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Explicit solution and fine asymptotics for a

critical growth-fragmentation equation

Marie Doumic∗† Bruce van Brunt‡

November 19, 2018

Abstract

We give here an explicit formula for the following critical case of the
growth-fragmentation equation

B

Bt
upt, xq `

B

Bx
pgxupt, xqq ` bupt, xq “ bα2upt, αxq, up0, xq “ u0

pxq,

for some constants g ą 0, b ą 0 and α ą 1 - the case α “ 2 being the
emblematic binary fission case. We discuss the links between this formula
and the asymptotic ones previously obtained in [8], and use them to clarify
how periodicity may appear asymptotically.

Introduction

Growth-fragmentation equations appear in many applications, ranging from
protein polymerisation to internet protocols or cell division equation. Under
a fairly general form it may be written as follows

B

Bt
upt, xq `

B

Bx

`

gpxqupt, xq
˘

`Bpxqupt, xq “

8
ż

x

kpy, xqBpyqupt, yqdy,

where upt, xq represents the concentration of individuals of size x at time t, g
their growth speed, B the total instantaneous fragmentation probability rate
and kpy, xq the fragmentation probability of fragmenting individuals of size y to
give rise to individuals of size x. Under assumptions linking fragmentation and
growth parametersB, k and g, a steady asymptotic behaviour appears, i.e. there
exists a unique couple pλ,Uq with λ ą 0 such that upt, xqe´λt Ñ Upxq - see for
instance the pioneering papers [6, 15], [16] for an introduction and many other
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references like [21, 5, 20] for some most recent ones. This asymptotic behaviour
is a key property of many models in the field of structured population dynamics,
and in many cases such as bacterial growth it is experimentally observed [10] (the
biologists speak of ”desyncrhonization effect”).However, such a steady behaviour
may also fail for two types of reasons:

1. the balance assumptions between B, g and k are not satisfied,

2. Growth and fragmentation are such that there is a lack of dissipativity in
the equation. This is typically the case when the growth is exponential,
i.e. gpxq “ gx, and the fragmentation is a dirac, kpy, xq “ αδ x

y“
1
α

with

α ą 1. In such a case, if the division rate B is such that there exists a
positive couple pλ,Uq, there also exists a countable set of complex couples
of the form pλ` iθk, Ukq, which leads to a periodic limit cycle, see [13, 1].

We focus here on a critical case where both these reasons appear, namely Bpxq ”
b ą 0 - also called ”homogeneous fragmentation” - gpxq ” xg and kpy, xq “
αδ x

y“
1
α
, which generalises the binary fission case α “ 2. The equation under

study is thus

B

Bt
upt, xq `

B

Bx
pgxupt, xqq ` bupt, xq “ bα2upt, αxq, up0, xq “ u0pxq. (1)

This is a specific case of the homogeneous fragmentation equation studied in [3,
2, 8]. It may also be seen as an emblematic case when modelling bacterial
growth, since the exponential growth in size of bacteria has been observed,
together with equal mitosis (α “ 2). A constant division rate would then
correspond to a growth independent of the size. However, the behaviour that
we study in this paper is barely observed in nature, since a tiny variability
in the coefficient rates or in the fragmentation kernel is sufficient to drive the
system towards a steady asymptotic growth. It is thus important for modellers
to include such a slight variability rather than using directly the idealised model
under study. The main results obtained in [8] were the following:

• a formulation in terms of Mellin and inverse Mellin transform was ob-
tained, as soon as the initial condition u0 decays sufficiently fast in 0 and
8,

• no steady or self-similar behaviour was possible for L1 functions,

• the asymptotic behaviour was described along lines of the type x “ e´ct,
with an exponential speed of convergence at places where the mass was
decaying, but with at most polynomial growth for the lines where the mass
concentrates,

• in the case of a fragmentation kernel defined as a dirac mass (or a sum
of dirac masses linked by a specific algebraic relation), the asymptotic
behaviour was also defined thanks to the Mellin transform, but was more
involved, with an infinite sum of contributions and a still slower polynomial
rate of convergence.
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Despite these results, a question remains unclear: can we observe a kind of
”oscillatory” behaviour, as in the case of a limit cycle [13, 1]?

In Proposition 1, we first provide an explicit solution of Equation (1) and
discuss its interpretation, in particular in terms of possible periodicity. In Sec-
tion 2, we investigate in more detail the asymptotic behaviour, based on the
estimates obtained in [8] and with the help of a rescaling inspired by [3].

1 An explicit formulation

Explicit formulations may be obtained, as said above, via the Mellin transform
of the equation - the Mellin transform has also been used in other studies for
the qualitative behaviour of solutions of equations of the same type, see for
instance [4, 19, 9, 11, 12]. Analytical solutions for specific cases of the eigenvalue
problem have also been given in some studies, see e.g. [14, 17, 7] for some
examples.

Else, obtaining analytical solutions for the time-dependent equation is not
frequent - let us mention [18, 22] for the fragmentation equation, and [20] for the
full analytical solution to the cell division equation with constant coefficients.
Up to our knowledge, the following explicit solution for our case was not known.

