
HAL Id: hal-01510979
https://hal.science/hal-01510979

Submitted on 20 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A reflexive tactic for polynomial positivity using
numerical solvers and floating-point computations

Érik Martin-Dorel, Pierre Roux

To cite this version:
Érik Martin-Dorel, Pierre Roux. A reflexive tactic for polynomial positivity using numerical solvers
and floating-point computations. The 6th ACM SIGPLAN Conference on Certified Programs and
Proofs (CPP 2017), Jan 2017, Paris, France. pp.90 - 99, �10.1145/3018610.3018622�. �hal-01510979�

https://hal.science/hal-01510979
https://hal.archives-ouvertes.fr

A Reflexive Tactic for Polynomial Positivity
using Numerical Solvers and Floating-Point Computations ∗

Érik Martin-Dorel
IRIT, Université Paul Sabatier

118 route de Narbonne
31062 Toulouse Cedex 9, France

erik.martin-dorel@irit.fr

Pierre Roux
ONERA

2 avenue Édouard Belin
31055 Toulouse Cedex 4, France

pierre.roux@onera.fr

Abstract
Polynomial positivity over the real field is known to be
decidable but even the best algorithms remain costly. An
incomplete but often efficient alternative consists in looking
for positivity witnesses as sum of squares decompositions.
Such decompositions can in practice be obtained through
convex optimization. Unfortunately, these methods only yield
approximate solutions. Hence the need for formal verification
of such witnesses. State of the art methods rely on heuristic
roundings to exact solutions in the rational field. These
solutions are then easy to verify in a proof assistant. However,
this verification often turns out to be very costly, as rational
coefficients may blow up during computations.

Nevertheless, overapproximations with floating-point
arithmetic can be enough to obtain proofs at a much lower
cost. Such overapproximations being non trivial, it is manda-
tory to formally prove that rounding errors are correctly taken
into account. We develop a reflexive tactic for the Coq proof
assistant allowing one to automatically discharge polynomial
positivity proofs. The tactic relies on heavy computation
involving multivariate polynomials, matrices and floating-
point arithmetic. Benchmarks indicate that we are able to
formally address positivity problems that would otherwise be
untractable with other state of the art methods.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Formal methods;
G.1.6 [Numerical analysis]: Optimization

∗ This work has been partially supported by the FAGames project of LabEx
CIMI, the French ANR project ANR-12-INSE-0007 Cafein and the project
SEFA IKKY.

c© ACM, 2017. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CPP 2017:
http://dx.doi.org/10.1145/3018610.3018622

Keywords Coq formal proof, reflexive tactic, multivariate
polynomials, witness verification, SDP solvers, floating-point,
data refinement, Cholesky decomposition

1. Introduction and Motivation
Satisfiability of conjunctions of polynomial inequalities in
the real field is known to be decidable for more than half a
century (Tarski 1951). Although decision algorithms have
been improved since then, their complexity remains daunting,
even for the best ones such as the cylindrical algebraic de-
composition (CAD) (Collins 1975). A practical semi-decision
procedure is offered by relaxing polynomial positivity to sum
of squares (SOS). These SOS constraints can then be encoded
as semidefinite programming (SDP) problems for which effi-
cient optimization algorithms are available (Lasserre 2001;
Parrilo 2003). Unfortunately, these algorithms only compute
approximate solutions which becomes a major obstacle when
it comes to use them as rigorous proof witnesses.

Most state of the art solutions resort to some kind of round-
ing to exact rational solutions. Although this can be a simple
way to obtain formal proofs out of SOS witnesses, those
proofs involve heavy exact computations in the rational field.
This can be dramatically expensive, as the denominators of
the rational numbers may blow up during these computa-
tions. An efficient alternative consists in keeping the approxi-
mate solutions and using floating-point computations while
carefully taking the induced overapproximation into account.
This involves computations with polynomials, matrices and
floating-point arithmetic.

The main contribution of this paper is to demonstrate that
such rigorous proofs can be mechanized in a proof assistant
with nice computation capabilities such as Coq (Coq 2016).
We also identify which mechanisms could be added to Coq in
order to make this kind of rigorous proofs based on floating-
point computations much more efficient.

After the next section describing related work, Section 2
gives a presentation of the main algorithm and some proof
schemes of its correctness. Section 3 presents the data re-
finements that were needed in order to obtain an executable

http://www.cimi.univ-toulouse.fr/
http://dx.doi.org/10.1145/3018610.3018622

version of the previous algorithm. Then, Section 4 details
our tactic that is able to automatically discharge polynomial
inequality goals thanks to the previous programs. Finally,
Section 5 comments the results on some benchmarks and
compares our tactic to other tools while Section 6 concludes.

1.1 Related Work
There have been several works for developing (semi)decision
procedures for nonlinear inequalities in formal proof assis-
tants. Some of them follow the so-called autarkic approach
and perform all the required computations within the prover
itself. Others follow the so-called skeptical approach and del-
egate most of the computations to some external, possibly
unsound yet efficient oracle. In this latter case the prover
only needs to verify the witnesses generated by the oracle, by
using a dedicated algorithm that has been formally verified.

First, let us focus on the HOL Light proof assistant. The
REAL_SOS decision procedure (Harrison 2007) relies on the
CSDP library (Borchers 1999) for semidefinite programming.
It generates a semidefinite programming problem from the
user’s goal, calls CSDP and tries to infer an “exact” solution.
This is done by rounding the approximation solution returned
by the SDP solver to “rational numbers with moderate
coefficients”.

Another decision procedure for the HOL Light proof as-
sistant has been developed as part of the Flyspeck project1:
verify_ineq (Solovyev and Hales 2013). It does not involve
SDP computations but relies on the computation of Taylor
polynomials, using interval arithmetic and bisection. To be
more specific, it uses an external search procedure to pre-
compute a “solution certificate” that is useful to speed-up
the a posteriori verification. These certificates notably de-
scribe how the input domain should be split. Then, the verifi-
cation procedure computes order-1 Taylor-Lagrange enclo-
sures (i.e., with quadratic reminders) using interval arithmetic
and floating-point numbers. Contrarily to REAL_SOS, ver-
ify_ineq supports transcendental functions such as cos and
arctan.

Focusing on the Coq proof assistant, L. Théry has isolated
the HOL-independent code of REAL_SOS that F. Besson
has then integrated in several decision procedures within
the Micromega Coq library (Besson 2006). The approach of
Micromega is the same as that of REAL_SOS: it depends on
CSDP and relies on the Positivstellensatz.

