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Abstract

In this paper we address the problem of constructing high-order implicit time
schemes for wave equations. We consider two classes of one-step A-stable schemes
adapted to linear Ordinary Differential Equation (ODE). The first class, which is not
dissipative is based upon the diagonal Padé approximant of exponential function. In
this class, the obtained schemes have the same stability function as Gauss Runge-
Kutta (Gauss RK) schemes. They have the advantage to involve solution of smaller
linear system at each time step compared to Gauss RK. The second class of schemes
are constructed such that they require the inversion of a unique linear system several
times at each time step like the Singly Diagonally Runge-Kutta (SDIRK) schemes.
While the first class of schemes is constructed for an arbitrary order of accuracy,
the second class schemes is given up to order 12. The performance assessment we
provide shows a very good level of accuracy with very reduced computational costs
for both class of schemes. But diagonal Padé schemes seem to be more accurate and
more robust.

1 Introduction
The solution of wave propagation problems in electromagnetics, acoustics and elasto-
dynamics has found important applications in many areas of engineering and science
such as geophysics (seismic imaging), medicine (medical imaging), aerospace (radar),
and telecommunication (antenna design, optical fibers). This wide range of applica-
tions has led to the development of many computational techniques for solving the
partial differential equations (PDEs) governing wave propagation problems.

High-order finite element methods (FEM) have now demonstrated their strong
capability for solving wave equations ([1], [2],...). In particular, they are well suited
for considering complex geometries and heterogeneous media. The implementation
of FEM requires to introduce an artificial boundary which is represented with an
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Absorbing Boundary Condition (ABC) or a Perfectly Matched Layers (PML). In prac-
tice, ABCs or PMLs are easier to handle when the wave equation is formulated as a
first-order (in space and time) system as we consider herein (as in [1]). After space
discretization, the obtained ODE can be discretized either with explicit or implicit
time schemes. Explicit time schemes are very popular since they generate algorithms
both cheap in memory and highly scalable. However, for stability purposes the time
step is restricted by the size of the smallest element in the mesh and by the degree
of the polynomials used in the FEM. As a consequence, even few small elements can
make the maximal value of the time step (known as the Courant-Friedrichs-Lewy or
CFL condition) so small that the computational cost becomes prohibitive.

A nice work has been done in [3] to increase the CFL, especially for high-order
space approximations. The idea consists in applying a specific discretization in space
in a way that the eigenvalues of the discrete matrix are modified leading to a max-
imal CFL number. Other works propose local time-stepping techniques ([4], [5]) in
order to have globally explicit schemes and a reduced computational cost with only
few elements having a small time step. Another approach consists in applying glob-
ally implicit time-stepping techniques with unconditionally stability (Dahlquist’s A-
stable property [6]). This approach seems attractive especially for 1-D and 2-D sim-
ulations. But in the context of realistic applications (3-D heterogeneous media), it
seems quite difficult to use a globally implicit time integration for wave equations
due to the size of the linear system to be solved at each time step. This is why more
recent investigations ([7], [8], [9]) deal with locally implicit schemes which provide
methodologies involving the solution of linear systems only set on a small part of
the computational domain. To ensure good levels of accuracy, such approach must
involve time-integration schemes, whether explicit or implicit, which show robust-
ness properties. For wave equations, robustness is characterized by dispersion and
dissipation effects. In this work, we investigate implicit time-stepping techniques
with the view of constructing very high-order unconditionally stable time discretiza-
tion schemes, with low-dispersion and low-dissipation errors. By this way, we can
dispose of high-order numerical methods that are increasingly relevant for practical
applications involving wave equations. In fact, in the literature such time schemes
seem not to be common beyond fourth-order.

Implicit Runge-Kutta schemes are very popular. They have the main advantage
to be one-step schemes which do not need initialization schemes. Thus, this frame-
work is mainly focused on the construction of high-order A-stable one-step methods.
Linear multi-step schemes have not been considered because A-stable linear multi-
step schemes are at most second-order schemes (known as the second Dahlquist’s
barrier [10]). We did not explore multi-derivative multi-step schemes. Nevertheless,
we have found some interesting investigations on these schemes in [11] in which the
author propose schemes up to order 5.

There are two main classes of implicit Runge-Kutta which are A-stable: Gauss
Runge-Kutta schemes ([6]) that can be written at any order and some Singly Diago-
nally Implicit Runge Kutta (SDIRK) schemes that have been constructed up to order
5 ([6], [12], [13], [14]). Gauss Runge-Kutta schemes have the main drawback of re-
quiring the solution of a very large linear system (the size increasing with the order
in time), whereas SDIRK schemes require the solution of a unique linear system but
the extension to higher order is not easy.

In this work, we are concerned with the solution of linear Ordinary Differential
Equation (ODE) of the form

y′(t) = Ay(t) + f(t)

where A is a linear operator. We consider one-step schemes adapted to this class
of ODE. We study schemes based on the diagonal Padé approximant of exponential
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(see [15]). In [16], these schemes are detailed for fourth-order. In this work, we have
written them for order 2m, m ∈ N∗. It turned out that these schemes are equivalent
to Gauss Runge-Kutta schemes. The main advantage of Padé schemes lies in the
fact that they involve the solution of m successive linear systems of size N instead
of solving a large system of size m×N with Gauss Runge-Kutta algorithm, m being
the number of stages and N being the number of unknowns. In order to have a
”fair” comparison with SDIRK schemes, we have developed schemes that require
the inversion of the same linear system several times and that can be used only
for linear ODEs. We called these schemes Linear-SDIRK. They are constructed by
approximating the exponential with a fraction containing a unique pole (as initially
studied in [17]). By adding extra-stages, we construct Linear-SDIRK up to order 12.
It is possible to construct higher-order by adding more extra-stages. These schemes
seem attractive when the memory is a critical issue (e.g. when a direct solver is
used).

This paper is organized as follows. In Section 2, we describe the problem we are
solving. In Sections 3 and 4 we present two classes of schemes that we are interested
in: the diagonal Padé schemes and Linear-SDIRK schemes. We propose an efficient
approach to implement them. In particular, for inhomogeneous ODEs, to address the
implementation of the source field, we provide a method to correctly approximate the
right hand side without losing the order of the schemes. An analysis of dispersion
and dissipation is done to compare the developed schemes. Finally, these schemes
are compared in 1-D and 2-D in Section 5 for the wave equation discretized with
high-order finite elements using the C++ code Montjoie [18].

2 Preliminaries statement
2.1 General setting
We consider the following Ordinary Differential Equation (ODE)Mh

dX(t)

dt
+KhX(t) = F (t) t ∈ (0, T ]

X(0) = X0

(1)

obtained after spatial discretization, where Mh is the mass matrix and Kh is the
stiffness matrix. As usual h denotes the mesh size. F (t) is a source term obtained
after discretizing the continuous source term in space and X0 is the initial condition.
In the subsection 5.1, it is detailed how this ODE is obtained in the case of the
solution of wave equations. Let t0 < t1 < · · · < tN−1 < tN , N ∈ N be a uniform grid of
the time interval [0, T ]:

tn = n∆t

where ∆t is the time step. The analytical solution to (1) after one step is given by

X(tn+1) = e∆tA

(
X(tn) +

∫ ∆t

0

e−uAM−1
h F (n∆t+ u) du

)
, (2)

where A = −M−1
h Kh.

The numerical solution can then be constructed by approximating the exponen-
tial, i.e. finding R such that

e∆tA ≈ R(∆tA).

Herein R is a rational function where both the numerator and denominator are poly-
nomials of ∆tA. The numerical schemes studied in this paper will consist of comput-
ing a sequence Xn, which is an approximation of the analytical solution X(tn), with
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the following numerical scheme:

Xn+1 = R(∆tA)Xn + φ̃n (3)

where φ̃n is an approximation of the following quantity:

φ̃n ≈ R(∆tA)

∫ ∆t

0

e−uAM−1
h F (n∆t+ u) du

R is called the stability function of the corresponding numerical scheme and its sta-
bility region is defined as

S = {z ∈ C such that |R(z)| <= 1}.

In fact, since the analytical solution is stable if and only if

|e∆tz| = |e∆tRe(z)| ≤ 1, ∀z ∈ sp(A),

where sp(A) represents the spectrum of the matrix A, the same condition must be
satisfied by R for the numerical solution to be stable. For this reason the spectrum
of A must be included in the negative half plane (sp(A) ⊂ C−). We then recall the
following definition of Dahlquist’s A-stability condition [6].

Definition A numerical scheme, whose stability region satisfies

S ⊃ C− = {z ∈ C, Re(z) ≤ 0} (4)

is called A-stable.

Let us define the stability function as:

R(z) =
N(z)

D(z)
, ∀z ∈ C−,

where N(z) and D(z) are polynomials of z. As shown in [6], the corresponding nu-
merical scheme is implicit when the degree of D is greater than one otherwise the
numerical scheme is explicit. Since the A-stable requirement excludes rational func-
tions that tend towards infinity when z tends to infinity, the degree of D must be
greater or equal to the degree of N . In this work, we limit our-selves to the case
where the degrees of D and N are equal and we will focus on two cases:

• D(z) has distinct poles : we will choose the best rational approximation of the
exponential known as the Padé approximation. The obtained schemes will be
called Padé schemes. These schemes are detailed in Section 3, the numerator
N and denominator D are given in (17).

