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Figure 1: Segmentation of an MRI scan of a malignant tumor in the right hemisphere of the brain. (a) Graph cuts segmentation of the tumor
with annotation to denote tumor (green) and not tumor (purple striped). The segmentation (green contour) misses important tumor structure.
Our alternative path extraction finds a valid alternative segmentation (blue) that includes this structure. (β = 0.6) (b) The uncertainty in the
smoothness term that encodes both the noise and blur in the data and also the ridge of the alternate path. (c) Our fast approximation to the
smoothness stability that still finds all salient uncertainty features. (d) This structure is lost in the min-marginal visualization [KT06]. (e) A
live-wire, partial segmentation of the tumor with an alternative path (blue) on the middle segment (β = 0.1) (f) Our uncertainty visualization
can be applied to both graph cuts and live-wire segmentations, even partial live-wire segmentations as illustrated. Image courtesy of Kyrre
E. Emblem et al [Eea13].

Abstract

This paper presents a novel approach to visualize the uncertainty in graph-based segmentations of scalar data. Segmentation
of 2D scalar data has wide application in a variety of scientific and medical domains. Typically, a segmentation is presented
as a single unambiguous boundary although the solution is often uncertain due to noise or blur in the underlying data as
well as imprecision in user input. Our approach provides insight into this uncertainty by computing the “min-path stability”,
a scalar measure analyzing the stability of the segmentation given a set of input constraints. Our approach is efficient, easy to
compute, and can be generally applied to either graph cuts or live-wire (even partial) segmentations. In addition to its general
applicability, our new approach to graph cuts uncertainty visualization improves on the time complexity of the current state-of-
the-art with an additional fast approximate solution. We also introduce a novel query enabled by our approach which provides
users with alternate segmentations by efficiently extracting local minima of the segmentation optimization. Finally, we evaluate
our approach and demonstrate its utility on data from scientific and medical applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Graphics data structures and data types : I.4.6 [Image Processing and Computer Vision]: Segmentation—Pixel classification

1. Introduction

A driving force in visualization is the effective and faithful com-
munication of data. It is then of no surprise that visualization of

uncertainty in the stages of a scientific workflow has emerged as a
critical research area. In terms of workflow components, segmen-
tation of scalar field data, in particular, has become an indispens-
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able tool. It is a fundamental element for applications in areas such
as geosciences [HBG∗11], material sciences [WZS∗13], biologi-
cal sciences [JM10, BDVJ∗16], and medical imagery [FLBF∗06,
DLD∗15,KMW∗15] to name a few. For example, geoscientists ex-
tract horizons from seismic tomography for oil exploration; neu-
roscientists segment neurons in high resolution microscopy scans
to gain a deeper understanding of the brain; and doctors or techni-
cians segment tumors from patient fMRI scans to plan surgery or
treatment regimens.

Graph-based approaches comprise a popular set of algorithms
for data segmentation. Graph cuts [BVZ01, BK04] and live-
wire [MB98] are two such interactive techniques that are found
in a large number of data manipulation environments. These ap-
proaches produce segmentations as the minimization of an energy
function, yielding a solution where every data point is given a sin-
gle categorization. However, the presence of noise or poor sampling
translates to uncertainty in a segmentation. Moreover, slight pertur-
bations of user input can yield drastically different segmentations
if in areas of instability. Single-categorization approaches hide this
uncertainty from a user, which can bias the insight derived from vi-
sual analysis and lead to significant errors in judgment. For exam-
ple, based on a segmentation a surgeon may conclude that a distinct
tumor boundary exists despite noisy data, leading to poor margins
for excision. In neurobiology, single solutions can hide alternate
interpretations, which can lead to erroneous nerve connections in
neurological pathway mapping.

In this work, we present a new scalar measure, called the “min-
path stability”, which depicts the required cost to shift a segmen-
tation to another local minima of the segmentation optimization
energy. This measure highlights ambiguous configurations where
multiple, sometimes highly distinct, data segmentations are possi-
ble while only being separated by a small energy difference. In ad-
dition to providing fast algorithms for the computation of this mea-
sure, we also present an approach to easily query these alternate
segmentations. We show with practical data-sets how our measure
can provide key insights into the uncertainty of the segmentation
due to, for instance, input noise or imprecision in user inputs.

This paper makes the following new contributions:
• A novel and unified uncertainty measure for graph cuts and live-

wire segmentations;
• An algorithm for uncertainty evaluation in graph cuts segmenta-

tions with lower time complexity than state-of-the-art;
• A novel dynamic shortest path tree algorithm that provides fur-

ther practical speed-ups for the algorithm mentioned above;
• A fast, approximate uncertainty visualization for graph cuts seg-

mentations; and
• A fast algorithm to extract locally minimum distinct alternate

segmentations

2. Related Work

Visualization of uncertainty has emerged as a critical research area,
especially in scientific workflows [BHJ∗14]. For example, there
has been work in quantification or visualization of uncertainty in
an ensemble of segmentations [WZW04, ATHL14b] or isocon-
tours [PWH11, WMK13]. Rather than an ensemble, our work vi-
sualizes the uncertainty of a segmentation given a single set of user

constraints. There has been work on visualization of uncertainty in
graphs, but their primary focus has been on less structured graph
networks [CCP07, LRCP07].

Early work on quantifying the uncertainty in data segmenta-
tion dealt with combining region growing segmentation with edge
detection to determine where there may be poor segmentation
boundaries [Del91]. There has been work on using entropic thresh-
olding [HPD95, SS04] to encode uncertainty for pixel-wise en-
ergy. There has also been work in the visualization of uncer-
tainty in segmentation in the presence of shape and appearance
priors [SHM10]. In our work we target more general graph seg-
mentations without prior knowledge.