Another decision procedure that is amenable to Coq
formal proof has been developed with a special focus on
certifying SDP problems with empty interior (Monniaux and
Corbineau 2011). This package has been written in Sage and
relies on DSDP (Benson and Ye 2008) and fpLLL2: it can
be viewed as an enhancement of (Harrison 2007)’s approach,
with a better rounding heuristic that takes advantage of the
LLL algorithm (Lenstra et al. 1982).

1 https://github.com/flyspeck/flyspeck
2 https://github.com/fplll/fplll

The Coq.Interval library provides a decision procedure for
nonlinear inequalities with transcendental functions. It has
been developed with a special focus on verifying approxima-
tion errors for univariate expressions, but is also able to solve
quasi-multivariate problems (Martin-Dorel and Melquiond
2016). It follows the autarkic approach and involves floating-
point and interval arithmetic, bisection, and computation of
univariate order-n Taylor polynomials.

Within the Flyspeck project, a decision procedure named
NLCertify has been devised for the Coq proof assistant
(Magron 2014). It relies on the SDPA solver, on an OCaml
backend that generates positivity certificates, and on a Coq
verification procedure that mainly relies on the ring tactic.
NLCertify supports nonlinear multivariate inequalities with
transcendental functions over an hyperbox, but only the
polynomial goals are formally certified currently.

Two decision procedures are available for the PVS proof
assistant: interval (Narkawicz and Muñoz 2013) and
bernstein (Muñoz and Narkawicz 2013). Both rely on
a branch-and-bound algorithm and follow the autarkic ap-
proach. The interval PVS strategy supports transcenden-
tal functions and uses interval arithmetic with rational bounds.
The bernstein PVS strategy relies on a representation of
multivariate polynomials in Bernstein form to easily infer
bounds on them.

It is worth noting that all the above work performing
proofs in exact rational arithmetic may be able to prove
“sharp” inequalities. In contrast, the tactic presented in this
paper will usually only be able to prove inequalities satisfied
within some margin (i.e., inequalities p < q such that
p + ε < q holds for some ε > 0). This is inherent in the
floating-point arithmetic roundings.

2. SOS and Cholesky Decomposition
2.1 Sum of Squares (SOS) Programming
The sum of squares relaxation (Lasserre 2001; Parrilo 2003)
is an incomplete but efficient way to numerically solve
polynomial problems. This section aims at recalling its main
ideas which are required to understand the main contribution
of the paper.

A multivariate polynomial p ∈ R[x] is said to be a sum
of squares when there exist polynomials hi ∈ R[x] such that,
for all x ∈ Rn,

p(x) =
∑
i

h2i (x).

Although not all non negative polynomials are sum of squares,
being a sum of squares is a sufficient condition to be non
negative.

Example 1. Considering p(x1, x2) = 2x41+2x31x2−x21x22+
5x42, there exist h1(x1, x2) = 1√

2

(
2x21 − 3x22 + x1x2

)
and

h2(x1, x2) = 1√
2

(
x22 + 3x1x2

)
such that p = h21 + h22. This

proves that for all x1, x2 ∈ R, p(x1, x2) ≥ 0.

https://github.com/flyspeck/flyspeck
https://github.com/fplll/fplll

Any polynomial p of degree 2d (a non negative polynomial
is necessarily of even degree) can be written as a quadratic
form in the vector of all monomials of degree less or equal d:

p(x) = zTQz (1)

where z =
[
1, x1, . . . , xn, x1x2, . . . , x

d
n

]
andQ is a constant

symmetric matrix.

Remark 1. If the polynomial p is homogeneous, that is if all
its monomials have the same degree 2d (as in Example 1),
then only monomials of degree exactly d are required in the
vector z.

Example 2. For p(x1, x2) = 2x41 + 2x31x2 − x21x22 + 5x42,
according to the above Remark, we can use the vector of
monomials z =

[
x21, x

2
2, x1x2

]T
. We then have

p(x1, x2) = 2x41 + 2x31x2 − x21x22 + 5x42

=

 x21
x22
x1x2

T q11 q12 q13
q12 q22 q23
q13 q23 q33

 x21
x22
x1x2


= q11x

4
1 + 2q13x

3
1x2 + (q33 + 2q12)x21x

2
2

+ 2q23x1x
3
2 + q22x

4
2.

Thus q11 = 2, 2q13 = 2, q33 + 2q12 = −1, 2q23 = 0 and
q22 = 5. Two possible examples for the matrix Q are shown
below:

Q =

2 1 1
1 5 0
1 0 −3

 , Q′ =

 2 −3 1
−3 5 0
1 0 5

 .
The polynomial p is then a sum of squares if and only if

there exist a positive semidefinite matrix Q satisfying (1). A
matrix Q is said positive semidefinite when, for all vectors x,
xTQx ≥ 0. This will be denoted by Q � 0.

Example 3. In the previous example, the first matrix Q is
not positive semidefinite (for x = [0, 0, 1]

T , xTQx = −3).
In contrast, the second matrix Q′ is positive semidefinite as it
can be written Q′ = LTL with

L =
1√
2

[
2 −3 1
0 1 3

]
(then, for all x, xTQx = (Lx)T (Lx) = ‖Lx‖22 ≥ 0).
This gives the sum of squares decomposition of Example 1:
p(x1, x2) = 1

2 (2x21 − 3x22 + x1x2)2 + 1
2 (x22 + 3x1x2)2.

2.2 Semidefinite Programming (SDP)
Given symmetric matrices C,A1, . . . , Am ∈ Rs×s and
scalars a1, . . . , am ∈ R, the following optimization problem
is called semidefinite programming

minimize tr(CQ)

subject to tr(A1Q) = a1
...

tr(AmQ) = am
Q � 0

(2)

where the symmetric matrix Q ∈ Rs×s is the variable and
tr(M) =

∑
iMi,i denotes the trace of the matrix M .

Remark 2. Since the matrices are symmetric, tr(AQ) =
tr(ATQ) =

∑
i,j Ai,jQi,j . The constraints tr(AQ) = a are

then affine constraints between the elements of the matrix Q,
the variable Qi,j being affected the coefficient Ai,j .

Semidefinite programming is a convex optimization prob-
lem for which there exist efficient numerical solvers (Boyd
and Vandenberghe 2004; Vandenberghe and Boyd 1996).

