computing the approximation ỹ out of
the exact result or a better approximation assorted with an
inexact indication, pure truncation is not enough. Such a
rounding scheme would suffer from the so-called double-
rounding issue [16], [17].

In order to overcome the double-rounding issue,
libwidefloat uses rounding to odd for the intermediate
results ỹ. This particular rounding mode is due to Boldo
and Melquiond [17] and can be though of as a intermediate
rounding longer than final precision where the last few
additional bits represent the classical round, guard and sticky
bits [18].

B. Multiplication

As already stated, multiplication in libwidefloat is
based on an exact multiplication of the input significands,
considered to be integer. At the current state of the library
development, naı̈ve schoolbook multiplication using O(n2)
machine multiplications is used. The partial products are first
represented in a carry-save format and then reduced [19].

The use of Karatsuba or Toom-Cook Multiplication [16] is
left for future work but might prove necessary.

C. Addition, Subtraction and Fused-Multiply-Add

When implemented in software, Floating-Point Addition
and Subtraction reduce to the same algorithm. The FMA
operation can also share this part of code; the only difference
is in whether one of the arguments to addition comes directly
from one of the operands or from an intermediate exact
product.

The core algorithm for addition and subtraction used in
libwidefloat is a classical one [16], [18] and very simple:
after reordering of the FP operands for exponent, the signifi-
cand of the lesser operand is shifted right for alignment, unless
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this shift would be larger than the output precision. The aligned
significands are then added resp. subtracted. A normalization
step then ensures correct construction of a FP significand in
the case of elimination for subtractions. In software, due to
overhead in branching and code bloat, it is sensible to run that
normalization step in any case and not to distinguish between
a near-path and a far-path.

D. Division and Square Root

The algorithms for division and square root are both
based on an approximation to 1/

√
z in libwidefloat. We

compute division x/y as x/(
√
y)2 and square root

√
x as

x× 1/
√
x.

An approximation to 1/
√
x can easily be computed using

the Newton-Raphson iteration

yn+1 = yn ·
1

2
·
(
3− x · y2n

)
seeded with a small table for y0 [16]. In libwidefloat we
use a 6 bit approximation for y0.

In an extended-precision software environment, it is useful
not to perform the Newton iteration on software-simulated FP
variables but purely on integer variables, using a fixed-point
representation. We use this approach in libwidefloat.
However, we chose to generate that code sequence instead
of writing it manually in order not to have to determine all
alignment shifts in that fixed-code point by hand.

VI. EXPERIMENTAL RESULTS

Our current implementation of libwidefloat provides
1303 user-available functions. We have tested it for perfor-
mance against MPFR 3.1.2-p3 based on GMP 6.0.0. We used
gcc 4.9.2 on a 64bit Linux system featuring a 4 core Intel
i7-5500U running at 2.4 GHz. The optimization level was set
to -O3.

There is no one-to-one relation between the functions pro-
vided by libwidefloat and those provided by MPFR. We
therefore do not give performance results per function. We
rather wrote two benchmark applications and compiled them
against both libwidefloat and MPFR. The first bench-
mark application consists of a LU-decomposition, triangular
system solving and residue computation. The second one uses
secant’s method to approximate the zero of a high-degree
polynomial.

All benchmark codes were run in all precisions supported
by libwidefloat and compared to MPFR, which was run
at the same precisions. While we focused on performance
testing, we also compared the actual numerical results of
libwidefloat and MPFR. On all benchmark codes and
all precisions, the results were bitwise identical between both
libraries, as expected, given that both libraries provide correct
rounding.

We ran our LU-decomposition, triangular system solving
and residue benchmark for matrix sizes 1000 × 1000. The
matrices and respective right-hand sides were filled with
random IEEE754 binary64 values between −107 and 107.
The time needed to allocate and free the different vectors and
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Figure 1. Experimental results: Linear Algebra
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Figure 2. Experimental results: Expression Evaluation

matrices was included in the performance testing. Matrix and
vector-allocation for MPFR required calling the MPFR initial-
ization procedures for each element of the matrix resp. vector;
libwidefloat was not burdened by this requirement.

The results of the LU-decomposition benchmark are given
in Figure 1. They show that libwidefloat performs well
better than MPFR for small precisions but that starting with
precisions around 224 bits, the use of Karatsuba-multiplication
helps in keeping MPFR’s timings low while libwidefloat
exhibits quadratic behavior. We shall address this issue in our
library in future releases.

In our second benchmark, we used secant’s method to
approximate a zero of a polynomial of degree 150 up to
the accuracy that was achievable within the given compute
precision (which we made vary for the test.) The polynomial
was input as an expression tree and evaluated using a recursive
algorithm. This example is typical for numerical Computer
Algebra Systems, such as Sollya7 or Sage8.

As shown with Figure 2, for that second expression-
evaluation benchmark, libwidefloat typically performed
better with respect to MPFR. However, our library is still

7see http://sollya.gforge.inria.fr/
8see http://www.sagemath.org/
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hindered by the use of a naı̈ve multiplication algorithm for
precisions higher than 320 bits.

VII. CONCLUSION AND FUTURE WORK

The libwidefloat software fills the gap between
IEEE754 binary64 (or binary128 where available) and arbi-
trary precision libraries, which involve a certain amount of
overhead in the mid-precision range. Our library leverages
modern compilers’ optimization techniques, such as constant
propagation, code inlining and dead code elimination, to
achieve this goal.

At the current state, libwidefloat supports all basic op-
erations, like e.g. addition, FMA, square root or comparisons.
Development is ongoing: we are working on a C++ wrapper
to allow for an easy drop-in-replacement of the IEEE754
binary64 format by libwidefloat formats. Further, we
plan to use GNU’s printf/scanf extension techniques to
allow for easy input/output operations with libwidefloat.
The development of the elementary intrinsic functions like the
exponential, the logarithm or the trigonometric operations is
also part of future work.

Experimentally, we see that libwidefloat’s perfor-
mance still needs some improvement in the range between 256
and 512 bits. The current implementation of the library lacks
sufficient performance due to the use of a naı̈ve (schoolbook)
multiplication algorithm. We shall extend the library to use
the Karatsuba or Toom-Cook multiplication algorithms in that
higher precision range.
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