• D(z) has only one pole : we will construct the ”best” approximation of the ex-
ponential satisfying the A-stable property. The obtained schemes will be called
Linear-SDIRK schemes. These schemes are detailed in Section 4.

The second case deserves a particular interest because it induces the factorization of
a unique linear system, whereas the first case implies to compute the solution to sev-
eral linear systems. The stability function for Padé schemes is the same as the stabil-
ity function for Gauss-Runge-Kutta schemes (see [6]). Gauss-Runge-Kutta schemes
handle non-linear ODEs, whereas Padé schemes can be seen as a simplification of
Gauss-Runge-Kutta schemes in the case of a linear ODE. The second case (Linear-
SDIRK schemes) is well-known for non-linear ODEs as Singly Diagonal Runge-Kutta
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schemes (SDIRK). That is why we call them ”Linear-SDIRK” since the constructed
schemes will only apply to linear ODE.

Introducing C = ∆tA, we define R(C) = [D(C)−1]N(C) as an approximation of eC

of order p (eC = R(C) + O(∆tp+1)) and we assume that D(C)−1 is well defined. The
analytical solution (2) can then be written as

D(C)X(tn+1) = N(C)X(tn) + φ, (5)

where

φ = N(C)

∫ ∆t

0

e−uAM−1
h F (n∆t+ u) du+O(∆tp+1). (6)

For homogeneous ODEs (F (t) = 0), it follows from (6) that φ = O(∆tp+1). Then, the
numerical solution (3) satisfies

D(C)Xn+1 = N(C)Xn (7)

For inhomogeneous ODEs, i.e. F (t) 6= 0, we need to compute the quantity φ.
However the integral in the expression (6) of φ is tedious to compute. We will rather
compute the following equivalent quantity obtained from (5):

φ = D(C)X(tn+1)−N(C)X(tn) (8)

Finally, we propose the following numerical scheme:

D(C)Xn+1 = N(C)Xn + φn (9)

where φn is an approximation of φ (up to a term in O(∆tp+1)). By using a Taylor

expansion of X(tn) and X(tn+1) around the time tn+
∆t

2
and using derivatives of the

equation (1), we are able to compute φn in the following form:

φn =

m∑
r=1

Ar−1∆tr
nw−1∑
i=0

ωri F (tn + ∆t ci) (10)

where m is the degree of the polynomial N or D and nw is a number that depends on
the scheme. This procedure will be detailed in subsections 3.2.2 and 4.6 for the two
types of studied schemes.

2.2 Numerical dissipation and dispersion

For time dependent problems, especially acoustic problems, a
consistent, stable and convergent high order scheme does not
guarantee a good quality numerical wave solution.

Christopher K. W. Tam and Jay Webb [19]

A numerical scheme is dispersive if the numerical solution and exact solution
have different phase speed while it is dissipative if they have difference in amplitude.

Following the analysis in [14] we present the explicit expression for the ampli-
tude (dissipation) and phase (dispersion) errors of the numerical scheme knowing
its stability function R. To illustrate the dissipation and dispersion effects we will
consider the following linear test equation

y′ = iλy, y(t0) = y0 and λ ∈ R. (11)
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At each step of discretization, the numerical solution then reads

yn+1 = R(iz)yn, (12)

where z = λ∆t. The exact solution to the test equation (11) is given by

yn+1 = eizyn (13)

The dispersion and dissipation errors can be measured by considering the ratio be-
tween the exact amplification factor (Re = eiz) and numerical amplification factor
(R(iz)).

Therefore, we define the dissipation and dispersion error, after each step, as fol-
lows:

Definition The leading dissipation error of a numerical scheme applied to (11) is
measured by the function

ψ(z) = |R(iz)| − 1, (14)

and the leading dispersion error of a numerical scheme applied to (11) is measured
by the function

Φ(z) := arg

[
eiz

R(iz)

]
= z − arg[R(iz)]. (15)

It is clear that a non-dissipative and non-dispersive scheme should ensure |R(iz)| = 1
and Φ(z) = 0.

Remark In the previous definition, the function Φ is called the homogeneous dis-
persion. The dispersion error introduced by the homogeneous dispersion is linear in
time and causes the numerical solution to become out of phase with respect to the
exact solution. We refer to [14] for more details. In particular, [14] provides the def-
inition of the error due to the inhomogeneous dispersion. It is constant in time and
negligible regarding the error due to the homogeneous dispersion.

3 Padé Schemes for ODEs
The motivation of this section is to obtain a numerical solution for the ODE (1) using
a Padé approximation of the exponential. Introduced by Henri Padé, Padé approxi-
mation is known to be an accurate approximation of a function by a rational function.
For the exponential function, the general form of this approximation [20] is:

Rr,s(z) =
Nr,s(z)

Dr,s(z)
(16)

where

Nr,s(z) =

s∑
i=0

s! (r + s− i)!
(r + s)! i! (s− i)! (z)

i and Dr,s(z) =

r∑
i=0

r! (r + s− i)!
(r + s)! i! (r − i)! (−z)

i. (17)

By definition Rr,s(z) is an approximation of order (r + s) of ez.
In [15] and [21], Ehle showed that the cases r = s, r = s + 1 and r = s + 2 are

A-stable.
In the following, we will mainly focus our study on the case r = s which corre-

sponds to approximation that are commonly called diagonal Padé approximation to
the exponential function. For convenience we now set r = s = m, m ∈ N and we note:

Rm(z) = Rm,m(z) =
Nm,m(z)

Dm,m(z)
=

Nm,m(z)

Nm,m(−z) .
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3.1 Numerical stability, dissipation and dispersion
From the Theorem 353A in [20] and the fact that |Nm(ib)| = |Nm(−ib)|, ∀b ∈ R, we
have the following result:

Proposition 3.1 The stability function of numerical schemes obtained using the di-
agonal Padé approximation satisfies: ∀z ∈ C−

|Rm(z)| ≤ 1, ∀m ∈ N. (18)

Furthermore, if z = ib, b ∈ R,

|Rm(z)| = 1, ∀m ∈ N. (19)

As a consequence,

• the diagonal Padé schemes are always A-stable,
• the diagonal Padé schemes when applied to the test equation (11) are not dissi-

pative.

Then, the only thing we have to worry about is the dispersion. The dispersion
error can be represented quite faithfully by its Taylor expansion:

z − arg(R(iz))

z
=



z2

12
− z4

80
+O(z6), for m = 1

z4

720
− z6

12, 096
+O(z8), for m = 2

z6

100, 800
− z8

2, 592, 000
+O(z10), for m = 3

z8

25, 401, 600
− z10

869, 299, 200
+O(z12), for m = 4

In Figure 1, we present the relative dispersion error of diagonal Padé schemes from
order 2 to 10. In the x-coordinate, we have chosen to represent

z

m
, because m repre-

sents the computational complexity of the scheme. Indeed, m = 1 corresponds to the
Crank-Nicolson scheme, where only one real linear system must be solved. m = 2 is
a fourth-order scheme where only one complex linear system must be solved roughly
assuming that the solution of a complex systems costs two solutions of a real system.
m = 3 is a sixth-order scheme where one complex and one real linear system must
be solved. The advantage is that we can compare fairly the different orders, we see
clearly that the dispersion error is much smaller with higher order schemes.

3.2 Efficient implementation
3.2.1 Homogeneous case

In the homogeneous case, we consider (7) which is equivalent to

Dm(C)(Xn+1 −Xn) = (Nm −Dm)(C)Xn.

Since Dm(C) = Nm(−C), the polynomial Nm−Dm contains non zero coefficients only
for odd degree. It is then easy to compute the second member (Nm−Dm)(C)Xn using
Horner’s algorithm. We note G = (Nm − Dm)(C)Xn Now we have to solve the real
linear system

Dm(C)(Xn+1 −Xn) = G, (20)
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Figure 1: Dispersion of diagonal Padé schemes of order 2, 4, 6, 8 and 10 when applied to the test equation
(11).
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for each time step.
To perform this, we propose to factorize the polynomial Dm. Letting λk be zeroes

of Dm and Ym = Xn+1 −Xn, we find[
m∏
k=1

(
I − C

λk

)]
Ym = G. (21)

Then we can solve successively the linear systems(
I − C

λk

)
Yk = Yk−1 k = 1, . . . ,m (22)

Y0 = G. (23)

The final result Ym is the desired solution. The next iterate Xn+1 is then obtained
as:

Xn+1 = Xn + Ym

Another way is to use a decomposition of 1/Dm as a sum of fractions with denom-
inators of degree one which will lead to many independent linear systems that is
convenient for parallelization [22].

Using the algebraic properties ofDm, we can optimize the computation algorithm.
Indeed, when the degree m of the polynomial Dm is even, all its roots are complex
conjugate. We write Dm as a product of second degree polynomial factors. Each
second degree polynomial is the product of first degree polynomials obtained using
complex conjugate roots of Dm:

m/2∏
k=1

(
I − C

λk

)(
I − C

λk

)
Ym = G. (24)

When the degreem is odd, there is only one real root ofDm, other roots being complex
conjugates. The real root λ is treated at the first step, as follows:(

I − C

λ

)
Y0 = G,

(m−1)/2∏
k=1

(
I − C

λk

)(
I − C

λk

)
Ym = Y0.

(25)

We solve the second degree equation using the following algorithm proposed in [16]:

Let λk be a complex root of Dm, ak = − 1

λk
and ak = − 1

λk
. Then we take

P2(C) = (I + akC) (I + akC) = I + 2Re(ak)C + akākC
2.