For more general segmentations, there has been work in pro-
ducing uncertainty visualizations [SMH10] from the results of
segmentations using a Gaussian mixture model [ZBS01], random
path walking [Gra06], or min-marginal energies [KT06, TA12].
Praßni et al. [PRH10] have shown how the visualization of a
probabilistic field generated by a segmentation from Grady’s ran-
dom walker [Gra06] can provide uncertainty information in a vol-
ume segmentation. While graph cuts and the random walker ap-
proach can be considered as optimizations in a generalized frame-
work [SG07], each targets a different optimization (`1 and `2 re-
spectively). Therefore, these two approaches will produce different
segmentations. In addition, Grady’s random walker requires a free
parameter (called β) that has a significant effect on the segmen-
tation produced. Given these two core differences, the approach
by Praßni et al. [PRH10] cannot be used generally as a stability
metric for graph cuts. Illustrations of such differences are provided
in Fig. 10. Additional approaches [PGA13, ATHL14a] have visu-
alized a measure of the uncertainty of probabilistic segmentations
based on entropy or Kullback-Leibler divergence. Similarly, these
measures are not directly applicable to graph-cut or live-wire seg-
mentations, which are not probabilistic.

Approaches for interactive data segmentation and editing
[HBS∗12, HMTH13] often introduce uncertainty assessments.

This is the case for the software TurtleSeg, which provides sta-
bility metrics in their Spotlight tool [THA10] for live-wire seg-
mentations. As we will detail, in our work we provide a general
approach for both live-wire and graph cuts segmentations. The live-
wire portion of our technique employs a similar concept to Turtle-
Seg’s stability field but with two major differences. First, our tar-
get is the visualization of the stability while their technique uses
the stability field in conjunction with other fields to provide auto-
matic user guidance. Second, their stability field is based on the
euclidean distance of the path geometry from a single edge pertur-
bation while our field is the cost based on the energy function. Our
work therefore encodes where an alternative segmentation would
likely follow, not the instability at a point in the field. Previous
work has constructed a statistically diverse set of graph-cuts seg-
mentations [BYGRS12] with a greedy algorithm. In contrast, our
alternative segmentations are directly obtained as by-products of
our stability measure. Also, they can be generally applied to live-
wire and graph cuts.

Of the previous work, the most apt comparison to our work is
that of Kohli and Torr [KT06] who use min-marginal energies and
successive application of graph cuts to produce their measure of un-
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certainty in a graph cut segmentation. As we will show, our work is
a complementary approach. In particular, the min-marginal energy
is often over-sensitive to the presence of noise and it can result
in an overwhelming visualization. Our approach will encode how
perturbations in the segmentation are effected by noise, leading to
a more intuitive visualization. In addition, our work can be applied
generally to either graph cuts or live-wire and our worst case time
complexity is lower with an additional fast approximation.

3. Background

To perform a segmentation, a graph is first constructed, G = (V,E),
where the nodes V correspond to the pixels in the input scalar field,
p, and the edges E encode all pixel neighbors, (p,q). Segmenta-
tions are then a partition or cut of this graph that induces a labeling
of all nodes in the graph, L. We denote the label of a node p as lp.

Graph Cuts Graph-based segmentation algorithms like graph cuts
produce this labeling by minimizing an objective energy:

E(L) = ∑
p∈V

Ed(p, lp)+ ∑
(p,q)∈E

Es(p, lp,q, lq). (1)

In Eq. 1, Ed is called the data, or likelihood, energy and gives the
cost associated with giving p label lp. Es is called the smoothness,
or prior, energy and denotes the cost of neighbors p and q having
labels lp and lq, respectively. In order for the smoothness energy
to be well-posed, initial label constraints are required either from a
user or by an automated approach to enforce labelings for certain
nodes.

When the number of possible labels in L is greater than 2, min-
imizing the energy has been shown to be NP-hard. Therefore, al-
gorithms such as graph cuts producing a k-labeling, where k > 2,
are an approximate solution. In this work, we target a visualiza-
tion that illustrates the stability of a segmentation only due to the
data and a user’s input. To this, we have chosen to target binary
(Foreground/ Background) segmentation for which the exact solu-
tion can be computed without error added by the underlying algo-
rithm. For binary segmentations, graph cuts is a minimum cut of the
graph but for clarity we adopt the common name, graph cuts (not
to be confused with spectral graph-cuts [SK13]). As discussed by
Praßni et al. [PRH10], binary segmentations are particularly use-
ful in practice, especially for tasks where users isolate features in an
image. Also, as suggested by the same authors, a binary approach
can still be used to iteratively segment multiple features.

The data energy term, Ed , can be any per-pixel, per-label func-
tion, but is typically based on a distance between a pixel color and
some target color for foreground and background. For this work, we
will use the data energy of the work of Li et al. [LSTS04]. We refer
the reader to this work for more details. Given sets of foreground
and background pixels defined by the initial constraints, {CFn } and
{CBm } respectively, for every pixel the distances to these sets are de-
fined as dFp = minn ‖Ip−CFn ‖ and dBp = minm ‖Ip−CBm ‖ where
Ip is the intensity or color of pixel p. Ed is defined as:

Ed(p, lp) =

{
dFp /(dFp +dBp ) lp = F
dBp /(d

F
p +dBp ) lp = B

(2)

for nodes that are unconstrained in application of foreground or

(b)

p q
s

t

(a)

Figure 2: (a) A pixel graph, G used for graph cuts segmentation.
The nodes in the graph can have a per node per label data energy,
Ed . These are encoded in the edges to logical source, s, and target,
t, nodes in the graph. (b) G can also have edges weighted with the
smoothness energy, Es. For a planar graph, a dual graph G∗ can
be used for live-wire, minimum path segmentations.

background labels. For constrained pixels, Ed is 0 for the applied
label constraint and ∞ for other labels. The data energy is stored
on edges from our pixel nodes to two logical source, s, and target,
t, nodes used for the cut. Each logical node is associated with either
the foreground or background labelings (Fig. 2 (a)).

The smoothness energy term, Es, is typically defined for segmen-
tation to maximize the gradient between pixels of differing labels.
For example, two common energies are:

Es(p, lp,q, lq) =

{
1/(‖Ip−Iq‖),or (3)

e−‖Ip−Iq‖ (4)

when lp 6= lq and 0 otherwise. The smoothness energy is applied as
costs to the edges of our graph (Fig. 2 (b)).

The data and smoothness energies are often defined indepen-
dently to optimize the segmentation towards differing target cri-
teria. Therefore for this work, we will decouple their visualization.