As we have just seen in Section 2.1, existence of a sum
of squares decomposition amounts to existence of a positive
semidefinite matrix satisfying a set of affine constraints, that
is a solution of a semidefinite program. Thus, semidefinite
programming provides an efficient way to numerically solve
problems involving polynomial inequalities, by relaxing them
as sum of squares constraints.

Example 4. The affine constraints computed in Example 2
can be encoded as a semidefinite program with the following
constraints:

tr

1 0 0
0 0 0
0 0 0

Q
 = 2, tr

0 0 1
0 0 0
1 0 0

Q
 = 2,

tr

0 1 0
1 0 0
0 0 1

Q
 = −1, tr

0 0 0
0 0 1
0 1 0

Q
 = 0,

tr

0 0 0
0 1 0
0 0 0

Q
 = 5.

2.3 Parameterized Problems
Up to now, we have only seen how to check whether a given
fixed polynomial p is sum of squares (which implies its non
negativeness). One of the great strength of SOS programming
is to enable to solve problems with unknown polynomials.

An unknown polynomial p ∈ R[x] with n variables and
of degree d can be written

p =
∑

α1+···+αn≤d

pαx
α1
1 . . . xαn

n

where the pα are scalar parameters. The pα then just translate
to additional variables in the resulting SDP problem.

This enables to relax polynomial problems with polyno-
mial constraints.

Example 5. Given two polynomials p and q, to prove that
p(x) ≥ 0 whenever q(x) ≥ 0, one can exhibit a polynomial
σ such that

p− σq ≥ 0 ∧ σ ≥ 0.

Indeed, for any x, if q(x) ≥ 0 then p(x) ≥ σ(x) q(x) ≥ 0.

The reader interested in more details is referred to the
literature (Lasserre 2009; Löfberg 2009).

2.4 Numerical Verification of SOS
2.4.1 Approximate Solutions from SDP Solvers
In practice, the matrix Q returned by SDP solvers upon
solving an SDP problem (2) does not precisely satisfy the
equality constraints. Therefore, although the SDP solver
returns a positive answer for a SOS program, this does not
translate to a valid proof that a given polynomial is SOS. This
section details an incomplete but efficient validation method
to address this issue.

Most SDP solvers start from some Q � 0 not satisfy-
ing the equality constraints (for instance the identity matrix)
and iteratively modify it in order to reduce the distance be-
tween tr(AiQ) and ai while keeping Q positive semidefinite.
This process is stopped when this distance is deemed small
enough.

Therefore, we do not obtain a Q satisfying tr(AiQ) = ai
but rather tr(AiQ) = ai + δi for some small3 εi such
that |δi| ≤ ε. This has a simple translation in terms of our
original SOS problem. The equality constraints tr(AiQ) =
ai correspond to equality between corresponding monomials
of the polynomials p and zTQz. As a result, there exists a
matrix E such that for all i, j, |Ei,j | ≤ δ, with

p = zT (Q+ E) z. (3)

Proof scheme (soscheck_correct in our Coq code).
Just take the matrix E with coefficient

Ei,j :=
(p− zTQz)[zi zj]

#{(i′, j′) | zi′ zj′ = zi zj}

where p[m] stands for the coefficient of monomial m in
polynomial p and #S denotes the cardinal of the set S.
Then, each (p − zTQz)[zi zj] corresponds to some δi and
#{(i′, j′) | zi′ zj′ = zi zj} ≥ 1.

It is worth noting that we cannot trust the value of δ
reported by the solver, as it is just computed in floating-
point arithmetic. However, it is easy to measure as δ :=
maxi |tr(AiQ)− ai|.

2.4.2 A Validation Method
Our goal is now to check that Q+E � 0 which would prove,
along with (3) that p is SOS (and then non negative). To avoid
an exact computation of E, we will rather attempt to prove
the stronger result that for any matrix M whose elements are
bounded by δ, Q + M � 0. Figure 1 gives a geometrical
intuition of this.

The following property then provides a sufficient condi-
tion.

Property 1 (posdef_check_itv_correct in Coq).
For any Q ∈ Rs×s and δ ∈ R, if

Q− sδI � 0,

3 Typically, δ ∼ 10−8.

then for any E ∈ {M | ∀i, j, |Mi,j | ≤ δ},

Q+ E � 0.

Thus, we are left having to prove that a given matrix
Q− sδI is positive semidefinite instead of Q itself. We use
a Cholesky decomposition to do so. Given a matrix M , if
M � 0, the Cholesky decomposition algorithm computes a
matrix R such that M = RTR which proves4 that M � 0. If
M is not positive semidefinite, the Cholesky decomposition
fails by attempting to take the square root of a negative value.
The execution of the algorithm requires Θ(s3) arithmetic
operations.

However, for the sake of efficiency, a floating point
Cholesky decomposition is used, which prevents the ex-
act equality M = RTR. The following theorem gives an
incomplete but efficient method that allows us to conclude
the positive definiteness of a matrix M using an unreliable
floating point Cholesky decomposition of a slightly modified
floating point matrix M̃ .

Theorem 1. (Rump 2006, Corollary 2.4)
(corollary_2_4_with_c_upper_bound in Coq)
Assume a floating-point format F with relative error ε and
absolute error η. For all M ∈ Rs×s, M̃ ∈ Fs×s such that
2(s+ 2)ε < 1, If MT = M , for all i, Mi,i ≥ 0 and

∀i < j, M̃i,j = Mi,j

∀i, M̃i,i ≤Mi,i − c

wherein
c := (s+1)ε

1−(2s+2)ε tr(M) + 4(s+ 1) (2(s+ 2) + maxiMi,i) η,
then if the floating-point Cholesky decomposition of M̃
succeeds we can also conclude that M � 0.

Remark 3. ε and η are constants characterizing the errors
due to normalized and denormalized numbers in the floating-
point format F. For instance, for the IEEE754 (IEEE Com-
puter Society 2008) binary64 format with rounding to near-
est5, ε = 2−53 (' 10−16) and η = 2−1075 (' 10−323). Thus,
the hypothesis 2(s + 2)ε < 1 is always satisfied for practi-
cal values of s. Moreover, for typical values (s ≤ 1000 and
elements of M of order of magnitude 1), c ≤ 10−10. This
is negligible in front of sδ ∼ 1000 × 10−8 = 10−5 which
means that the incompleteness of this positive-definiteness
check is not an issue in practice.