A partial fraction decomposition of the polynomial P−1
2 (x) =

1

(1 + akx)(1 + akx)
al-

lows to write
P−1

2 (C) = bk(I + akC)−1 + bk(I + akC)−1, (26)

with bk =
ak

ak − ak
. To compute Yk = P−1

2 (C)Yk−1, we can compute

(I + akC)u = Yk−1,

(I + ākC) v = Yk−1,

Yk = bku+ b̄kv.

9



When the iterates Xn are real vectors, we have v = (I + akC)−1Yk−1 = u. As a result,
it suffices to solve only one system, giving the following algorithm:

(I + akC)u = Yk−1,

Yk = bku+ bku = 2Re(bku).
(27)

The case where iterates Xn are complex can be addressed by solving system (24)
or (25) twice, for the real part and imaginary part of G.

3.2.2 Computation of the right hand side (RHS) φ

In the inhomogeneous case (F (t) 6= 0), we need to compute the coefficients ωri involved

in (10). This is done by using the Taylor expansion around tn +
∆t

2
of φ at order

p = 2m. This expansion is completed with the expression (8) that we recall here:

φ = D(C)X(tn+1)−N(C)X(tn) (28)

We introduce the following notations

ρmi =
m! (2m− i)!

(2m)! i! (m− i)! =

(
m

i

)
(2m− i)!

(2m)!
and Ck =

1

k! 2k−1
. (29)

Then, we have:

Nm(z) =

m∑
i=0

ρmi z
i and Dm(z) = Nm(−z). (30)

We perform the Taylor expansion of X(tn+1) = X(tn + ∆t) and X(tn) around tn +
∆t

2

at order 2m. For simplicity we note X(k) = X(k)

(
tn +

∆t

2

)
the k-th derivative of X(t)

with respect to t at tn+
∆t

2
. Recalling that C = ∆tA, we replaceN(C) = Nm(∆tA) and

D(C) = Dm(∆tA) by their expression in (28). After performing the Taylor expansion
it gives

φ =

m∑
i=2p, p∈N

ρmi (∆tA)i
2m∑

k=2q+1, q∈N
Ck∆tkX(k)

−
m∑

i=2p+1, p∈N
ρmi (∆tA)i

2m∑
k=2q, q∈N

Ck∆tkX(k) +O(∆t2m+1).

(31)

To evaluate X(k) we derive (k − 1)-times the following relation

dX(t)

dt
−AX(t) = F (t),

to obtain:

X(k) =

k∑
j=1

Ak−jF (j−1) +AkX(0), (32)

10



where F (j) is the j-th derivative of the function F at point tn +
∆t

2
and F (0) = F (tn +

∆t

2
). Using formula (32) in expression (31) gives:

φ =

m∑
i=2p, p∈N

ρmi (∆tA)i
2m∑

k=2q+1, q∈N
Ck∆tk

k∑
j=1

Ak−jF (j−1)

−
m∑

i=2p+1, p∈N
ρmi (∆tA)i

2m∑
k=2q+2, q∈N

Ck∆tk
k∑
j=1

Ak−jF (j−1)

+ Sm +O(∆t2m+1),

(33)

where Sm is given by

Sm =

m∑
i=2p, p∈N

ρmi

2m∑
k=2q+1, q∈N

Ck(∆t A)k+iX(0)

−
m∑

i=2p+1, p∈N
ρmi

2m∑
k=2q, q∈N

Ck(∆t A)k+iX(0).

(34)

Numerically we have observed that Sm = O(∆t2m+1), ∀m ∈ N. If Sm 6= O(∆t2m+1),
it would mean that the numerical scheme (7) (with F = 0) would be of order lower
than 2m which is in contradiction with the properties of Padé approximant of the ex-
ponential. Actually, this property can be proved giving by this way a demonstration
of the order of the scheme.

Proposition 3.2 For all m ∈ N,

Sm =

2m−1∑
r=2p+1, p∈N

ζmr (∆tA)rX(0) +O(∆t2m+1), (35)

with

ζmr =

min(m,r)∑
i=0

(−1)iρmi Cr−i (36)

Proof Let r be an integer defined by r = k + i. The result comes by developing the
sum (34) and sorting by powers of ∆tA. �

Theorem 3.3 Let ζmr be defined in (36). Then we have

ζmr = 0, r = 2p− 1, 1 ≤ p ≤ m, (37)

which implies that
Sm = O(∆t2m+1). (38)

The proof of the Theorem involves the following lemma:

Lemma 3.4 Let Υm,r be the polynomial defined by

Υm,r(x) =
(−1)r

(2m)! 2r−1
xm(x+ 2)m. (39)

Then
d2m−rΥm,r

dx
(−1) = ζmr , r = 2p− 1, 1 ≤ p ≤ m. (40)
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Proof We use Newton’s binomial formula to develop (39) which yields

Υm,r =
(−1)r

(2m)! 2r−1

m∑
i=0

(
m

i

)
2ix2m−i.

Then we derive this expression (2m− r)-times. It gives

d2m−rΥm,r

dx2m−r (x) =
(−1)r

(2m)! 2r−1

min(m,r)∑
i=0

(
m

i

)
(2m− i)!
(r − i)! 2ixr−i,

which we evaluate at x = −1 to have

d2m−rΥm,r

dx2m−r (−1) =
(−1)r

(2m)! 2r−1

min(m,r)∑
i=0

(
m

i

)
(2m− i)!
(r − i)! 2i(−1)r−i

=
(−1)2r

(2m)! 2r−1

min(m,r)∑
i=0

(
m

i

)
(2m− i)!
(r − i)! 2i(−1)−i

=

min(m,r)∑
i=0

(−1)i
(
m

i

)
(2m− i)!

(2m)!
× 1

(r − i)! 2r−i−1

= ζmr .�

Proof Theorem 3.3 comes from the fact that all odd derivatives of Υm,r(x) equal
zero at x = −1.

In fact, we note that

Υm,r(x) = Υm,r(−x+ 2× (−1)),

which means Υm,r(x) has an axis of symmetry at x = −1. Therefore the odd deriva-

tives of Υm,r are equal to 0 at x = −1. Since r is odd, we obtain that
d2m−rΥm,r

dx2m−r (−1)

is equal to zero which gives ζmr = 0 for r = 2p− 1. �

Applying Theorem 3.3 to (33) implies the following result.

Corollary 3.5 The simplified expression of φ defined in (33) is given by

φ =

m∑
i=2p, p∈N

ρmi (∆tA)i
2m∑

k=2q+1, q∈N
Ck∆tk

k∑
j=1

Ak−jF (j−1)

−
m∑

i=2p+1, p∈N
ρmi (∆tA)i

2m∑
k=2q+2, q∈N

Ck∆tk
k∑
j=1

Ak−jF (j−1) +O(∆t2m+1).

(41)

To achieve the order of accuracy p = 2m we can take k from 0 to 2m−1− i only which
finally gives

φ =

m∑
i=2p, p∈N

ρmi

2m−1−i∑
k=2q+1, q∈N

Ck∆tk+i
k∑
j=1

Ai+k−jF (j−1)

−
m∑

i=2p+1, p∈N
ρmi

2m−1−i∑
k=2q+2, q∈N

Ck∆tk+i
k∑
j=1

Ai+k−jF (j−1)

+O(∆t2m+1).

(42)
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We change indexes in the sum by introducing

r = i+ k − j + 1

We then obtain the following expression:

φ =

2m−1∑
r=1

∆trAr−1
2m−r+1∑

j=1,j−r=2q,q∈Z
∆tj−1F (j−1)

min(m,r−1)∑
i=2p,p∈N

ρmi Cr+j−i−1 −
min(m,r−1)∑
i=2p+1,p∈N

ρmi Cr+j−i−1

+O(∆t2m+1)

(43)

In the sum in j, j has the same parity as r. It means, that if r is even, j will be equal
to 2, 4, 6, ... If r is odd, j will be equal to 1, 3, 5, ... Let us introduce

αrj =


min(m,r−1)∑

i=0

(−1)iρmi Cr+j−i, if j − r ≡ 0[2]

0 otherwise

(44)

When r ≥ m+ 1, we have
αrj = ζmr+j = 0

This induces that the sum in r can be reduced to a sum from 1 to m. Finally, φ is
written as:

φ =

m∑
r=1

∆trAr−1
2m−r+1∑
j=1

αrj−1∆tj−1F (j−1) +O(∆t2m+1) (45)

To illustrate (45), we provide then the expression of φ for two particular values of m:

Fourth-order diagonal Padé scheme The source vector φ for the fourth-
order diagonal Padé scheme (m = 2) reads

φ = ∆t

(
F +

∆t2

24
F (2)

)
−A∆t3

12
F (1) +O(∆t5). (46)

Sixth-order diagonal Padé scheme For m = 3, it is given as

φ = ∆t

(
F +

∆t2

24
F (2) +

∆t4

1920
F (4)

)
−A∆t2

(
∆t

12
F (1) +

∆t3

480
F (3)

)
+A2∆t3

(
1

60
F +

∆t2

480
F (2)

)
+O(∆t7).

(47)

In the current expression of φ, we need to approximate different derivatives of the
function F . Our purpose is now to provide accurate formulas to compute F (j), j ≥ 1.