Live-wire Graph based segmentations like live-wire build a cut by
the combination of partial segmentations. These partial segmenta-
tions are created by computing minimum paths on a dual graph
G∗. The edges of G∗ are weighted with same smoothness cost on
orthogonal edges in G (Fig. 2 (b)). Like the initial labeling for
graph cuts, nodes are required to be denoted as constraints to pro-
duce a segmentation and are typically provided by a user or added
semi-automatically based on a user’s input. Given k user constraints
given as points or partial boundaries, C∗ = {c∗1 ,c∗2 , ...c∗k } the min-
imization consists of finding the set of k− 1 minimum paths, P∗,
where P∗i j is a minimum path between consecutive constraints c∗i
and c∗j . The optimization then minimizes the following energy:

E(L) = ∑
P∗

i j∈P∗
∑

(p∗,q∗)∈P∗
i j

dualEs(p∗,q∗), (5)

where dualEs(p∗,q∗) is the smoothness energy from G to which
the edge (p∗,q∗) is orthogonal. If c∗1 equals c∗k , then P∗ gives a
contour of a minimum cut of G under the user constraints. We can
consider E(L) in this case to only have a smoothness energy.

Finally, a live-wire approach can provide a segmentation of a
minimal contiguous path of pixels in G. In this case, the procedure

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



B. Summa, J. Tierny, & V. Pascucci / Visualizing the Uncertainty of Graph-based 2D Segmentation with Min-path Stability

is to produce a k− 1 set of minimal paths, P , given a set of user
constraints, C, of size k minimizing some cost. For example,

E(L) = ∑
Pi j∈P

∑
p∈Pi j

‖Ip−I†‖, (6)

produces a path minimally close to some target color, I†. We can
consider E(L) in this case to only have a data energy.

4. Visualizing Segmentation Uncertainty

We now detail our new algorithms to compute a stability measure
of graph-based segmentation for the purpose of uncertainty visu-
alization. We first describe a fast and expressive visualization for
live-wire segmentations based on their minimum path calculations.
We then detail how the same approach can be extended to graph
cuts segmentations and how it can further extend to a fast approx-
imate solution. Finally, we describe how our approach enables the
efficient query of a user-defined number of distinct alternative min-
imum cuts/paths. Pseudocode for the main algorithms are provided
as supplemental material.

4.1. Live-wire Min-path Stability

In this sub-section, we introduce our stability measure for live-wire
segmentations. Finding minimum pixel paths and partial segmen-
tations for live-wire are the same operations on graphs, G and G∗
respectively, and energies, Eq. 5 and Eq. 6 respectively. For sim-
plicity, we will just describe our approach on pixel paths in G.
Computing a minimum path between each pair of consecutive user
constraints, ci and c j , produces the minimal solution. Dynamic pro-
gramming algorithms, like Dijkstra’s algorithm [Dij59], can be run
from one of the constraints in a pair to produce each minimal path
in O(|V| log(|V|)) time. A dynamic programming minimal path
algorithm, in actuality, produces a full minimal path tree from a
constraint to all nodes in the graph. We will refer to the minimum
path tree for constraint ci as Ti. Finding the minimal path between
any node in the graph and the constraint ci is a simple traversal
of the edges of Ti to the root, ci. Let us define this traversal as
path(p,Ti) for some node p. Note that the minimal path between
constraints ci and c j is just path(c j,Ti). If both trees, Ti and T j ,
are computed then we have already pre-computed all possible min-
imum paths that must pass through a new constraint, cb, between ci
and c j for all locations in our image [STP12]. This path is simply:
path(cb,Ti)∪ path(cb,T j).

As part of the dynamic programming solution, there is also a
cost recorded for each node in the tree that denotes the cost of the
minimum path from that node to the constraint, cost(p,Ti). In this
work, we visualize this cost as a stability field, noted S i j:

S i j(p) =
(
cost(p,Ti)+ cost(p,T j)

)
−min∀q∈G

(
cost(q,Ti)+ cost(q,T j)

) (7)

where q is a point that minimizes the sum of the costs to ci and
c j

(
S i j(q) = 0

)
. Intuitively S i j encodes the cost of perturbing the

minimal path through some node in our graph. In other words, S i j

encodes the stability or uncertainty in the optimal solution. Paths
of low value (valleys) in S i j represent alternative minimal paths

Blur

Blur + Noise
Min Cut Residual Min-path Stability

Min-path StabilityMin Cut Residual

Image + User Annotation

Image + User Annotation

Min-Marginal 

Min-Marginal 

(a) (b) (c) (d)

Object

Noise

Figure 3: Synthetic examples made from a grey object. (a) The
rightmost copy has been blurred with a Gaussian filter. Gaussian
noise is additionally added on the bottom. Initial foreground label-
ing is in green. (b) A naive stability measure is the residual of the
minimum cut. Artifacts (erroneous ridges) can be misleading and
the instability of the segmentation due to noise is obscured. (c) Vi-
sualizing the min-marginal energy [KT06] has similar problems.
(d) Our visualization based on min-path stability encodes blur as
thicker bands of uncertainty. Noise is also well represented as a
chaotic "flowering" pattern in the bands.

that are possible from slight changes in the location of user input.
Blur in the data would result in areas of thicker valleys in our field.
Noise would thicken valleys as well, but also be chaotic as the min-
imum paths weave in and out of the noise. This distinction between
smooth and chaotic gives a nice visual separation between uncer-
tainty from the two different sources. Overall, for multiple con-
straints, our min-path stability measure is given by the field S:

S(p) = min∀(i, j)
(
S i j(p)

)
(8)

The computation of S requires O(|C||V| log(|V|)) steps, where C is
the set of constraints in the input path. For visualization purposes,
we invert S, thus high values (ridges) encode higher uncertainty.

4.2. Graph Cuts Min-path Stability

In this sub-section, we extend our approach of stability evaluation
for graph-cuts segmentations. For graph cuts, our approach first
separates the min-path stability measure S for the data and smooth-
ness energies as two separate fields Sd and Ss respectively. Of the
two, Sd is the simplest to construct. Since data energy is often ap-
plied on a per pixel basis, Sd can just be an encoding of the data
energy itself. For example, in our test cases we use the data energy
of Li et al. [LSTS04] and visualize the foreground label energy.
Therefore Sd = dFp /(dFp + dBp ). We invert this field for the final
visualization. Areas of high values in the visualization represent
areas of the image that are likely to be labeled as foreground. Since
this is a per node operation, the complexity of forming Sd is linear.