Our matrices Q − sδI are symmetric so the hypothesis
MT = M is always satisfied. Similarly, the hypothesis that
M has a non negative diagonal is always true in practice,
otherwise M would trivially fail to be positive semidefinite.
So according to this theorem, the positive definiteness of
Q− sδI can be established by first checking that its diagonal
is non negative, then computing an upper bound6 of the

4 For any x, xTM x = (Rx)T (Rx) = ‖Rx‖22 ≥ 0
5 Type double in C.
6 For instance using floating-point arithmetic with directed rounding.

{M |M � 0}

{Q+ E }

Q

{
M
∣∣ p = zTM z

}
(a) p is proved SOS.

{M |M � 0}

{Q+ E }

Q

{
M
∣∣ p = zTM z

}
(b) Cannot conclude.

{M |M � 0}

{Q+ E }

Q

{
M
∣∣ p = zTM z

}
(c) Cannot conclude.

Figure 1. To prove that p is SOS, we need to prove that there exists a matrix M � 0 such that p = zTM z, that is to prove that
the subspace

{
M
∣∣ p = zTM z

}
intersects the positive semidefinite cone {M |M � 0}. The SDP solver returns a matrix Q

close from the subspace, i.e., such that the ball {Q+ E | ∀i, j, |Ei,j | ≤ δ} (denoted {Q+ E } on the figure) intersects it. Thus,
proving that this ball is included in the cone, as on (a), enables to conclude. The proof can also fail, either because Q is too close
from the border of the cone (b) or because p is simply not SOS (c).

constant c, subtracting it to the diagonal of our matrix and
applying the floating-point Cholesky decomposition.

Remark 4. The proof of Theorem 1 was already formalized
in Coq in a previous work (Roux 2016). Unfortunately, this
specification was far from an executable program. One
contribution of the present paper is to enable this algorithm
to actually run inside Coq as detailed in the next sections.

To sum up, we designed the following verification method
to prove that a given polynomial p is SOS. Given the approx-
imate solution Q returned by an SDP solver for the problem
p = zTQz,Q � 0:

1. Check that all monomials of the polynomial p are in the
monomial base zT z.

2. Bound the difference δ between the corresponding coeffi-
cients of p and zTQz.

3. Check that Q− sδI � 0.

Step 1 is a purely symbolic computation, step 2 can be
achieved using floating-point interval arithmetic7 in Θ(s2)
operations (the size of Q) and step 3 can be done in Θ(s3)
floating-point operations thanks to the above theorem. Thus,
the whole validation method takes Θ(s3) floating-point op-
erations which in practice constitutes a very small overhead
compared to the time taken by the SDP solver to compute Q.

7 Although we currently use rational arithmetic for this step in our Coq
development, as it appeared cheap enough thanks to the reasonably small
amount of computation involved.

Remark 5 (Incompleteness of the method). Of course, this
method is incomplete (c.f., Figure 1) and may fail to provide
a proof even when a polynomial is actually SOS. The reader
interested in sources of failure (optimization algorithms used
by SDP solvers, failure of strict feasibility, bad conditioning
and floating-point computations in the SDP solver) and
means to mitigate them is referred to a previous work (Roux
et al. 2016).

2.5 Coq Proofs
The Coq proofs of the results presented in this section rely
on the Mathcomp library (Gonthier et al. 2008) for matrices,
on the Flocq library (Boldo and Melquiond 2011) for the
formalization of floating-point arithmetic and on SsrMultino-
mials (Bernard et al. 2016) for multivariate polynomials.

The proofs related to the Cholesky decomposition (step 3)
are borrowed from (Roux 2016) and located in the files
cholesky.v and cholesky_infnan.v whereas the
other proofs (steps 1 and 2) are new and can be found in
the file validsdp.v.

3. Verification of Effective Computation
using Data Refinement

The Coq proofs mentioned in the previous section deal with
an abstract version of the algorithms, which are not suitable
for computation. For instance, Mathcomp’s matrices have
been specifically designed to ease reasoning on them, but one
cannot compute with them as most functions about matrices

do not permit evaluation. So we rely on the CoqEAL library
(Cohen et al. 2013) which has been devised to facilitate the
design and the proof of effective computation, notably for
linear algebra. We thus follow the following methodology
that is typical when using CoqEAL:

• We implement the algorithms in a general way (using
polymorphic functions and Type Classes).

• We specialize the algorithms with proof-oriented data-
types and prove these algorithms correct (this relates to
Section 2.5). This step often requires doing some “pro-
gram refinement”, i.e., proving that the considered algo-
rithm is extensionally equal to a simpler algorithm.

• We specialize the algorithms with effective datatypes and
prove them correct with respect to the proof-oriented
datatypes. This amounts to doing some “data refinement”.

We elaborate on the last step in the rest of this section.
To obtain an effective version of our verification algorithm,

we need to compute with rational numbers, floating-point
numbers, matrices, vectors of monomials and multivariate
polynomials. To this aim, we rely on the following Coq
libraries : (i) The BigQ standard library for efficient rational
numbers (based on machine integers); (ii) The floating-point
kernel of CoqInterval (Martin-Dorel and Melquiond 2016)
for emulating Binary64 floating-point numbers8; (iii) The
CoqEAL library for effective matrices based on lists of
lists; (iv) Lists of binary integers (seq N) for vectors of
monomials; (v) The FMapAVL standard library for efficient
maps (based on AVL trees).

Relying on these datatypes, a major contribution of our
work was to formalize effective multivariate polynomials
using FMaps, and prove them correct with respect to Ssr-
Multinomials, by taking advantage of CoqEAL’s framework.
This formalization can be found in the file multipoly.v.

We also needed to refine proof-oriented rational numbers
(of type rat, which is endowed with a realFieldType
Mathcomp algebraic structure) to effective rationals, and

provide functions to go back and forth between rationals and
floating-point numbers. The diagrams in Figure 2 summarize
the two main properties that are involved in our formal
development. This formalization also led us to develop a
theory of the unit-in-the-last-place for integers in radix 2 (i.e.,
the largest power of 2 that divides a big integer).

4. An Automated Tactic for Verifying
Positivity Witnesses

4.1 Calling SDP Solvers Through an OCaml Module
The main ingredients of the positivity proofs using SOS
polynomials, as described in Section 2, are the vector of
monomial z and the matrix Q computed by the numerical
SDP solvers.