3.2.3 Numerical approximation of the RHS φ

We consider the following approximation:

2m−r∑
i=0

αri∆t
iF (i) ≈

nw−1∑
i=0

ωri F (tn + ∆t ci) , (48)
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where ci are given points chosen in [0, 1] and ωri represent the weights. We choose
Gauss-Legendre points for ci and wri have to be computed for each r.

Since we have

F (tn + ∆t ci) ≈
2m−1∑
j=0

(
ci −

1

2

)j
j!

∆tjF (j),

(48) can be written as follows

2m−r∑
i=0

αri∆t
iF (i) ≈

2m−1∑
j=0

nw−1∑
i=0

ωri

(
ci −

1

2

)j
j!︸ ︷︷ ︸

=αr
j

∆tjF (j). (49)

We identify ∆tiF (i) in (49) and deduce

nw−1∑
j=0

ωrj

(
cj −

1

2

)i
i!

= bi =

{
αri , if i ≤ 2m− r
0 otherwise

(50)

We define the Vandermonde matrix VDM ∈Mnw
(R) such that

VDMi,j =

(
cj −

1

2

)i
i!

, 0 ≤ i, j ≤ nw − 1.

Knowing ci we evaluate ωri by solving the linear system

VDM ωr = b, (51)

At a first glance, nw = 2m− 1 should be needed to approximate correctly φ. It turns
out that when we choose nw = mGauss-Legendre points, the obtained approximation
φn has the correct order. As a result, we have

nw = m

Finally we replace ci and ωri in (48) to approximate φ in (45). φn is therefore given by

φn =

m∑
r=1

Ar−1∆tr
m−1∑
i=0

ωri F (tn + ∆t ci)

Remark We have observed that Padé schemes with this approximation of φn based
on Gauss-Legendre points are strictly equivalent to Gauss-Runge-Kutta schemes.
Padé schemes can be seen as a different algorithm to compute Xn+1 from Xn. The
advantage of this algorithm is that only systems of size N have to be solved (complex
and/or real) where N is the number of degrees of freedom (i.e. the size of the vector
Xn), whereas Gauss-Runge-Kutta method requires the solution of a system of size
m×N .

Remark The presence of the source does not imply any additional matrix-vector
product with the matrix C = ∆tA. Indeed, the computation of φn is mixed with the
computation of G = (Nm −Dm)(C)Xn such that only the evaluations of F represent
an additional cost of the inhomogeneous case.
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4 Linear-SDIRK methods s+l-stages of (s+1)th order

To be A-Stable, and possibly useful for stiff systems, a
Runge-Kutta formula must be implicit.

R. Alexander 1977 [12]

Historically, the first Runge-Kutta schemes developed were explicit and only of
second order. The need of high order schemes and the apparition of stiff problems led
to the developments of implicit Runge-Kutta schemes using first the Gauss quadra-
ture formula to have order of 2s when a scheme of s stages is used. But this kind
of scheme requires the solution of a large linear system of size s × N (s being the
number of stages and N being the number of unknowns) at each time step which
make this approach quite inefficient.

There is a significant computational advantage in diagonally
implicit formulae, whose coefficient matrix is lower triangular with
all diagonal element equal.

R. Alexander 1977 [12]

To reduce the computational burden, the idea is to construct implicit Runge-Kutta
scheme in which we will have to solve the same linear system of size N with different
right hand sides at each time step. This kind of method is called a Singly Diagonally
Implicit Runge-Kutta (SDIRK) method ([6], [12], [13], [20]).

In this section we will consider a rational polynomial function R(z) which approx-
imates the exponential function and minimizes the error. In order to have the same
linear system to solve, the denominator of R(z) is given by

D(z) = (1− γz)s+l,

where γ is a real positive number and s+l is the number of stages. In this section, we
propose to find the numerator N(z) with the best constant γ satisfying the following
requirements

• The method (3) is A-stable,

• The method (3) is of order s+ 1.

We denote Rls(z) the obtained stability function. By construction, we will have:

ez −Rls(z) = α1 z
s+2 +O(zs+3).

The stability functionRls will be found by minimizing the coefficient α1 under the con-
straints described above. The resulting schemes are called Linear-SDIRK schemes.

Remark The rational polynomial function Rls(z) constructed by this approach will
coincide with the stability function of Singly Diagonal Runge-Kutta (SDIRK) schemes
for low orders (2, 3 and 4). However, this is no longer the case for higher order
schemes. Indeed, from the stability function and by imposing the so-called order
conditions [20], one can try to reconstruct Runge-Kutta coefficients. For higher or-
ders, there are too many order conditions (because of non-linear order conditions) to
be satisfied, such that we are not able to find Runge-Kutta coefficients. This means
that the developed schemes in this section work only for linear ODEs and that is why
we called them Linear-SDIRK schemes.
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The stability function of the (s+ 1)th-order Linear-SDIRK schemes is given by

Rls(z) = 1 + z +
z

2!
+ · · ·+ zs

s!
+

zs+1

(s+ 1)!
+
α1z

s+2 + · · ·+ αs+lz
2s+l+1

(1− γz)s+l .

In this form, Rls has the correct order by construction. It is then sufficient to sat-
isfy the A-stability condition. In the following subsections, we describe the obtained
schemes for l = 0, l = 1, l = 2 and l = 3. In practice (to implement the numerical
scheme), we use the following expression of Rls:

Rls(z) =
N l
s(z)

(1− γz)s+l ,

where the expression of N l
s is given in equations (56), (58), (59) and (60) for respec-

tively l = 0, l = 1, l = 2 and l = 3. In the following, we use Dl
s as

Dl
s(z) = (1− γz)s+l.

4.1 Linear-SDIRK methods s-stages of order s+ 1

In this section we choose l = 0 and we present the constructions of Linear-SDIRK
scheme of order s+ 1 with a minimal number of stages s, s ∈ N.

4.1.1 Order 2

The Linear-SDIRK of order 2 is found for s = 1. Its stability function R0
1(z) is sought

as

R0
1(z) = 1 + z +

z2

2
+

α0z
3

(1− γz) .

Obviously, the associated scheme is of order 2. We have

R0
1(z) =

1 + (1− γ)z +
(

1
2 − γ

)
z2 +

(
α0 − γ

2

)
z3

(1− γz) .

In order to have a A-stable scheme, we need to satisfy at least:

γ =
1

2

α0 =
γ

2
.

As a result, we obtain

R0
1(z) =

1 + z
2

1− z
2

,

which is the stability function of the Crank-Nicolson scheme.

4.1.2 Order 3

To construct a third order Linear-SDIRK scheme with s = 2 and l = 0, we must find
α1, α2 and γ such that:

R0
2(z) = 1 + z +

z2

2!
+
z3

3!
+
α1z

4 + α2z
5

(1− γz)2
.
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As detailed for s = 1, we reduce to the least common denominator to find conditions
on α1, α2 and γ for the third order approximation. We get

α2 +
γ2

6
= 0, (52)

α1 −
γ

3
+
γ2

2
= 0, (53)

1

6
− γ + γ2 = 0. (54)

We compute γ as a solution to (54), and α1 and α2 are deduced from relations (52)
and (53). The obtained stability function is then given by

R0
2(z) =

1 + (1− 2γ)z +
(

1
2 − 2γ + γ2

)
z2

(1− γz)2
.

The two possible choices for γ are 1
2 − 1

2
√

3
and 1

2 + 1
2
√

3
(roots of (54)). The one that

leads to A-stable scheme is γ = 1
2 + 1

2
√

3
. In fact with this choice of γ the modulus of

the asymptote of R0
2(z) when z tends to +∞ satisfies∣∣∣∣ 1

2 − 2γ + γ2

γ2

∣∣∣∣ < 1,

which is a necessary condition to have an A-stable scheme. The other root does not
satisfy this condition. The associated method has the same stability function as the
SDIRK of order 3 obtained by Crouzeix (see [12]).

4.1.3 Order 4

To construct a fourth order Linear-SDIRK scheme with s = 3 and l = 0, we must find
α1, α2, α3 and γ such that:

R0
3(z) = 1 + z +

z2

2!
+
z3

3!
+
z4

4!
+
α1z

5 + α2z
6 + α3z

7

(1− γz)3
.

As previously, we obtain α1, α2, α3 from γ. The parameter γ is solution to

γ3 − 3

2
γ2 +

γ

2
− 1

24
= 0,

which is necessary for the A-stability condition. Only one root of this equation leads
to an A-stable scheme. It is

γ =
1√
3

cos(
π

18
) +

1

2
.

We note the polynomial

P (z) = (1− γz)3

(
1 + z +

z2

2!
+
z3

3!
+
z4

4!

)
= a0(γ) + a1(γ)z + · · ·+ a7(γ)z7.

The numerator N0
3 (z) is then obtained by truncating this polynomial (since the coef-

ficients α1, α2 and α3 are set to cancel the higher order terms):

N0
3 (z) = a0(γ) + a1(γ)z + a2(γ)z2 + a3(γ)z3.

We then have

R0
3(z) =

a0(γ) + a1(γ)z + a2(γ)z2 + a3(γ)z3

(1− γz)3
.
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The stability function of the Linear-SDIRK of order 4 with s = 3 and l = 0 is then
given by

R0
3(z) =

N0
3 (z)

(1− γz)3
.

This scheme has the same stability function as the SDIRK scheme of order 4 obtained
by Crouzeix (see [12]).