Regarding Ss, a naive strategy would be to consider the residual
of the minimum cut/maximum flow computation. Areas of uncer-
tainty should coincide with edges in the graph that become satu-
rated during the computation and therefore have low residual val-
ues. One can then construct Ss as the average residual about a node
in the graph. We invert this field to allow high values to represent
high uncertainty in the segmentation. Fig. 3 provides a synthetic
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(b)

High Weight
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Figure 4: Graph cuts uncertainty visualization. (a) Each connected
component of the foreground annotation is considered a separate
cut of our graph creating a logical annulus. (b) Each annulus is
split by the minimum cost path from interior to exterior nodes.
Given a node on the annulus, the minimum segmentation passing
through it is constructed as the union of two minimum paths going
to a split node. The related cost is the basis of our stability measure.

example made from a grey object that has been corrupted with blur
and gaussian noise. As shown in Fig. 3(b), this provides a reason-
able but problematic approach due to artifacts (top: notches in the
bands and ridges between objects and the image boundary). Noise
in the data also overwhelms the visualization. Fig. 3(c) illustrates a
visualization based on min-marginals [KT06,TA12]. This approach
produces a good result for the top row, minus some notches in the
blurred band. However, it is similar to the minimum cut residual
in the presence of noise (bottom): the noise’s effect on the seg-
mentation is obscured by the overwhelming, global noise in the
visualization. In contrast, our approach will present blur in the data
as thickened bands and noise as chaotic, "flowering" bands in the
vicinity of the segmentation boundaries. For the latter, this will only
measure the local noise directly affecting the stability of the seg-
mentation (Fig. 3(d)).

We will now describe our algorithm for the construction of Ss
that leverages minimum path trees, similarly to Sec. 4.1. Given an
initial labeling of foreground or background nodes, we consider
each connected component of this labeling as a cut of our graph
creating cyclic domains of our image (Fig. 4(a)). We will treat each
connected component of the labeling as independent. We do this
both to allow min-path stability to be formulated with a minimum
path approach but also because this mimics the typical user behav-
ior in segmentation. Users tend to label individual objects to be seg-
mented with separate labels. Limitations of this independence are
discussed in Section 6. We construct a set of logical rings, or an-
nuli, from the cyclic domains formed by each foreground connected
component cut, F = { f 1, f 2, ...}. Other foreground ( f j, j 6= i) and
background labels are applied to each f i as areas of high cost
to enforce that segmentations do not pass through labeled areas
(Fig. 4(a)).

We first construct min-path stability for each f i using minimum
path trees after cutting each annulus along a split, being the mini-
mum cost path from the interior nodes of f i to the exterior (Fig. 4

(b)), as proposed by Itai and Shiloach [IS79]. The case where a
foreground label touches the image boundary (collapsed annulus)
is handled by logically extending the image by one pixel and label-
ing the extension as background. The nodes of the split, ni

j ∈ N i,
are replicated, n̂i

j ∈ N̂ i, across the split domain. We call all cuts
that separate the interior of the annulus from the exterior as an an-
nulus segmentation. Paths between each ni

j and n̂i
j define annulus

segmentations and minimum paths between each ni
j and n̂i

j de-
fine a minimum annulus segmentation that must pass through ni

j.
The absolute minimum annulus segmentation is then the minimum
of all these split node segmentations. As proposed by Summa et
al. [SGSP15], we need not just compute paths from these nodes but
full trees from both sides, T i

j and T̂ i
j for split node ni

j. Like our
live-wire example, each tree has both geometry and cost. Let us de-
fine path(p,T i

j ) and cost(p,T i
j ) to be the minimum path and cost

from p to split node ni
j using the minimum path tree T i

j . The cost of
the minimum annulus segmentation for f i that must pass through a
node p is:

minCost(i, p) = min
j
(cost(p,T i

j )+ cost(p, T̂ i
j )) (9)

and the minimum annulus segmentation of f i through p is:

minSeg(i, p) = path(p,T i
j )∪ path(p, T̂ i

j ) (10)

for the j used in minCost(i, p) (Fig. 4(b)). We can record
minCost(i, p),∀p during the construction of T i

j and T̂ i
j ,∀ j. We will

note this minimum cost field as S i
s for annulus f i. To build a unified

visualization for all annuli, we construct a new field Ss :

Ss(p) = mini(S i
s(p)) (11)

We invert this field for visualization to illustrate high uncertainty
with high values. Finally, we enforce the property that segmenta-
tions cannot enclose background labelings by adding the minimum
cost path from each connected component of the background label-
ing to the boundary as high cost in our uncertainty calculation.

This approach computes |F| |N | minimum paths and there-
fore has complexity of O(|F||N ||V| log(|V|)). |F| is typically
small enough to be considered a constant and |N | has a conser-
vative upper bound of

√
|V|. Therefore our time complexity can

be considered to be: O(|V|1.5 log(|V|)). This is lower complex-
ity than the min-marginal procedure that require a brute-force ap-
plication of O(|V|) graph cuts. Using the fastest algorithm for a
graph cuts of a planar graph [STC09], min-marginal’s complexity
is O(|V|2 log(|V|)).

Computational aspects If computed independently, the shortest
path trees can have considerable redundancy as j increments in
the computation of T i

j or T̂ i
j . We report in the appendix (Sec. 7) a

novel and time-efficient dynamic shortest path tree procedure that
avoids redundant computation and adds practical speed-ups to our
approach. Despite this accelerating procedure, the time complex-
ity of this algorithm can still be limiting for usage in an interac-
tive environment. Therefore, we introduce a fast, approximate so-
lution that runs in O(|V| log2(|V|)) steps. Reif [Rei83] shows that
the minimum path computations of Itai and Shiloach [IS79] in the
split annulus cannot cross. Therefore, these paths can be used to di-
vide the domain recursively, lending to a divide-and-conquer to re-
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Figure 5: Alternative Minimum Paths/Cuts procedure for a tree. (a)
For each node in our queue, the path formed by a node is traversed,
from its endpoint to the root, c, or a previously visited node. A run-
ning down count of non-overlapping, υ, (white) and overlapping, ω,
(red) nodes to previously accepted paths are recorded. (b) If a path
is not accepted, its up count is recorded and its nodes are marked
as visited. (c) If the down traversal hits a node previously visited,
the values used for acceptance testing (along with the values from
the other tree) are the down count plus the recorded tuple of the in-
tersecting node. (d) If the path is not accepted, walk down the path
while adding the intersecting node’s values. This process is con-
tinued until an acceptable path is found, i.e. if a non-rejected path
with ratio of overlap to previous paths α = ω/(ω+υ) is lower than
a user threshold β. Then the bookkeeping is reset and re-initialized.

cursively reduce the domain. See Summa et al. [SGSP15] for more
details on the recursion. While not guaranteed to find the actual
minCost(i, p) for all p ∈ G for annulus f i (see Sec. 5), this very ef-
ficient computation still finds the areas of high uncertainty present
in Ss and provides a very good approximate solution.