8 Without overflows, although the proofs of Section 2.5 could handle them.

We developed an OCaml library called OSDP9 that han-
dles the work of translating SOS problems to SDP, calling
an SDP solver10, retrieving the result and performing the
verification method of Section 2. The library is composed of
6.2 kloc of OCaml and 1.2 kloc of C code. A Coq module
written in OCaml then uses this library. This module11 only
requires 0.3 kloc of OCaml to read a polynomial from Coq,
call OSDP and translate the resulting z and Q back to Coq
terms. It is worth noting that all this OCaml code and the un-
derlying SDP solvers are only used as untrusted oracles, just
making the main proof ingredients available to the formally
verified Coq tactic discussed in the remainder of this section.
The main advantage of this skeptical approach is to enable the
use of any off-the-shelf solver and easy implementation of ar-
bitrary optimizations in the SOS to SDP translation, without
any risk of jeopardizing the eventual proof soundness.

4.2 Verification of the Witness
The verification of witnesses is performed by a computational
Boolean function soscheck_eff_wrapup whose type is
as follows:

seq R → p_abstr_poly →
seq(seq N) * seq(seq(s_float bigZ bigZ)) → bool

The first two arguments (the list of real variables involved
in the user’s goal and the abstract syntax tree corresponding
to the polynomial under study) will be obtained after the
reification of the user’s goal (c.f., the upcoming section). The
third argument is the witness (z, Q) obtained after calling
the external SDP solver.

It can be noted that we relied on CoqEAL’s approach
for data refinement (see Section 3) on every building block
involved in the definition of soscheck_eff_wrapup.

We then prove the main correctness claim associated to
this function by relying on the previously presented material:

Theorem soscheck_eff_wrapup_correct :
∀(vm : seq R) (pap : p_abstr_poly)
(zQ : seq(seq N) * seq(seq(s_float bigZ bigZ))),
soscheck_eff_wrapup vm pap zQ = true →
(0 ≤ interp_p_abstr_poly vm pap)%R.

4.3 Overview of the Tactic
Finally, we developed some dedicated Ltac code to reify the
user’s goal and obtain an element of the p_abstr_poly
abstract syntax tree. This syntax involves rational constants
(defined as a separated inductive p_real_cst built from
non negative integers, opposites and divisions thereof), real
variables, and the usual polynomial operations including
exponentiation (with positive, constant exponents). As usual
with a Coq reflexive tactic, the Ltac code then applies the

9 Available at http://cavale.enseeiht.fr/osdp/.
10 The library interfaces the SDP solvers CSDP (Borchers 1999), SDPA,
SDPA-GMP and SDPA-DD (Yamashita et al. 2010) and MOSEK (MOS
2015).
11 File soswitness.ml4 in our development.

http://cavale.enseeiht.fr/osdp/

FI

FS

F

R

bigQ Q rat

R=
FIS2FS ◦ FI2FIS

FS_val

FI_val F2bigQ

FI2bigQ bigQ2rat

FI2rat

toR ratr

FI F×F bigQ bigZ×bigN rat

FS R R≥

F2FI ◦ snd bigQ2F
(outward approx.)

(n # d)%bigQ of_Z ◦ int2Z
(pairwise)

rat2FI

FIS2FS ◦ FI2FIS

FS_val

ratr

Figure 2. Functions relating rationals, floating-point and real numbers. The type rat is defined in MathComp and represents
rational numbers using Peano integers. The type Q is defined in the module QArith of Coq’s standard library and represents
rational numbers using binary integers from ZArith. The types bigN, bigZ and bigQ are defined in the Coq standard library for
representing natural/integer/rational numbers with an efficient representation (based on machine integers). The type F is defined
in CoqInterval and represents floating-point number with unbounded mantissa and exponent. The type FI is a record containing
an element of F and a proof that it is representable in 53 bits. The type FS is a record gathering a real number and a proof that it
it is representable in 53 bits (relying on the radix-2 precision-53 FLX format of Flocq).

correctness claim soscheck_eff_wrapup_correct
to the user’s goal and discharges the obtained subgoals by
computation.

As a result, our validsdp tactic recognizes goals that
are inequalities between polynomials expressions, involving
atomic real variables as well as rational constants.

The complete development is available at https://
sourcesup.renater.fr/validsdp/. It amounts to
13.6 kloc, that can be decomposed as 5.1 kloc for the proof of
the Cholesky decomposition algorithm (borrowed from (Roux
2016)), 3.0 kloc for the refinement of the algorithm to an
executable program (relying on an arithmetic parameterized
with Type Classes), 1.3 kloc for the refinement of CoqInterval
floating-point arithmetic, 2.2 kloc for the refinement of
multivariate polynomials and finally 2.0 kloc for the main
tactic and the related correctness proofs.

5. Benchmarks
We evaluated the performances of our tactic with respect
to the related works mentioned in Section 1.1 on a set of
benchmarks.

These benchmarks are composed of three subsets:

• A set of global optimization problems consisting in prov-
ing bounds for polynomials on given hyperboxes. These
problems are taken from (Muñoz and Narkawicz 2013).

• A set of problems on 6 variable polynomials coming from
some inequalities of the Flyspeck project. Most of them
require to prove that a given polynomial is positive on a
given hyperbox. Some require to prove that at least one
of two or three polynomials is positive on any point of a
given hyperbox (two polynomials in fs868, fs884 and
fs890, three polynomials in fs260 and fs491).

• A set of problems on loop invariants of programs (Adjé
et al. 2015; Roux et al. 2016). They require to prove that
a given polynomial p is non negative when some initial
conditions are met and that whenever p is non negative,
then p ◦ f also is, for a given polynomial f (representing
the loop body assignments).

Note that some benchmarks are known to be false12 (viz.
ex4_d4, ex4_d6 and ex7_d4), so the absence of proof is
the expected result. Others are known to be correct13 (fs884,

12 Counter examples can easily be found.
13 Another SDP solver and/or some symbolic preprocessing enables the proof
to go through with OSDP.

https://sourcesup.renater.fr/validsdp/
https://sourcesup.renater.fr/validsdp/

Problem n d O
SD

P
(n

ot
ve

ri
fie

d)

V
al

id
SD

P

PV
S/

B
er

ns
te

in

M
on

ni
au

x
an

d
C

or
bi

ne
au

11
(n

ot
ve

ri
fie

d)

N
L

C
er

tif
y

(n
ot

ve
ri

fie
d)