4.1.4 General case

Now we present a general method to construct a s-stages Linear-SDIRK scheme of
order s+ 1. Let R0

s be the stability function. We search for R0
s of the form:

R0
s(z) = 1 + z +

z

2!
+ · · ·+ zs+1

(s+ 1)!
+
α1z

s+2 + · · ·+ αsz
2s+1

(1− γz)s .

We note the polynomial P that appears while reducing to the common denominator:

P (z) = (1− γz)s
(

1 + z +
z2

2!
+ · · ·+ zs+1

(s+ 1)!

)
= a0(γ) + a1(γ)z + · · ·+ a2s+1(γ)z2s+1.

The constants αi are chosen to balance higher-order terms of P , i.e.

αi = −as+1+i(γ), i = 1 . . . s.

A necessary condition to obtain A-stable property is that the term in zs+1 vanishes,
that is to say

as+1(γ) =

s∑
i=0

(−γ)i
(
s
i

)
(s+ 1− i)! = 0. (55)

Finally, the numerator of R0
s(z) is given by

N0
s (z) = a0(γ) + a1(γ)z + a2(γ)z2 + · · ·+ as(γ)zs. (56)

We have

R0
s(z) =

N0
s (z)

(1− γz)s .

To ensure the A-stability condition we choose γ as follows: for each γ root of (55), we
compute the asymptote of R0

s(z) when z tends to infinity. If the asymptote is lower or
equal to 1, we look for the roots of the following polynomial equation:

|N(i
√
z)|2 = |D(i

√
z)|2. (57)

If the polynomial equation (57) has no real roots except zero, then the scheme is A-
stable, otherwise the scheme is not A-stable. We present in Table 1, the A-stable
schemes we have obtained.

As presented in Table 1, 6 is the maximal order that we can achieve. In fact,
for s ≥ 6, there is no root γ that leads to a A-stable scheme. Without extra stage
(l = 0), we have retrieved the Linear-SDIRK schemes presented by Burrage [17]. To
get higher order schemes, we need to increase the number of stages. This will be
addressed in the next subsections.
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Table 1: Minimal stage Linear-SDIRK of order s+1 and associated value of γ.

s value of γ comment
1 0.5 -
2 0.788675134594813 -
3 1.068579021301629 -
4 x No A-stable schemes
5 0.473268391258295 -
6 x No A-stable schemes
r ≥ 8 x No A-stable schemes

4.2 Linear-SDIRK methods (s+ 1)-stages of order s+ 1

Here we add one extra stage which corresponds to l = 1. The stability function is
then equal to

R1
s(z) = 1 + z +

z

2!
+ · · ·+ zs+1

(s+ 1)!
+
α1z

s+2 + · · ·+ αs+1z
2s+2

(1− γz)s+1
.

In this case, γ is a free parameter. We note P the polynomial that is involved while
reducing to the common denominator:

P (z) = (1− γz)s+1

(
1 + z +

z2

2!
+ · · ·+ zs+1

(s+ 1)!

)
= a0(γ) + a1(γ)z + · · ·+ a2s+2(γ)z2s+2.

The constants αi are chosen to balance higher-order terms of P , i.e.

αi = −as+1+i(γ), i = 1 . . . s+ 1.

Finally, the numerator of R1
s(z) is given by

N1
s (z) = a0(γ) + a1(γ)z + a2(γ)z2 + · · ·+ as+1(γ)zs+1 (58)

and we thus have

R1
s(z) =

N1
s (z)

(1− γz)s+1
.

The optimization is done by minimizing |α1| under the A-stability constraint. Since
γ is the only free parameter, this constraint imposes that γ belongs to an interval or
a set of intervals. The admissible intervals for γ, for which the schemes are A-stable,
are represented in Table 2. The optimal value of γ that minimizes the error term
|α1| is also provided for each s. We have obtained the same admissible intervals as
Burrage (see [17]).

We see here that we are able to obtain an A-stable scheme of order eight contrary
to the previous section. We have also found a fifth-order A-stable scheme which after
optimization leads to a sixth order scheme.

4.3 Linear-SDIRK methods (s+ 2)-stages of order s+ 1

To obtain higher order Linear-SDIRK scheme we increase the number of stages. Here
we take l = 2 (instead of l = 1 in the previous subsection), and it leads to Linear-
SDIRK schemes with two additional stages:

R2
s(z) = 1 + z +

z

2!
+ · · ·+ zs+1

(s+ 1)!
+
α1z

s+2 + · · ·+ αs+2z
2s+3

(1− γz)s+2
.
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Table 2: Linear-SDIRK of order s+1 with one additional stage

s interval for γ γopt
1 [14 ,∞[ leads to third order
2 [13 , 1.06866] leads to fourth order
3 [0.39434, 1.28057] 0.394337567297407
4 [0.24651, 0.3618]∪ [0.42079, 0.47326] leads to sixth order
5 [0.28407, 0.5409] 0.284064638011799
6 x No A-stable schemes
7 [0.21705, 0.26471] 0.217049743094304
r ≥ 8 x No A-stable schemes

In this case we have two free parameters γ and α1. We let P be the polynomial that
appears while reducing to the common denominator:

P (z) = (1− γz)s+2

(
1 + z +

z2

2!
+ · · ·+ zs+1

(s+ 1)!

)
= a0(γ) + a1(γ)z + · · ·+ a2s+3(γ)z2s+3.

The constants αi are chosen to cancel out higher-order terms of P , i.e.

αi = −as+1+i(γ), i = 2 . . . s+ 2.

Finally, the numerator of R2
s(z) is given by

N2
s (z) = a0(γ) + a1(γ)z + a2(γ)z2 + · · ·+ as+1(γ)zs+1 + (as+2(γ) + α1)zs+2. (59)

We have

R2
s(z) =

N2
s (z)

(1− γz)s+2
.

The optimization is done by minimizing |α1| under the A-stability constraint. Since

Table 3: Linear-SDIRK of order s+1 with two additional stages

s γopt α1opt comment
1 ≤ s ≤ 4 - - No uniqueness
5 0.20394 0.000198393849206349 -
6 - - leads to eighth order
7 0.16688 2.92592592592593 · 10−6 -
8 x x No A-stable schemes
9 0.1419402 2.29828167588584 · 10−8 -
r ≥ 10 x x No A-stable schemes

we have two parameters, this constraint will impose that γ and α1 belong to 2-D
regions. The optimal values of γ and α1 are presented in Table 3. We see here
that we are able to obtain an A-stable tenth-order scheme (versus 8 in the previous
subsection). For 1 ≤ s ≤ 4, we did not find a unique optimal choice for the two free
parameters.
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4.4 Linear-SDIRK methods (s+ 3)-stages of order s+ 1

Following the results obtained in previous subsections, we increase again the number
of additional stages up to l = 3. The stability function is then written as follows:

R3
s(z) = 1 + z +

z

2!
+ · · ·+ zs+1

(s+ 1)!
+
α1z

s+2 + · · ·+ αs+3z
2s+4

(1− γz)s+3
.

We have three free parameters γ, α1 and α2. Like in previous subsections, we
note P the polynomial that appears while reducing to the common denominator:

P (z) = (1− γz)s+3

(
1 + z +

z2

2!
+ · · ·+ zs+1

(s+ 1)!

)
= a0(γ) + a1(γ)z + · · ·+ a2s+4(γ)z2s+4.

The constants αi, i = 3 . . . s + 3 are chosen to compensate higher-order terms of P ,
i.e.

αi = −as+1+i(γ), i = 3 . . . s+ 3.

Finally, the numerator of R3
s(z) is given by

N3
s (z) = a0(γ)+a1(γ)z+a2(γ)z2+· · ·+as+1(γ)zs+1+(as+2(γ)+α1)zs+2+(as+3(γ)+α2)zs+3.

(60)
The stability function reads:

R3
s(z) =

N3
s (z)

(1− γz)s+3
.

The optimization is done by minimizing |α1| under the A-stability constraint. The

Table 4: Linear-SDIRK of order s+1 with three additional stages

s γopt α1opt α2opt

1 ≤ s ≤ 6 - - No uniqueness
7 0.13588 2.76727843915344 · 10−06 −3.45238095238095 · 10−06

8 - - -
9 0.15176 2.4583633958634 · 10−08 −4.31522566939234 · 10−08

10 x x x
11 0.134 1.65054852554853 · 10−10 −2.93702705657071 · 10−10

r ≥ 12 x x x

optimal values of γ, α1 and α2 are presented in Table 4. We see here that we are able
to obtain an A-stable twelve order scheme (versus 10 in the previous section). For
1 ≤ s ≤ 6, we did not find a unique optimal choice for the three free parameters.

Remark There are no A-stable schemes of order 5, 7, 9 and 11 for l equal respec-
tively to 0, 1, 2 and 3. As far as we know, there won’t be any A-stable schemes of
order 13, 15, . . . for l respectively equal to 4, 5, . . . . It can be conjectured that the
maximal order for an A-stable Linear-SDIRK scheme is 2l + 6.