4.3. Alternative Minimum Paths/Cuts

To this point, we have only been using the cost field of the mini-
mum path trees. As we will show, we can also leverage the geom-
etry (path) information to provide a user with a set of k distinct
live-wire or per-labeling, graph cuts segmentations for the smooth-
ness energy. This will allow a user to define and query a number of
alternative segmentations, k, and a percentage of acceptable overlap
between segmentations, β. In particular, a minimum path is consid-
ered to be accepted if its percentage α of nodes overlapping with
the set AP of previously accepted paths is lower than β. As shown in
Sec. 5, by a user adjusting β our fast extraction of AP is extremely
useful to find k alternative segmentations.

Live-wire Given a minimum path between two user constraints ci
and c j and their minimum path trees Ti and T j, the pair of con-
straints is associated with a min-path stability measure S i j (Eq. 7).
First, we create a priority queue Q of nodes in G prioritized as-
cending by S i j. Note that the front of Q will be filled with the
nodes of the minimum path. At a high level, our algorithm will
traverse every node p in the queue in ascending cost and will dy-
namically compute the corresponding α value, by traversing each
of the two trees Ti and T j. If p has already been visited previously,
we retrieve its previously computed α value. Otherwise, we tra-
verse path(p,Ti) until it intersects a previously visited node. While
traversing the path we also keep a temporary count of α as illus-
trated in Fig. 5(a) and (b). When an intersection occurs, the count of
overlapping nodes is re-used from the previously computed paths,

as illustrated in Fig. 5(c). If the test path is rejected given the user’s
β, we then traverse path(p,Ti) from the intersection (or root) to
p keeping another count, as illustrated in Fig. 5(d). We then pop a
new node from our queue and continue testing. This continues until
either the queue is empty or an acceptable path is found. If a path
is accepted, it is added to the set AP and the process is restarted.
Even though we need to reset our masks and bookkeeping to pro-
duce the correct solution, Q does not need to be reset since once a
path defined by a node is rejected, it can be shown that it is rejected
forever for an extraction. In our algorithm, for our bookkeeping
we visit each node in the tree at most twice per path extraction.
Therefore, the time complexity of the tree walking algorithm is
O(k|V|+ |V| log(|V|)). If k < log(|V|) then the initial sort domi-
nates the running time; otherwise it is linear per extracted path. k
is typically very small since too many alternate paths can lead to a
cluttered and confusing visualization.

Graph cuts Finding k distinct minimum annulus segmentations for
the smoothness energy in graph cuts segmentations is a similar pro-
cess. Since each path defined in S i

s can come from one of a pair of
trees from any of the split nodes, we must run the above process
and keep the bookkeeping data for each O(

√
|V|) number of trees.

Also in this case, the accepted nodes will not be nicely contiguous
as illustrated in Fig. 5 although the algorithm described will still
compute the correct values. Therefore the algorithm is linear in the
number of nodes per extraction, but only on each individual split-
ting path tree. The time complexity is then O(k|F||N ||V|). Since
we give |N | an upper bound of

√
|V|, assume that |F| is small,

and that k is very small for an interpretable visualization, the ex-
traction has the same complexity as the min-path stability measure
computation: O(|V|1.5).

5. Results

In this section, we provide examples of our new algorithms running
on datasets from scientific and medical applications.

Live-wire Pixel Path Visualization. Fig. 6 illustrates a biomedi-
cal application with a confocal microscopy scan of the surface of
a surgically removed prostate. For quality of life concerns, doctors
and technicians would like to find and quantify the amount of nerve
tissue removed during surgery. Nerves appear as faint lines of high
luminance in the scan (Fig. 6(a)). With a minimum pixel path trac-
ing, users can trace these nerves by setting the target color of Eq. 6
to be the maximum luminance value and adding constraints to the
perceived start and end of the nerves. For the tracing on the right,
an additional constraint is needed to account for noise in the data
due to extraneous tissue. The minimum pixel paths are illustrated
in red in Fig. 6 (b). In Fig. 6 (c), we show our uncertainty visual-
ization for both tracings. First, the visualization illustrates that the
tracings are located in slightly chaotic bands of high uncertainty
due to the noise and blur in the data. Next, there are many ridges of
high uncertainty therefore the constraints in the configuration will
be highly sensitive to movement. In other words, it would not re-
quire much of a change in the constraint locations for an alternative,
high ridge to become the new path tracing. Finally, the visualization
has a very useful side effect of highlighting the nerve paths in the
neighborhood around the trace. The visualization clearly outlines
the faint nerves in the image. In Fig. 6 (d), using our alternative
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(a) (b) (c) (d)

Figure 6: Confocal microscopy image of a surgically removed prostate gland. (a) Nerve tissue appears as faint bright bands in the image
although with much noise. (b) Using live-wire, a user can trace nerves as minimum paths of high luminance (red) between constraints
(squares). (c) The min-path stability encodes where the paths could have gone. This not only encodes stability of the minimum paths and
alternative paths, but also highlights possible nerves almost imperceptible in the source image. (d) With our approach a user can also extract
alternative minimum paths (orange) to both quantify the stability of the trace and save effort by automatically finding other nerve paths (top
path: β = 0.5, bottom path: β = 0.2). Image courtesy of J. Quincy Brown [Wea16].

(a) (b) (c) (d)

Figure 7: (a) 2-photon microscopy image of a neuron from a
macaque brain. (b) A user can trace two neural paths as minimum
paths of high luminance (red) between constraints (squares). (c)
The min-path stability illustrating the uncertainty of the tracing.
Slight changes of the input can result in a variety of different paths
for the data. (d) Our system allows users to find additional, distinct
minimum paths (left path: β = 0.7; right path: β = 0.8) to both
determine the stability of the trace, and also automatically extract
alternate pathways. Image courtesy of Alessandra Angelucci.