N
L

C
er

tif
y

H
O

L
L

ig
ht

/
Ta

yl
or

(?
)

adaptativeLV 4 4 0.70 8.73 14.93 2.67 1.12 2.61 12.31
butcher 6 4 0.84 21.14 48.44 — 1.05 8.36 15.62
caprasse 4 4 0.47 8.91 25.89 1.82 0.88 2.63 17.68
heart 8 4 0.99 37.99 131.13 268.75 — — 26.15
magnetism 7 2 0.24 4.68 245.52 2.04 1.64 14.50 16.07
reaction 3 2 1.02 4.05 11.48 1.56 0.24 1.96 12.41
schwefel 3 4 0.88 5.67 14.72 2.45 2.76 56.13 17.46
fs260 6 4 0.26 12.32 — — — — —
fs461 6 4 0.26 11.24 621.06 11.18 0.87 7.46 22.70
fs491 6 4 1.02 14.93 — 21.81 — — —
fs745 6 4 0.29 12.20 623.17 11.74 0.94 6.90 22.48
fs752 6 2 0.43 3.88 54.52 1.81 0.90 7.88 13.34
fs859 6 8 — — — — — — —
fs860 6 4 0.97 11.09 73.65 10.53 1.11 7.34 14.28
fs861 6 4 0.25 11.13 69.74 10.48 1.20 7.87 14.28
fs862 6 4 0.79 10.81 73.54 79.25 1.25 7.58 14.14
fs863 6 2 — — — 1.50 — — 13.85
fs864 6 2 0.97 4.50 — 2.05 — — 13.28
fs865 6 2 0.93 4.56 — 2.11 — — 13.76
fs867 6 2 0.47 3.90 — 2.09 1.74 8.04 —
fs868 6 4 0.72 12.65 — — — — —
fs884 6 4 — — — — — — —
fs890 6 4 — — — 7.78 — — —
fs8 6 2 0.65 4.58 52.63 1.53 1.48 6.62 13.40
ex4_d4 2 12 — — — — — — —
ex4_d6 2 18 — — — — — — —
ex4_d8 2 24 — — — — — — —
ex4_d10 2 30 — — — — — — —
ex5_d4 3 8 0.73 22.67 — — — — —
ex5_d6 3 12 3.41 85.34 — — — — —
ex5_d8 3 16 20.54 324.29 — — — — —
ex5_d10 3 20 150.86 — — — — — —
ex6_d4 4 8 2.44 57.97 — — — — —
ex6_d6 4 12 56.19 502.17 — — — — —
ex7_d4 2 12 — — — — — — —
ex7_d6 2 18 0.84 43.87 — — — — —
ex7_d8 2 24 — — — — — — —
ex7_d10 2 30 — — — — — — —
ex8_d4 2 8 0.13 10.53 — 15.72 — — —
ex8_d6 2 12 — — — — — — —
ex8_d8 2 16 — — — — — — —
ex8_d10 2 20 — — — — — — —

Table 1. Running time (elapsed real time, in s) for various tools on a set of benchmarks. “—” indicates either that a tool is not
applicable or that it failed to produce a proof within the time limit (900 s). n is the number of variables of the polynomials and
d is their degree. “OSDP” is our OCaml implementation of our proof procedure and “ValidSDP” our Coq tactic, “PVS/Bernstein”
corresponds to (Muñoz and Narkawicz 2013), “Monniaux and Corbineau 11” corresponds to (Monniaux and Corbineau 2011),
“NLCertify” corresponds to (Magron 2014), and “HOL Light/Taylor” corresponds to (Solovyev and Hales 2013).
(?)Remark: it should be noted that each running time in the last column includes the time (around 11s) for loading the image of
the HOL Light libraries, checkpointed beforehand using DMTCP.

ex4_d8 and ex7_d8). Finally, the status of the remain-
ing unproved benchmarks is unknown (fs859, ex4_d10,
ex7_d10, ex8_6, ex8_d8 and ex8_d10).

Table 1 presents the results on a Core i5-4460S CPU
clocked at 2.9 GHz. Unfortunately, some of the tools (PVS/
Bernstein, NLCertify and HOL Light/Taylor) were not appli-
cable on part of the benchmarks as they require an hyperbox.
It is also worth noting that for methods based on SDP solvers
(i.e., all methods but PVS/Bernstein and HOL Light/Taylor),
its choice can have a slight influence on the results. As a
matter of fact, NLCertify uses SDPA. Monniaux and Cor-
bineau 2011 can use either CSDP, DSDP or SDPA and we
chose CSDP as it gave the best results. Finally, OSDP (hence
ValidSDP) can use either CSDP, Mosek or SDPA. Although
Mosek tends to give the best results on large problems and is
about ten times faster, we chose SDPA for the sake of fairness
of the comparison.

These results indicate that while our tactic, based on
floating-point arithmetic, is competitive with other tools
on the simplest benchmarks it, more noticeably, enables to
perform proofs that seem out of reach for other methods,
mostly based on rational arithmetic.

The OSDP column in the table is included to give some
insight on what is lost, in terms of performance, by running
the verification procedure inside the Coq virtual machine
(ValidSDP column). Indeed, most of the time in the OSDP
column is spent running SDP solvers. The table then indicates
that our Coq tactic commonly incurs a factor ten to fifty
overhead. This is somewhat disappointing as the verification
of results from SDP solvers should ideally imply a negligible
overhead. However, most of this overhead comes from the
emulation of floating-point arithmetic that is typically three
orders of magnitude slower than native operations performed
by the hardware floating-point unit. This means that a native
implementation of floating-point arithmetic in the Coq kernel,
as done with 31 bit integers (Armand et al. 2010), could yield
a speedup of our tactic of one or two orders of magnitude.
It is also worth noting that the memory footprint of the Coq
implementation appears to be about ten times the memory
footprint of the OCaml implementation.

Finally, one can notice that all computations in our tactic
are performed with the vm_compute instead of the more re-
cent native_computemechanism (Boespflug et al. 2011).
We did experiment with this mechanism14. Unfortunately,
the large terms, corresponding to the Q matrices, produced
by our OCaml module led to huge OCaml source codes15

whose compilation time made native_compute a few
times slower than vm_compute. This illustrates that the
Coq system may lack a way to load (untrusted) proof ele-
ments other than hard coding them in the sources.

14 https://coq.inria.fr/bugs/show_bug.cgi?id=4714
15 For instance, 10MB, 100 kloc OCaml source code for medium size
benchmarks.

6. Conclusion and Future Work
We developed a reflexive Coq tactic for proving multivari-
ate polynomials positivity. This tactic, relying on intensive
floating-point computations, demonstrates that performing
rigorous proofs inside a proof assistant using floating-point
implementations of non trivial algorithms is tractable. The
fact that our tactic is able to discharge proof obligations that
seem untractable with other state of the art methods even in-
dicates that such proof methods can be profitable. This, more
generally, opens to proof assistants a wide range of rigorous
proofs based on floating-point computations (Rump 2010).