Remark Except the third order scheme obtained for l = 0, a scheme of odd order p
leads to a scheme of order p+ 1 after optimization. That is why only even orders are
represented in Tables 3 and 4.
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4.5 Numerical stability, dissipation and dispersion

By construction, all the Linear-SDIRK schemes presented in this paper are A-stable.
Furthermore, the second order Linear-SDIRK has the same stability function as the
second order diagonal Padé scheme. Both are not dissipative when applied to the test
equation (11) and have the same dispersion error. In Figures 2, 3, 4 and 5, we present
the relative dispersion error (on the left) and the relative dissipation error (on the
right) of diagonal Padé schemes compared to the Linear-SDIRK schemes. In the x-
axis, we have chosen to represent z

m . m represents the computational complexity of
the scheme (see subsection 3.2 for diagonal Padé schemes). For the Linear-SDIRK
schemes of order s + 1, m = s + l is the number of linear systems to be solved to
compute the numerical solution after one step.

Figure 2: Dispersion and dissipation curves of diagonal Padé schemes of order 4 compared with that of the
Linear-SDIRK, when applied to the test equation (11). LS2 − l and LS3 − l represents the s = 2 and s = 3
plus l additional stages Linear-SDIRK of order 3 and 4.
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Remark In the figure 2, the diagonal Padé of order 4 (Pade4), which is not dissipa-
tive, is less dispersive than the Linear-SDIRK schemes. Among the Linear-SDIRK
schemes of order 4, the less dispersive and the less dissipative scheme is the one
obtained for s = 3 and l = 1 (LS3− 1).

Remark In the Figure 3, the diagonal Padé of order 6 (Pade6), which is not dis-
sipative, is less dispersive compared with the Linear-SDIRK schemes of the same
order. Among the Linear-SDIRK schemes of order 6, the less dispersive and the less
dissipative scheme is the one obtained for s = 5 and l = 2 (LS5− 2).

Remark In Figure 4, the diagonal Padé of order 8 (Pade8), which is not dissipative,
is less dispersive than any of the Linear-SDIRK schemes of the same order. Among
the Linear-SDIRK schemes of order 8, the less dispersive and the less dissipative
scheme is the one obtained for s = 7 and l = 3 (LS7− 3).
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Figure 3: Dispersion and dissipation curves of diagonal Padé schemes of order 6 compared with that of the
Linear-SDIRK, when applied to the test equation (11). LS5− l represents the s = 5 plus l additional stages
Linear-SDIRK of order 6.
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Figure 4: Dispersion and dissipation curves of diagonal Padé schemes of order 8 compared with that of the
Linear-SDIRK, when applied to the test equation (11). LS7− l represents the s = 7 plus l additional stages
Linear-SDIRK of order 8.
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4.6 Handling a right hand side term

The stability function of Linear-SDIRK schemes of order s ≥ 2 can be written in the
form

Rls(z) =
N l
s(z)

Dl
s(z)

.

with N l
s(z) and Dl

s(z) defined in the previous subsections. Like in Padé schemes we
introduce

φ = Dl
s(C)X(tn+1)−N l

s(C)X(tn) +O(∆ts+2).
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Figure 5: Dispersion and dissipation curves of diagonal Padé schemes of order 10 compared with that of the
Linear-SDIRK, when applied to the test equation (11). LS9− l represents the s = 9 plus l additional stages
Linear-SDIRK of order 10.
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Polynomials Dl
s and N l

s are represented as follows:

Dl
s(z) =

s+l∑
i=0

Diz
i, N l

s(z) =

s+l∑
i=0

Niz
i.

We perform the Taylor expansion of X(tn+1) = X(tn + ∆t) and X(tn) around tn +
∆t

2

at order s + 1. For simplicity we note X(k) = X(k)

(
tn +

∆t

2

)
the k-th derivative of

X(t) with respect to t at tn +
∆t

2
. We obtain:

φ =

s+l∑
i=0

s+1∑
k=0

(
∆t

2

)k
Ci

k!

(
Di − (−1)kNi

)
X(k) +O(∆ts+2).

Then, we use the relation

X(k)
n =

k∑
j=1

Ak−jF (j−1) +AkXn,

to obtain the following expression

φ =

[
s+l∑
i=0

s+1∑
k=0

Ci+k

2k k!

(
Di − (−1)kNi

)]
X(0)

+∆t

s+l∑
i=0

s+1∑
k=0

k∑
j=1

Ci+k−j

2k k!

(
Di − (−1)kNi

)
∆tj−1F j−1

+O(∆ts+2).

The first term is in O(∆ts+2) because the homogeneous scheme is of order s + 1.
Regarding the second term, we introduce r = i+ k − j + 1 to find

φ = ∆t

s+1∑
r=1

(∆tA)r−1
s+2−r∑
j=1

αr,lj−1∆tj−1F (j−1) +O(∆ts+2)
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where

αr,lj−1 =

min(r−1,s+l)∑
i=0

1

2r+j−i−1(r + j − i− 1)!

(
Di − (−1)r+j−i−1Ni

)
. (61)

We can notice that

αs+1,0
0 = 0

because γ solves Equation (55). It means that the sum over r can be reduced to
r ∈ [1, s] when l = 0. Finally we end up with the approximation

s+1∑
i=0

αr,li ∆tiF (i) ≈
nw−1∑
i=0

ωr,li F (tn + ∆t ci) .

We have chosen a sum from 0 to s+1 instead of s+1−r because the obtained schemes
are more accurate with this choice. It can be noted that the coefficients (αr,li )i>s+1−r
can be chosen freely, they do not affect the order of accuracy. In the same way, the
points ci can be chosen freely. We have made the choice to take the nominal values
for (αr,li )i>s+1−r (as defined by equation (61)) and to take s + l + 1 Gauss-Legendre
points for ci in the interval [0, 1] (nw = s + 1). The weights ωr,li are found by solving
a Vandermonde system as detailed in the Paragraph 3.2.3. φn is therefore computed
by using the formula

φn =

s+l∑
r=1

Ar−1∆tr
s∑
i=0

ωr,li F (tn + ∆t ci) .

4.7 Stable algorithm

For Linear-SDIRK schemes with s+ l ≥ 8, we have observed an instability because of
the very large eigenvalues of the matrix C due to a local refinement for instance. For
s+ l = 7, the scheme is stable but polluted by round-off errors such that it can be less
efficient than fourth-order Linear-SDIRK schemes. Indeed, this instability occurs
because of round-off errors, it does not occur when we are using quadruple precision
arithmetic for example. This instability is due to Hörner’s algorithm. When no source
is present, a stable algorithm consists in factorizing the stability function Rls(z) as
follows

Rls(z) =

 nr∏
k=1

1− z

λk
1− γz

 (
nc∏
k=1

(1− bkz + akz
2)

(1− γz)2

)
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and of using this factorization to get a stable algorithm:

y = Xn

For k=1,...nc

b = y − bk∆tAy + ak(∆tA)2y

Solve (I − γ∆tA)2y = b

End

For k=1,...nr

b = y − ∆tA

λk
y

Solve (I − γ∆tA)y = b

End

Xn+1 = y

We have detailed below the stable algorithm in the case where N l
s has real and com-

plex conjugate roots. These roots are grouped together such that only second-degree
polynomials of A are involved.

When the source term is added, we rewrite φn in the following form:

φn = ∆t

s+l∑
r=1

Qr−1(∆tA)

s∑
i=0

ω̃r,li F (tn + ∆t ci)

where the polynomials Qr−1 are based on the factorization of the numerator N l
s(z)

Q0(z) =

(
1− z

λnr

)(
1− z

λnr−1

)
· · ·
(

1− z

λn1

)(
1− bncz + ancz

2
)
· · ·
(
1− b2z + a2z

2
)
z

Q1(z) =

(
1− z

λnr

)(
1− z

λnr−1

)
· · ·
(

1− z

λn1

)(
1− bnc

z + anc
z2
)
· · ·
(
1− b2z + a2z

2
)

Q2(z) =

(
1− z

λnr

)(
1− z

λnr−1

)
· · ·
(

1− z

λn1

)(
1− bnc

z + anc
z2
)
· · ·
(
1− b3z + a3z

2
)

(1−γz)2z

Q3(z) =

(
1− z

λnr

)(
1− z

λnr−1

)
· · ·
(

1− z

λn1

)(
1− bncz + ancz

2
)
· · ·
(
1− b3z + a3z

2
)

(1−γz)2

· · ·

Qs+l−2(z) =

(
1− z

λnr

)
(1− γz)s+l−1

Qs+l−1(z) = (1− γz)s+l

Let us introduce:

Gr =

s∑
i=0

ω̃r,li F (tn + ∆t ci)
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A stable algorithm is the following one:

y = Xn

For k=1,...nc

b = (∆tA) (ak∆tAy +G2k−1 + bky) +G2k

Solve (I − γ∆tA)2y = b

End

For k=1,...nr

b = y − ∆tA

λk
y +G2nc+k

Solve (I − γ∆tA)y = b

End

Xn+1 = y

5 Numerical results for 1D and 2D wave equations
We are interested in solving the acoustic wave equation formulated as a first order
system. The scalar field u and vectorial field v depend on the space x and the time t
and are solutions to the following boundary value problem:

ρ ∂tu− div v = 0, ∀(x, t) ∈ Ω× R+

µ−1∂tv −∇u = 0, ∀(x, t) ∈ Ω× R+

u(x, 0) = ∂tu(x, 0) = 0, ∀x ∈ Ω (null initial conditions)

u = fD, x ∈ ΓD (Dirichlet condition)

µ∂nu = fN , x ∈ ΓN (Neumann condition)

µ∂nu+
√
ρµ ∂tu = fA, x ∈ ΓA (Absorbing condition)

(62)

where Ω is the computational domain. ΓD, ΓN and ΓA are the boundaries associated
respectively with Dirichlet, Neumann and absorbing boundary condition. n is the
outgoing normal to the considered boundary, ρ and µ are physical indexes, which are
piecewise constant. fD, fN and fA are given source functions.