(a)

(c)

(b)

(d)

Figure 8: 2D time-migrated seismic section from the southern
North Sea Silverpit Basin. (a) A horizon trace targeting a low lu-
minance pixel path. The expected horizon (orange arrow) given the
constraints is missed in favor of another (red). (b) Slight perturba-
tion of the right constraint leads to a different trace. (c) The min-
path stability illustrates the sensitivity of the constraints, leading to
either horizon being a likely trace. (d) Our alternative extraction
allows the identification of all horizons in this image (β = 0.2). Im-
age courtesy of The Virtual Seismic Atlas user Simon Stewart.

pixel paths query, the user can automatically find additional poten-
tial nerve paths.

Fig. 7 provides a neurobiology application of our technique with
a 2-photon microscopy image of a neuron from a macaque brain
(Fig. 7(a)). To gain deeper understanding of the brain, neural path-
ways are often traced. Very often this procedure is a manual or

semi-automatic tracing of the paths in 2D. The tracing of the neural
paths is a minimum pixel path tracing with the target color of Eq. 6
set to be the max luminance value. Constraints are set at the neu-
ron and at the ends of the axons. The minimum path is illustrated
in Fig. 7 (b) in red. In addition, in Fig. 7 (c) we provide the un-
certainty visualization for our tracings. The many paths highlight
the instability in the constraint positions and the thickness of the
ridges encode the noise and blur in the data. Finally, all potential
neural paths can be traced between the constraints with our alterna-
tive path extraction algorithm. These are highlighted in Fig. 7 (d)
colored in green where saturation illustrates cost.

Fig. 8 provides a geoscience application of our technique visual-
izing the uncertainty in a horizon extraction in a seismic tomogra-
phy image. Horizons are extracted by minimum pixel path tracing
with the target color of Eq. 6 to be minimum luminance. In Fig. 8
(a), two constraints are added. Given their position, a user would
likely expect to trace the horizon denoted by the orange arrow. The
min-path stability in Fig. 8 (c) shows that the constraint position is
unstable in that either horizon could be traced given a small per-
turbation of the constraints (as shown in Fig. 8 (b), where the right
constraint has been slightly perturbed). Finally, Fig. 8 (d) illustrates
how our alternative path extraction can automatically trace all 4
horizons in the image.

Graph Cuts Visualization. Fig. 9 shows an example of uncer-
tainty in a graph cuts segmentation of a CT image of a liver with
multiple metastases from pancreatic cancer (Fig. 9(a)). A user seg-
ments the image by labeling tumor areas as foreground (green) and
liver as background (purple striped). The energy to be minimized
(Eq. 1) is comprised of data energy from Eq. 2 and smoothness
from Eq. 4. The graph cuts solution is indicated with transparent
green (Fig. 9(b)). Unintuitively, tumors 1 and 2 are lumped into a
single connected component in the segmentation. In addition, tu-
mors 3 and 4 have an ambiguous separation and are almost joined.
Visualizing the data uncertainty field in Fig. 9 (c), we can see that
despite noise, the data energy seems to do an acceptable job of find-
ing the tumors in the data. Our problem tumors blend in the data
uncertainty but not significantly different than other tumors that are
spatially close but segmented correctly. Looking at the min-path
stability measure, we can find the problem (Fig. 9(d)). Tumors 1,2
and 3,4 are linked by very high ridges of uncertainty. Therefore
their ambiguous separation is to be expected in the segmentation.
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(a) (d)
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Min-Marginal - Smoothness Min-Marginal

(e) (f) (g) (h)

Min-path Stability - Smoothness Min-path Stability 
Approx. Smoothness

Figure 9: Tumor segmentation of a CT image of pancreatic cancer with multiple liver metastases. (a) The original image. (b) User annotation
to denote tumor (green) and not tumor (purple striped). The graph cuts solution is provided in transparent green. Note that tumors 1 and 2
are considered a single region despite the user input and the separation between 3 and 4 is not clear cut. (c) The min-path stability for the
data cost shows that the data energy isolates the tumors well but with much noise. More intensity of green denotes a higher likelihood that
the pixel is considered tumor. (d) The min-path stability of the smoothness energy illustrates why there may be problems between 1-2 and 3-4.
More intensity of green denotes a higher likelihood of the segmentation location given the user’s labels. Notice the ridges of high intensity
between the two problem boundaries. (e) Our approximate uncertainty visualization of the smoothness energy. Note that it still illustrates the
major structures. (f) Our alternative segmentation calculation can be used to represent the uncertainty when overlaid on the segmentation
(β = 0.8). (g,h) Comparing to the visualization of the min-marginal energy [KT06] using both data and smoothness or just smoothness. While
the pertinent structure exists, it is far more difficult to distinguish from the background noise in the data. Image courtesy of radRounds.com.
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Figure 10: Random walker segmentation [Gra06] for our liver
example (top). The segmentation produced, whether considering
the foreground as a single or multiple labels or discounting the free
parameter (1) or using the value from the previous work (4000),
bears little resemblance to the graph cuts segmentation of Fig. 9
(b). The uncertainty visualization of Praßni et al. [PRH10] (bot-
tom) provides a good visualization of the random walker’s stability,
but cannot be generally applied to graph cuts.

In Fig. 9 (e) we provide our fast min-path stability approximation,
which captures the salient structure in the uncertainty. In Fig. 9 (f)
our alternative annulus cuts yield segmentations (k = 1 for all tu-
mors; k = 2 for tumors 3 and 4) that are distinct from the graph cut
result. For tumors 1 and 2, their joining is stable even in the alter-
native segmentation and tumor 1 is primarily responsible for this
merge. For tumors 3 and 4, the alternative segmentations in 4 in-
tersect the minimum segmentation that encloses tumor 3, therefore
indicating some instability in their separation. Finally, Fig. 9 (g)
and 9 (h) show the min-marginal visualization of E and Es respec-
tively. Given the abundance of noise artifacts and general chaotic
field of the visualization, the structure explaining our problem ar-
eas is difficult to distinguish and is therefore poorly represented.