Our experiments also indicate that this kind of proof
methodology would greatly benefit from having native
floating-point operations available in the proof assistant,
rather than having to emulate them.

References
A. Adjé, P. Garoche, and V. Magron. Property-based polynomial

invariant generation using sums-of-squares optimization. In
S. Blazy and T. Jensen, editors, Static Analysis - 22nd Inter-
national Symposium, SAS 2015, Saint-Malo, France, September
9-11, 2015, Proceedings, volume 9291 of LNCS, pages 235–
251. Springer, 2015. ISBN 978-3-662-48287-2. doi: 10.1007/
978-3-662-48288-9_14. URL http://dx.doi.org/10.
1007/978-3-662-48288-9_14.

M. Armand, B. Grégoire, A. Spiwack, and L. Théry. Extend-
ing Coq with imperative features and its application to SAT
verification. In M. Kaufmann and L. C. Paulson, editors,
Interactive Theorem Proving, First International Conference,
ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings,
volume 6172 of Lecture Notes in Computer Science, pages
83–98. Springer, 2010. ISBN 978-3-642-14051-8. doi: 10.
1007/978-3-642-14052-5_8. URL http://dx.doi.org/
10.1007/978-3-642-14052-5_8.

S. J. Benson and Y. Ye. Algorithm 875: DSDP5 - software for
semidefinite programming. ACM Trans. Math. Softw., 34(3),
2008. URL http://doi.acm.org/10.1145/1356052.
1356057.

S. Bernard, Y. Bertot, L. Rideau, and P. Strub. Formal proofs of
transcendence for e and pi as an application of multivariate
and symmetric polynomials. In J. Avigad and A. Chlipala,
editors, Proceedings of the 5th ACM SIGPLAN Conference
on Certified Programs and Proofs, Saint Petersburg, FL, USA,
January 20-22, 2016, pages 76–87. ACM, 2016. ISBN 978-
1-4503-4127-1. doi: 10.1145/2854065.2854072. URL http:
//doi.acm.org/10.1145/2854065.2854072.

F. Besson. Fast reflexive arithmetic tactics the linear case and
beyond. In T. Altenkirch and C. McBride, editors, Types
for Proofs and Programs – TYPES 2006, Nottingham, UK,
Revised Selected Papers, volume 4502 of Lecture Notes in
Computer Science, pages 48–62. Springer, 2006. ISBN 978-
3-540-74463-4. URL http://dx.doi.org/10.1007/
978-3-540-74464-1_4.

M. Boespflug, M. Dénès, and B. Grégoire. Full reduction at
full throttle. In J. Jouannaud and Z. Shao, editors, Certified
Programs and Proofs - First International Conference, CPP

https://coq.inria.fr/bugs/show_bug.cgi?id=4714
http://dx.doi.org/10.1007/978-3-662-48288-9_14
http://dx.doi.org/10.1007/978-3-662-48288-9_14
http://dx.doi.org/10.1007/978-3-642-14052-5_8
http://dx.doi.org/10.1007/978-3-642-14052-5_8
http://doi.acm.org/10.1145/1356052.1356057
http://doi.acm.org/10.1145/1356052.1356057
http://doi.acm.org/10.1145/2854065.2854072
http://doi.acm.org/10.1145/2854065.2854072
http://dx.doi.org/10.1007/978-3-540-74464-1_4
http://dx.doi.org/10.1007/978-3-540-74464-1_4

2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, vol-
ume 7086 of Lecture Notes in Computer Science, pages 362–
377. Springer, 2011. ISBN 978-3-642-25378-2. doi: 10.1007/
978-3-642-25379-9_26. URL http://dx.doi.org/10.
1007/978-3-642-25379-9_26.

S. Boldo and G. Melquiond. Flocq: A Unified Library for Prov-
ing Floating-point Algorithms in Coq. In Proceedings of the
20th IEEE Symposium on Computer Arithmetic, pages 243–252,
Tübingen, Germany, July 2011.

B. Borchers. CSDP, a C library for semidefinite programming.
Optimization Methods and Software, 11(1-4), 1999. URL http:
//dx.doi.org/10.1080/10556789908805765.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge
university press, 2004.

C. Cohen, M. Dénès, and A. Mörtberg. Refinements for free! In
G. Gonthier and M. Norrish, editors, Certified Programs and
Proofs, volume 8307 of LNCS, pages 147–162. Springer, 2013.
ISBN 978-3-319-03544-4. URL http://dx.doi.org/10.
1007/978-3-319-03545-1_10.

G. E. Collins. Quantifier elimination for real closed fields by
cylindrical algebraic decomposition. In Automata Theory and
Formal Languages, 1975.

The Coq proof assistant reference manual. The Coq development
team, 2016. URL https://coq.inria.fr. Version 8.5.

G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection
Extension for the Coq system. Research Report RR-6455, INRIA,
2008. URL http://hal.inria.fr/inria-00258384.

J. Harrison. Verifying nonlinear real formulas via sums of squares. In
TPHOLs 2007, volume 4732 of LNCS, pages 102–118. Springer,
2007.

IEEE Computer Society. IEEE Standard for Floating-Point Arith-
metic. IEEE Standard 754-2008, 2008.

J. B. Lasserre. Global optimization with polynomials and the
problem of moments. SIAM Journal on Optimization, 11(3):
796–817, 2001. doi: 10.1137/S1052623400366802. URL http:
//dx.doi.org/10.1137/S1052623400366802.

J.-B. Lasserre. Moments, Positive Polynomials, and Their Applica-
tions. 2009. Imperial College Press, 2009. ISBN 978-1-84816-
445-1.

A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4):515–
534, 1982. ISSN 1432-1807. doi: 10.1007/BF01457454. URL
http://dx.doi.org/10.1007/BF01457454.

J. Löfberg. Pre- and post-processing sum-of-squares
programs in practice. IEEE Transactions on Au-
tomatic Control, 54(5):1007–1011, 2009. URL
http://ieeexplore.ieee.org/iel5/9/4919221/
04908937.pdf?arnumber=4908937.

V. Magron. NLCertify: A Tool for Formal Nonlinear Optimization.
In Mathematical Software – ICMS 2014, volume 8592 of LNCS,
pages 315–320. Springer, 2014. URL http://dx.doi.org/
10.1007/978-3-662-44199-2_49.