5.1 Finite element discretization
5.1.1 Finite element spaces and semi-discrete problem

The computational domain Ω is meshed with regular intervals in 1-D and quadrilat-
erals in 2-D. Each element is denoted by Ki:

Ω =
⋃
Ki

The equation (62) is solved with mixed spectral elements (see [1]) with the following
finite element spaces

u(t) ∈ Uh =
{
u ∈ H1(Ω) such that u|Ki ◦ Fi ∈ Qr

}
v(t) ∈ Vh =

{
v ∈ (L2(Ω))d such that v|Ki

◦ Fi ∈ (Qr)d
}
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where d is the dimension, r is the order of approximation, and Qr is the space of
polynomials of degree lower or equal to r in each space variable. In 2-D, Fi is the map
from the unit square K̂ to the element Ki (see figure 6). Gauss-Lobatto points are

(0,0) (1,0)

(1,1)(0,1)

K̂
Fi Ki

A4

A1

A2

A3

Figure 6: Transformation Fi for a quadrilateral.

used both for interpolation and quadrature formulas (see [1]), leading to a diagonal
mass matrix. Let us denote by ϕi the basis functions for u and ψi the basis functions
for v. The obtained semi-discrete system reads:

Dh
dU

dt
+ ShU +RhV = Fu(t)

Bh
dV

dt
−RThU = Fv(t)

(63)

where h is the mesh size and T denotes the transpose matrix. We have the following
finite element matrices:

(Dh)i,j =

∫
Ω

ϕiϕj dx

(Sh)i,j =

∫
ΓA

√
ρµϕiϕj dx

(Rh)i,j =

∫
Ω

∇ϕi · ψj dx

(Bh)i,j =

∫
Ω

ψi · ψj dx

The matrices Dh, Bh and Sh are diagonal. The source term is given by:

FU (t) =

∫
ΓN

fNϕdx+

∫
ΓA

fAϕdx

The source term Fv comes from the inhomogeneous Dirichlet condition (if fD 6= 0).
Degrees of freedom associated with Dirichlet condition are not included in the vector
U(t), the associated values fD(xi) provide a source vector Fv. The evolution system
(63) falls in the class of ODEs (1) presented in the general setting.

5.1.2 Solution of linear systems

When using an implicit time-scheme, we need to solve systems of the form:{
β DhU + ShU +RhV = F1

β BhV −RThU = F2

(64)
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where β is a coefficient depending on the time scheme used. The unknown V is
eliminated such as to obtain a symmetric linear system to solve for U :(

β Dh + Sh + β−1 RhB
−1
h RTh

)
U = F1 + β−1RhB

−1
h F2 (65)

The stiffness matrix Kh is given by

Kh = RhB
−1
h RTh

with entries
(Kh)i,j =

∫
Ω

µ∇ϕi · ∇ϕj dx

The system (65) is the same kind of linear system that appears when using θ-schemes
for the second-order formulation of the wave equation. This system is symmetric
positive definite if β is real positive. Moreover, the internal degrees of freedom are
removed (process known as static condensation) to reduce the size of the final linear
system. This final linear system is solved by using a tridiagonal solver in 1-D and
MUMPS (see [23]) in 2-D.

5.1.3 PML layers (2-D)

In order to truncate the 2-D domain, instead of absorbing boundary conditions, we
can use Perfectly Matched Layers (PML). In this paragraph, the efficient implemen-
tation of PML are detailed. More precisely, we consider the following split formula-
tion 

ρ ∂tu1 + σx ρ u1 − ∂xvx = 0

ρ ∂tu2 + σy ρ u2 − ∂yvy = 0

µ−1∂tv + σµ−1v −∇(u1 + u2) = 0

+ homogeneous Dirichlet condition on PML boundaries

where u = u1 + u2 is the physical solution, u1, u2, v are intermediary unknowns.
σx, σy are damping functions, non-null inside the PML, with a parabolic profile (see
[24]):

σx =
3 log 1000

2a3
(x− x0)2 σ vmax

σy =
3 log 1000

2a3
(y − y0)2 σ vmax

where σ is a damping coefficient chosen a priori, vmax is the maximal wave velocity,
x0, y0 are equal to xmin, ymin, xmax, or ymax depending on the layer you are looking
at. In order to have directly the physical field u as unknown, we write the problem
with the two unknowns:

u = u1 + u2

u∗ = u1 − u2

As a result, u, u∗, v are solutions to the following system

ρ ∂tu + ρ

(
σx + σy

2

)
u + ρ

(
σx − σy

2

)
u∗ − div v = 0

ρ ∂tu
∗ + ρ

(
σx + σy

2

)
u∗ + ρ

(
σx − σy

2

)
u − (∂xvx − ∂yvy) = 0

µ−1∂tv + µ−1σ v −∇u = 0
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The unknown u∗ is discretized only inside the PML and is equal to 0 on the external
boundary and the interface between PML and physical domain. The finite element
space for u∗ is the same as u (except that it is reduced to PML region). We usually
take

σ = 2,

in order to have a reflection coefficient around 10−6. The linear system to be solved
in time is given by (we write here the equations without detailing the associated
discrete formulation):

ρ β u + ρ

(
σx + σy

2

)
u + ρ

(
σx − σy

2

)
u∗ − div v = f (66a)

ρ β u∗ + ρ

(
σx + σy

2

)
u∗ + ρ

(
σx − σy

2

)
u − (∂xvx − ∂yvy) = f∗ (66b)

µ−1β v + µ−1σ v −∇u = fv (66c)

u1 and u2 can be reconstructed:

ρ βu1 + ρ σx ρ u1 − ∂xvx =
f + f∗

2

ρ βu2 + ρ σy u2 − ∂yvy =
f − f∗

2

µ−1βv + σµ−1v −∇(u1 + u2) = fv

The first equation is multiplied by β + σy, the second one by β + σx and the two
equations are combined to obtain:

ρ (β + σx) (β + σy)u− div
((

β + σy 0
0 β + σx

)
v

)
= (β + σy)

f + f∗

2
+ (β + σx)

f − f∗
2

Finally v is eliminated and we obtain a single equation in u:

ρ (β + σx) (β + σy)u− div

[(
µ
β+σy

β+σx
0

0 µβ+σx

β+σy

)
∇u
]

=

[
β +

σx + σy
2

]
f +

σy − σx
2

f∗

As a result a symmetric positive definite system needs to be solved for U :

(D̃h + K̃h)U = Fh

where

(D̃h)i,j =

∫
Ω

ρ (β + σx) (β + σy)ϕiϕj dx

(K̃h)i,j =

∫
Ω

(
µ
β+σy

β+σx
0

0 µβ+σx

β+σy

)
∇ϕi · ∇ϕj dx

As a result, the presence of PML does not increase a lot the computational burden
by performing this procedure, since the linear system to be solved does not involve
the intermediary unknowns u∗ or v. The intermediary unknowns u∗ and v are recon-
structed thanks to equations (66b) and (66c)
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5.2 Convergence curves and numerical results in 1-D
The wave equation (62) is solved in 1-D in a homogeneous medium

ρ = µ = 1

in the computational domain Ω = [0, 500]. An inhomogeneous Dirichlet condition is
set on the left extremity

u(x = 0, t) = e−iωt exp

(
−1

2

(
t− T
τ

)2
)

where
ω = 2π, τ =

20

2
√

2 log 2
, T = 100

and a homogeneous Neumann condition is set on the right extremity. In space, mixed
spectral elements of order 16 are used. The computational domain Ω is subdivided
into 500 regular sub-intervals. As a result, we have 16 points per wavelength, which
is rather high, but with this choice, the space discretization error is about 10−12. We
choose [0, 1000] for the time interval. For this case, we can compare the numerical
results with the following analytical solution (before reflection)

uexact(x, t) = eiω(x−t) exp

(
−1

2

(
t− T − x

τ

)2
)

After the first reflection, the solution u will be conjugated.

In Figure 7, we present the relative L2 error between the exact solution and
the numerical solution (obtained with diagonal Padé schemes and Linear-SDIRK
schemes of order 4, 6 and 8) at t = 200. In the x−coordinate we have chosen to rep-

resent
∆t

m
where ∆t is the time step and m is the number of linear systems we need

to solve at each time step for each scheme (see Section 3 for Padé schemes and 4 for

the Linear-SDIRK schemes). The advantage of this choice is that for a given
∆t

m
, the

complexity of the different time schemes is the same.

The obtained convergence curves (Figure 7) show that the diagonal Padé schemes
are more efficient than the Linear-SDIRK of the same order. These curves confirm
the results we have obtained for the dispersion and dissipation curves as shown in
Figures 2, 3 and 4. For the Linear-SDIRK of the same order, we can also see that
the best ones are the LS3− 1, LS5− 2 and LS7− 3, which was also noticeable in the
dispersion and dissipation curves.

To evaluate the efficiency of the schemes regarding the computational times, we
have chosen the best Linear-SDIRK schemes of order 4, 6 and 8. We aimed to one
percent (1%) of relative L2 error which is computed at t = 1000 between the numerical
solution and the analytical solution. We present the computational times needed for
the Linear-SDIRK schemes and the diagonal Padé in Table 5 to reach this error. The
results we obtained confirm that the diagonal Padé schemes are more efficient than
the Linear-SDIRK schemes in 1-D.