Fig. 10 illustrates the significant differences between the ran-
dom walker and graph cuts segmentations for our liver dataset and
its effect on the visualization of Praßni et al. [PRH10]. Even when
optimizing the same energy (Eq. 4 with free parameter = 1) and
treating the foreground either as a single or multiple labels, both
the segmentation and the visualization using the random walker
approach bear little resemblance to the graph cuts segmentation.
Moreover, Fig. 10 illustrates the significant smoothing effect the
random walker’s free parameter has on the segmentation. Here we

Min-path Stability
Smoothness

Min-path Stability
Data

Min-Marginal

(a) (b) (c) (d) (e)

Figure 11: Understanding the uncertainty of a segmentation al-
gorithm by inspecting data and smoothness min-path stability. (a)
A graph cuts segmentation of an MRI with contrast scan of CNS
lymphoma in the left hemisphere of the brain. (b) User annotation
denotes tumor (green) and not tumor (purple striped). The segmen-
tation misses important structure (orange). (c) Min-marginal visu-
alization [KT06] with a combined data and smoothness energies
shows the uncertainty, although it is still unclear what is the cause.
(d) Looking at the min-path stability measure there is uncertainty
in this area that covers the areas missed by the segmentation. (e)
Looking at the data term we can see it is ill defined to include this
area and will need to be adjusted for future segmentations. Image
courtesy of neurosciencecriticalcare.wordpress.com.

show a value of 4000, as suggested in previous work [PRH10].
This parameter is generally uncommon in graph cuts energies. For
these reasons, the visualization of Praßni et al. [PRH10] and our
approach are not interchangeable. Random walker results are based
on a reference implementation (scikit-image) of Grady’s algorithm.

Fig. 11 illustrates how the combination of our data and smooth-
ness fields can be used to understand the behavior of a segmen-
tation. In this example we have a graph cuts segmentation of an
MRI with contrast scan of CNS lymphoma in the left hemisphere
of the brain (Fig. 11(a)). User annotation denotes tumor (green) and
not tumor (purple striped). The graph cuts solution is contoured in
green. Highlighted in orange is important tumor mass missed by the
segmentation (Fig. 11(b)). The data energy for the segmentation is
Eq. 2 and smoothness is Eq. 4. The min-marginal visualization in
Fig. 11 (c) shows the uncertainty in this area but gives no insight
into the cause. If we look at the smoothness min-path stability field
in Fig. 11 (d), some uncertainty in this boundary is due to the thick-
ness of the ridge, but it still captures the extent of the tumor. The
graph cuts solution is contoured in white. Fig. 11(e) provides fur-
ther insight regarding the missing regions (orange circles). In par-
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(a) (b) (c) (d)

Figure 12: Segmentation of craters in a Mars elevation map . (a)
The interior of craters and their exterior are marked with fore-
ground (green) and background (purple striped) constraints re-
spectively. (b) The initial graph cuts segmentation identifies only
one crater. (c) The smoothness min-path stability measure re-
veals the ambiguity of this segmentation result as two independent
craters could have been identified. (d) Our approach enables users
to recover these alternate segmentations. Image courtesy of NASA.

ticular, it shows that this energy is ill defined to capture the problem
areas and thus should be adjusted for the proper segmentation.

Fig. 12 presents an example from an elevation map of Mars. For
such data-sets, the extraction of the geometry of the craters is im-
portant for the understanding of the properties of celestial bodies
hitting the Martian soil, such as their age and origin. Here, the ini-
tial graph cuts segmentation identifies only one crater (Fig. 12(b))
despite the input, whereas the min-path stability clearly reveals the
ambiguity of this segmentation as two independent craters could
have been identified (Fig. 12(c)). Our approach easily enables users
to recover these alternate segmentations (Fig. 12(d)).

Finally, Fig. 1 is an example that shows the generality of our
technique. Fig. 1 shows another tumor segmentation from an MRI
scan of the brain. In Fig. 1 (a) the graph cuts segmentation using the
smoothness energy of Eq. 3, contoured in green, misses some sig-
nificant tumor mass with user annotations to denote tumor (green)
and not tumor (purple striped). Also in Fig. 1 (a), our alternative an-
nulus segmentation can find an alternate path (blue) that encloses
the missing tumor automatically. Fig. 1 (b) shows our smoothness
min-path stability field. It illustrates that the noise and blur in the
underlying data is depicted by chaotic banding and that the ridge
denoting the alternate, correct segmentation can be seen (orange).
We compare this result to our approximate smoothness min-path
stability field in Fig. 1 (c), which shows that the fast approximation
still captures the major structure of the uncertainty. We compare
this visualization to the min-marginal energies in Fig. 1 (d) where
the structure of the alternative segmentation is obscured and diffi-
cult to distinguish from the background noise in the data.

Live-wire Segmentation Visualization. Our work can also be ap-
plied to partial live-wire segmentations (Fig. 1(e)), where we seg-
ment the tumor using Eq. 3 and 5. Like the graph cuts example for
this figure, we can use our alternative path extraction to find the
segmentation (blue) that includes the tumor mass. Fig. 1 (f) shows
the smoothness min-path stability field for the partial segmentation.

Performance We report and compare our performance in Table 1
on C++ implementations running on a system with an 2.8 GHz In-
tel Core i7. All runtimes are in seconds. First, we compare our run-
ning times against the min-marginal approach [KT06] (Tab. 1 (a)
vs (e)). For the latter algorithm, we employed the graph cuts code
by Kolmogorov and Boykov [BK04], which is widely considered
a standard implementation and provides for graph reuse needed by

This Work Min-Marginal

(a) (b) (c) (d) (e) (f)

Stand. [SGSP14] Update Approx. Stand. Reuse

Fig. 1 4.4 0.2 0.3 0.04 78 0.2
Fig. 3a 9 0.6 0.6 0.1 174 0.1
Fig. 3b 7.3 0.8 0.5 0.2 240 2.4
Fig. 9 143.5 53 6.5 2.5 3432 8.7
Fig. 11 2.1 0.2 0.2 0.03 20.2 0.4

Table 1: Performance results in seconds for our example datasets.
For our technique, we provide timings for the standard calculation,
using the calculation cut-off of the previous work [SGSP14], using
our dynamic tree update routine, and our fast approximation. In
addition, we provide the running times for the state-of-the-art min-
marginal calculation [KT06] with and without tree reuse.