E. Martin-Dorel and G. Melquiond. Proving tight bounds on
univariate expressions with elementary functions in Coq. Journal

of Automated Reasoning, 57(3):187–217, Oct. 2016. URL http:
//dx.doi.org/10.1007/s10817-015-9350-4.

D. Monniaux and P. Corbineau. On the Generation of Positivstel-
lensatz Witnesses in Degenerate Cases. In Interactive Theo-
rem Proving – ITP 2011, Berg en Dal, The Netherlands, pages
249–264, 2011. URL http://dx.doi.org/10.1007/
978-3-642-22863-6_19.

The MOSEK C optimizer API manual Version 7.1 (Revision 40).
MOSEK ApS, 2015. URL http://docs.mosek.com/7.
1/capi/index.html.

C. Muñoz and A. Narkawicz. Formalization of Bernstein polyno-
mials and applications to global optimization. J. Autom. Reason-
ing, 51(2):151–196, 2013. URL http://dx.doi.org/10.
1007/s10817-012-9256-3.

A. Narkawicz and C. Muñoz. A formally verified generic branching
algorithm for global optimization. In International Conference
on Verified Software: Theories, Tools, Experiments, volume 8164
of LNCS, pages 326–343, 2013. URL http://dx.doi.org/
10.1007/978-3-642-54108-7_17.

P. A. Parrilo. Semidefinite programming relaxations for semial-
gebraic problems. Math. Program., 96(2):293–320, 2003. doi:
10.1007/s10107-003-0387-5. URL http://dx.doi.org/
10.1007/s10107-003-0387-5.

P. Roux. Formal proofs of rounding error bounds - with ap-
plication to an automatic positive definiteness check. J.
Autom. Reasoning, 57(2):135–156, 2016. doi: 10.1007/
s10817-015-9339-z. URL http://dx.doi.org/10.
1007/s10817-015-9339-z.

P. Roux, Y. Voronin, and S. Sankaranarayanan. Validating nu-
merical semidefinite programming solvers for polynomial in-
variants. In X. Rival, editor, Static Analysis - 23rd Inter-
national Symposium, SAS 2016, Edinburgh, UK, September
8-10, 2016, Proceedings, volume 9837 of LNCS, pages 424–
446. Springer, 2016. ISBN 978-3-662-53412-0. doi: 10.1007/
978-3-662-53413-7_21. URL http://dx.doi.org/10.
1007/978-3-662-53413-7_21.

S. M. Rump. Verification of positive definiteness. BIT Numerical
Mathematics, 46, 2006.

S. M. Rump. Verification methods: Rigorous results using floating-
point arithmetic. Acta Numerica, 19, 2010.

A. Solovyev and T. C. Hales. Formal verification of non-
linear inequalities with Taylor interval approximations. In
NASA Formal Methods, volume 7871 of LNCS, pages
383–397, 2013. URL http://dx.doi.org/10.1007/
978-3-642-38088-4_26.

A. Tarski. A decision method for elementary algebra and geometry.
Technical report, Univ. of California Press, Berkeley, 1951.

L. Vandenberghe and S. P. Boyd. Semidefinite program-
ming. SIAM Review, 38(1):49–95, 1996. doi: 10.1137/
1038003. URL http://epubs.siam.org/doi/abs/10.
1137/1038003.

M. Yamashita, K. Fujisawa, K. Nakata, M. Nakata, M. Fukuda,
K. Kobayashi, and K. Goto. A high-performance software
package for semidefinite programs: Sdpa 7. Technical Report
B-460, Tokyo Institute of Technology, Tokyo, 2010.

http://dx.doi.org/10.1007/978-3-642-25379-9_26
http://dx.doi.org/10.1007/978-3-642-25379-9_26
http://dx.doi.org/10.1080/10556789908805765
http://dx.doi.org/10.1080/10556789908805765
http://dx.doi.org/10.1007/978-3-319-03545-1_10
http://dx.doi.org/10.1007/978-3-319-03545-1_10
https://coq.inria.fr
http://hal.inria.fr/inria-00258384
http://dx.doi.org/10.1137/S1052623400366802
http://dx.doi.org/10.1137/S1052623400366802
http://dx.doi.org/10.1007/BF01457454
http://ieeexplore.ieee.org/iel5/9/4919221/04908937.pdf?arnumber=4908937
http://ieeexplore.ieee.org/iel5/9/4919221/04908937.pdf?arnumber=4908937
http://dx.doi.org/10.1007/978-3-662-44199-2_49
http://dx.doi.org/10.1007/978-3-662-44199-2_49
http://dx.doi.org/10.1007/s10817-015-9350-4
http://dx.doi.org/10.1007/s10817-015-9350-4
http://dx.doi.org/10.1007/978-3-642-22863-6_19
http://dx.doi.org/10.1007/978-3-642-22863-6_19
http://docs.mosek.com/7.1/capi/index.html
http://docs.mosek.com/7.1/capi/index.html
http://dx.doi.org/10.1007/s10817-012-9256-3
http://dx.doi.org/10.1007/s10817-012-9256-3
http://dx.doi.org/10.1007/978-3-642-54108-7_17
http://dx.doi.org/10.1007/978-3-642-54108-7_17
http://dx.doi.org/10.1007/s10107-003-0387-5
http://dx.doi.org/10.1007/s10107-003-0387-5
http://dx.doi.org/10.1007/s10817-015-9339-z
http://dx.doi.org/10.1007/s10817-015-9339-z
http://dx.doi.org/10.1007/978-3-662-53413-7_21
http://dx.doi.org/10.1007/978-3-662-53413-7_21
http://dx.doi.org/10.1007/978-3-642-38088-4_26
http://dx.doi.org/10.1007/978-3-642-38088-4_26
http://epubs.siam.org/doi/abs/10.1137/1038003
http://epubs.siam.org/doi/abs/10.1137/1038003

	Introduction and Motivation
	Related Work

	SOS and Cholesky Decomposition
	Sum of Squares (SOS) Programming
	Semidefinite Programming (SDP)
	Parameterized Problems
	Numerical Verification of SOS
	Approximate Solutions from SDP Solvers
	A Validation Method

	Coq Proofs

	Verification of Effective Computation using Data Refinement
	An Automated Tactic for Verifying Positivity Witnesses
	Calling SDP Solvers Through an OCaml Module
	Verification of the Witness
	Overview of the Tactic

	Benchmarks
	Conclusion and Future Work