5.3 Numerical results in 2D
5.3.1 Results with an absorbing boundary condition

In this paragraph, we consider the scattering of a resonant cavity. The computational
domain Ω is meshed with quadrilaterals (see Figure 8). The external boundary is a
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Figure 7: Relative L2 error between numerical solution and exact solution for t = 200 versus the time step.
Comparison of diagonal Padé and Linear-SDIRK of order 4, 6 and 8. LSs−l represent the s plus l additional
stages Linear-SDIRK of order s+1. The space discretization error is about 10−12.
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Table 5: Computational time after imposing 1% of relative errors (1-D case)

Pade4 LS3−0 LS3−1 Pade6 LS5−0 LS5−1 LS5−2

Number of
time steps

33333 110000 25960 8360 18835 11540 7355

Computational
time

1mn36 5mn23 1mn48s 37s 1mn31 1mn09 53s

Pade8 LS7−1 LS7−2 LS7−3 Pade10 LS9−2 LS9−3

Number of
time steps

3875 5830 4600 3700 2326 3106 2845

Computational
time

24s 46s 43s 38s 17s 34s 34s
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Figure 8: Mesh used for the resonant cavity. At right, detail of the mesh close to the entry of the cavity.

circle of radius 1.5. The internal boundary is a circle of radius 1, the cavity is a circle
of radius 0.5. The circular cavity is linked with the exterior domain by a rectangle of
thickness sin

(
π

180

)
. We have chosen the following physical parameters

ρ =

{
0.8 if

√
x2 + y2 ≤ 1.25

1.0 otherwise
, µ =

{
1.2 if

√
x2 + y2 ≤ 1.25

1.0 otherwise

An homogeneous Neumann boundary condition is set on all the boundaries except at
the external circle. On this circle of radius 1.5, an inhomogeneous absorbing bound-
ary condition is set (corresponding to the scattering by a plane wave):

µ∂nu+
√
ρµ ∂tu = µ∂nu

inc +
√
ρµ ∂tu

inc, on ΓA

where the incident field is given by

uinc = h(t− 1.5− x)

where
h(t) = sin(ωt)e−b(t−T )2

with
ω = 16π, b = 4, T =

√
log(106)

The solution is computed with real numbers (contrary to 1-D results), for a time
interval [0, 10]. The solution is displayed in Figure 9 for t = 2 and t = 10. The
mesh is locally refined close to the points where the solution possesses a singularity
(see Figure 8) with five levels of refinement and a ratio 4. We are using Q10 finite
elements (as detailed previously) such that the error due to the space discretization
is below 10−6. The reference solution is computed on this mesh with ∆t = 0.01 and
eighth-order Padé scheme. By modifying only the time step ∆t (the mesh is always
the mesh of Figure 8), we aimed at reaching a relative L2 error (compared to the
reference solution) below 0.1% for the final time t = 10. In Table 6, the number of
time iterations and the computational time needed to reach this error are given.
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Figure 9: Solution obtained for the scattering of a resonant cavity for t = 2 and t = 10.

Table 6: Computational time after imposing 0.1% of L2 relative error for the scattering of a resonant cavity.

Pade4 LS3−0 LS3−1 Pade6 LS5−0 LS5−1 LS5−2

Number of
time steps

2370 7745 1955 623 1393 856 823

Computational
time

5mn25 21mn17 7mn27 2mn16 6mn27 4mn49 5mn26

Pade8 LS7−1 LS7−2 LS7−3 Pade10 LS9−2 LS9−3

Number of
time steps

297 449 370 911 181 478 481

Computational
time

1mn33 3mn23 3mn13 8mn40 1mn19 5mn05 5mn37

Padé schemes are clearly more efficient for this case. We have observed that
LS7 − 1 is more efficient than LS7 − 3. This is due to the fact that the source term
is not treated in an optimal fashion. We think that by choosing appropriately the
coefficients αr,li and the points ci (free parameters introduced in the section 4.6), it
might be possible to recover a good behavior. To confirm this observation, we have
set an homogeneous absorbing boundary condition and the following initial condition
(instead of 0):

u = exp

(
−7

(x2 + y2)

0.152

)
For the initial condition we find that LS7 − 3 is more efficient than LS7 − 1 as ex-
pected. The comparison results of Linear-SDIRK schemes and Padé schemes are
represented in Table 7. We see that Linear-SDIRK schemes perform well, but they
are less efficient than Padé schemes.

5.3.2 Results with PML

In this paragraph, we show some results when the mesh includes PML layers. The
physical domain is the rectangle [−2.8, 2.8] × [−3.5, 3.5] which is supplemented by
PML layers of thickness 0.3 (for x > 2.8, x < −2.8 and y < −3.5). An array of
circular inclusions (disks of diameter 0.04, represented in green in the figure 10) is
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Table 7: Computational time after imposing 0.1% of L2 relative error with an initial condition.

Pade4 LS3−1 Pade6 LS5−0 LS5−1 LS5−2

Number of
time steps

2500 2059 738 1642 1007 679

Computational
time

5mn31 7mn30 2mn37 7mn38 5mn41 4mn28

Pade8 LS7−1 LS7−2 LS7−3 Pade10 LS9−2 LS9−3

Number of
time steps

381 560 442 365 248 316 298

Computational
time

1mn53 4mn18 3mn49 3mn29 1mn36s 3mn10 3mn17

considered. Two consecutive inclusions are separated by a distance of 0.5. We take

Figure 10: Mesh used for the array of inclusions. At right, detail of the mesh close to an inclusion (in green).

the following physical parameters:

ρ =

{
4.0 if inside an inclusion
1.0 otherwise , µ =

{
0.8 if inside an inclusion
1.0 otherwise

On the top boundary, an inhomogeneous Neumann condition is set

∂nu =

√
α

π
e−αx

2

sin(ωt) e−b(t−T )2 , for y = 3.5

where

α =
log(106)

1.82
, ω = 10π, b = 2, T =

√
2 log(106)

The solution for t = 3 and t = 16 is plotted in figure 11. We are using Q10 finite
elements (as detailed previously) on the mesh of the figure 10 such that the error
due to the space discretization is below 10−6. The reference solution is computed on
this mesh with ∆t = 0.01 and the eighth-order Padé scheme. We aimed at reaching
a relative L2 error (compared to this reference solution) below 1% for the final time
t = 10. In the table 8, the number of time iterations and the computational time
needed to reach this error are given.
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Figure 11: Solution obtained for the scattering of circular inclusions for t = 3 and t = 16.

Table 8: Computational time after imposing 1% of relative L2 error for the scattering of inclusions

Pade4 LS3−1 Pade6 LS5−0 LS5−1 LS5−2

Number of
time steps

1410 1215 438 968 594 524

Computational
time

16mn32 28mn51 10mn47 30mn53 20mn30 20mn57

Pade8 LS7−1 LS7−2 LS7−3 Pade10 LS9−2 LS9−3

Number of
time steps

226 336 280 447 145 295 251

Computational
time

7mn18 15mn20 14mn38 25mn24 4mn59 15mn21 14mn34

The tenth-order Padé scheme is the most efficient for this case. We observe also
that LS7− 3 is not efficient. When we look at the numerical error, we have observed
that it involves high-frequency modes whereas the numerical error for Padé schemes
involves the ”usual” modes.

6 Conclusion
In this paper, we have investigated two different classes of one-step schemes satis-
fying the A-stability property which are Padé schemes and Linear-SDIRK schemes.
For both types of schemes, we have provided a description of the construction at
any order and more importantly how to handle the source term. For Linear-SDIRK
schemes, we have computed the coefficients γ and αi until order 12. An imple-
mentation in Python of these schemes is proposed in the provided files quadra-
ture.py and linear scheme.py. These files can be downloaded at https://www.
math.u-bordeaux.fr/˜durufle/codes.php. The implementation includes sta-
ble algorithms that are robust with respect to round-off errors. This property is
important for high-order schemes when the linear discrete operator has large eigen-
values (which is usually the case when implicit methods are used). Dispersion and
dissipation analyses show that Padé schemes are more efficient than Linear-SDIRK
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schemes. Moreover, they are more robust when the system includes a source term.
Concerning Linear-SDIRK, extra-stages are usually beneficial. For a homogeneous
linear differential equation (without source term), LS3 − 1, LS5 − 2, LS7 − 3 and
LS9 − 2 are more efficient. We think that for higher orders (such as tenth order
schemes), the optimization should take into account the set of coefficients αi and not
only α1 to recover the advantage of extra-stages. Numerical experiments show that
LS3− 0 is much less accurate than LS3− 1, it explains why several works have pro-
posed low dispersive third and fourth order DIRK schemes (e.g. [13], [14], [25]). For
the inhomogeneous case (with a source term), it turns out that LS3 − 1, LS 5 − 1,
LS 7− 2 and LS 9− 2 are more efficient than other Linear-SDIRK schemes.

We think that Linear-SDIRK schemes may be improved in the inhomogeneous
case by choosing appropriate interpolation points ci or coefficients αr,li . Another
prospect is to perform the optimization of Linear-SDIRK schemes with another ob-
jective than minimizing |α1|. We can think about finding the best approximation of
the exponential on a given interval of the imaginary axis, or minimizing the disper-
sion error for example. Our next objective is to construct locally implicit schemes by
using the implicit schemes developed here.
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