(a) (b) (c)

Figure 13: Alternative approaches to visualize our stability field
using (a) color maps motivated by perceptual studies [KRC02] (b)
HDR gamma correction, and (c) isocontours of our stability field.

the min-marginal approach to achieve practical running times, al-
though alternatives could be considered [SK08].

Our lower time complexity algorithm is an order of magni-
tude faster. In addition, we compare our new dynamic shortest
path tree update with previous work that uses a computation cut-
off [SGSP14] (Tab. 1 (c) vs (b)). Our new procedure performs
equivalently or up to an order faster than the previous work. We
also compare our with dynamic update’s performance with the min-
marginal calculation with graph reuse [KT05] (Tab. 1 (c) vs (f)).
Our technique computes a result with comparable or better time
performance. Finally, Tab. 1 (d) shows that our approximate uncer-
tainty visualization provides a very fast solution, even an order of
magnitude faster than our dynamic update routine in some cases.

6. Discussion and Limitations

In this work, we presented a novel approach for the visualization
of the uncertainty of graph-based 2D segmentation. Our approach
is based on the formulation of a new stability measure, called min-
path stability, which, for the first time, can be generally applied
to two popular techniques, graph cuts and live-wire segmentations,
with a single algorithm. As showcased with several real-life data-
sets, this measure highlights the ambiguous configurations where
multiple, sometimes highly distinct, data segmentations are pos-
sible while being only separated by a small energy difference. In
the presence of noise in the input data, this measure will reveal
chaotic ridges, which will get progressively thicker in the presence
of blur. Additionally, our measure will highlight many paths for
sensitive input constraints. Beyond its adaptability, our algorithm
has lower complexity than the current state-of-the-art for graph
cuts only uncertainty, provides a new dynamic shortest path tree
routine, gives a very faster approximate visualization, and allows
a new query on the data to explore alternative segmentations effi-
ciently. As future work, we feel similar approaches can be applied
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Figure 14: Dynamic shortest path tree update from split path node
n j to n j+1 . Subtrees rooted at split path nodes > j are decreased
by the cost of edge (n j+1,n j). Subtrees rooted at split path nodes
≤ j are increased by the cost of edge (n j,n j+1). Dijkstra’s priority
queue is then fed with the decreased nodes on the front between
these two forests.

to other popular medical segmentation approaches such as active
contours [HBG02,CBS∗07,TOC10] and watershed cuts [SKK∗12].

As mentioned in the algorithm description, assumptions that aid
this work have limitations. For instance, we have found that the sep-
aration of the data and smoothness in our visualization is a good as-
sumption given their typically independent formulations. For seg-
mentations where they are intrinsically linked, the separation may
not be clear, although we have not found examples where this is
the case. Furthermore, an interesting direction for future work for
k-segmentations when k > 2 is how to analyze the uncertainty yield-
ing from solver inaccuracies or visualize the multi-dimensional in-
stability . Treating of annuli as separate domains may introduce
a bias into our algorithm. This bias gives greater weight to seg-
mentations that extract individual labels over segmentations that
join several, although the later will still be captured. Finding the
absolute ordering without a complex combinatorial procedure is
an interesting topic for future work. Our alternative segmentation
currently provides results only on the smoothness cost. Extending
this routine to factor in both data and smoothness costs with low
complexity is an area of future work. In addition, if and how these
alternate segmentations can be used intuitively in an interactive en-
vironment is an exciting area for future study. Finally, a natural
future research direction is the extension of this approach to 3D
data, which implies specific challenges in terms of computation,
interaction, exploration and rendering.

Our stability field along with the fields produced by min-
marginals and the random walker are real valued with often of high
dynamic range. To apply more color resolution to areas with high
instability, our system allows a user to threshold high field values
before linear rescaling into byte range. This works well in most in-
stances, but cases like Fig. 8 (c) can appear oversaturated. A change
in colormap is insufficient to account for this large range. Fig. 13
(a) uses a color map motivated by perceptual studies [KRC02].
Another approach to reduce saturation is to apply a HDR compres-
sion technique. See Fig. 13 (b). These techniques by design will
change relative magnitudes of areas of instability in the field and
more study is required on how this data manipulation effects per-
ceived structure. Finally, it is also possible to overlay the contours
of the stability field similar to Praßni et al. [PRH10]. See Fig. 13
(c). While promising, we have found that there are still open ques-
tions for their best use. For example, the ideal number of isocon-

tours is data dependent and has competing requirements in that too
little contours will miss important structure and too many will ob-
scure the underlying image. How best to visualize these fields, es-
pecially in a way that is intuitive for domain users, is an interesting
area of future work.

7. Appendix: Dynamic Shortest Path Tree Update

Given a shortest path tree, T i
j , rooted at split node ni

j, the tree can
be reused in computation of T i

j+1 rooted at ni
j+1 (Fig. 14). First,

consider the minimum split path N (Fig. 4(b)). This path also ex-
ists in T i

j . We can then consider the tree T i
j as a forest where each

subtree is rooted at a split path node and each root is connected
by our split path. This structure can be recorded during the ini-
tial T i

j computation. Consider the forest associated with split nodes
that are greater than j. By moving the root to n j+1 all nodes of
these subtrees will be reduced by the energy cost, δ j+1, of edge
(n j+1,n j) ∈ E . Similarly, subtrees rooted at split path nodes ≤ j
are increased by the energy cost, δ j, of edge (n j,n j+1). Increas-
ing or decreasing the costs in a shortest path tree yields another
valid shortest path tree. Therefore the subtrees that are decreased
exist in T i

j+1 with this reduced cost and can be skipped by the new
tree calculation. Moreover, a portion of the increased subtrees will
not change, save the portions affected by the subtrees that are de-
creased. We can use these properties for an efficient computation.
First, all subtrees with a root ≤ j are increased. Next, all subtrees
with a root > j are decreased. Finally, if using Dijkstra’s algorithm,
our priority queue is then fed with the decreased nodes on the front
between these two forests. This leads to a very efficient update. In
our testing, we have seen this update on a random energy to be
bound by the length of the front, O(

√
|V|). On the random field,

the compute cost was reduced by two orders of magnitude over in-
dependent computation.
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