Proposition 1. Let S 1pR`q the space of distribution functions (dual space of
SpR`q the Schwartz space on R`) and u0 P S 1pR`q. The distribution defined in
a weak sense by

upt, xq “ e´pb`gqt
8
ÿ

k“0

u0pα
kxe´gtq

pbα2tqk

k!
, t ą 0, x ą 0, (2)

is solution to Equation (1). Moreover, if u0 P L
ppxqdxq then u P L8p0, T ;Lppxqdxqq

for any T ą 0, p P r1,8s and q P R . Similarly, if u0 PMb
`px

qdxq the space of
nonnegative bounded measures absolutely continuous with respect to the measure
xqdx, u P L8p0, T ;Mb

`px
qdxqq.

Proof. The spaces to which upt, xq belongs to are immediate by using the def-
inition (2), multiplying it by the convenient weight or test function, and make
a term-by-term change of variables y “ αkxe´gt; it is linked to the fast con-

vergence of the terms sk

k! defining the series of the exponential. The proof that
upt, xq satisfies Equation (1) in a weak sense can be done similarly, by multiply-
ing the equation applied to upt, xq by a test function, integrating by parts and
making a change of variables.

This formula makes directly appear several interesting features, linked to the
very specific shape of the fragmentation kernel k0pzq “ αδz“ 1

α
.

• At time t “ 0`, there is an immediate appearance of contributions to the
distribution in x of all the points αkx with k ě 0. This can be interpreted
in terms of division: without growth, cells of size x contained in an interval
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rx, x`dxsmay come from k times the division of cells of size αkx, contained
in the interval rαkx, αkpx` dxqs, this division producing αk cells of size x
so that there is a factor α2k in the contribution coming from the division
of size rαkx, αkx ` αkdxs particles. Now, the probability of k successive
division of given cells of size αkx in a time interval δt is proportional to
bkpδtqk

k! , the product of k times the probability for a cell to divide taken
among an infinite possibility of divisions, and then renormalised by e´bδt

to obtain a total probability equal to 1 on all the possibilities to divide 0, 1,
. . . k times. When time passes, this remains true, and the formula follows
the characteristic lines xegt : without the birth term on the right-hand
side, the solution of the equation

B

Bt
u`

B

Bx
pgxupt, xqq ` bupt, xq “ 0

would be upt, xq “ e´pb`gqtu0pxe
´gtq, the first term of the series; on the

contrary, without the growth and the left-hand side division term, the
equation

B

Bt
u “ bα2upt, αxq, up0, xq “ u0pxq

would admit for solution
8
ř

k“0

u0pα
kxq pbα

2tqk

k! for t ą 0 and x ą 0.

• Contrarily to other cases (with a smoother fragmentation kernel or a non-
linear growth rate), we see that the equation has no smoothing effect.
Taking for instance the case of a dirac initial data u0pxq “ δx0

, we see that
as expected intuitively the mass is permanently supported by a countable
set of dirac masses, taking values along characteristic lines x “ α´kx0e

gt

representing, for k “ 0, the ancestor characteristic curve, and for k ě 1,
the characteristic line of the k ´ th generation of offspring (individuals
having divided k times at time t).

Despite its simple formulation, the analytical formula (2) does not lead di-
rectly to an easy asymptotic behaviour. This was also the case with the for-
mulation obtained in [8] using Mellin and inverse Mellin transform: a complete
asymptotic analysis of the complex integral was necessary to obtain an asymp-
totic behaviour.

However, an important clue is given to the question of possible oscillations
when looking at the solution obtained for u0 “ δx0 : the mass is permanently
supported in the countable set of dirac at points x “ α´kegtx0 for k P N, so that
at each period of time t “ nT such that egT “ α, and only at them, the dirac
masses come back to the points x “ α´k`nx0. This set tends to the countable
set x “ αkx0 with k P Z . But can we say more concerning the mass of each of
these points?

In a more general manner, if supppu0q Ă rx0, x1s, at any time one has
supppupt, ¨qq Ă YkPNr2

´kx0e
gt, 2´kx1e

gts for k P N : if for instance 1
2 ă x0 ă

x1 ď 1, we have supp pupt, ¨qq X YkPNp2
´k´1egt, 2´kx0e

gtq “ H. It is thus clear
that no pointwise limit toward a steady behaviour is possible.
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2 Asymptotic behaviour

2.1 Asymptotics via the Mellin transform [8]

Let us here assume g “ 0 and b “ 1, denote vpt, xq the corresponding solution of
the pure fragmentation equation, we know that upt, xq “ e´gtvpbt, xe´gtq, and
Formula (2) becomes

vpt, xq “ e´t
8
ÿ

k“0

u0pα
kxq

pα2tqk

k!
. (3)

In [8], another explicit formula was obtained using Mellin and inverse Mellin
transform. For the sake of simplicity, we restrict ourselves to u0 P C2

0pR`q,
the space of two-times differentiable functions on R` decaying faster than any
power law in 0 and `8 (see Theorem 3.1. in [8] for more general assumptions).

Define

Kpsq “

1
ż

0

xs´1αδx“ 1
α
dx “ α2´s, U0psq “

8
ż

0

u0pxqx
s´1dx, (4)

we have (Theorem 3.1. in [8]), for g “ 0 and b “ 1, and any ν P R :

vpt, xq “
1

2πi

ν`i8
ż

ν´i8

U0psq e
pKpsq´1qtx´sds. (5)

Following the notations of [8], the fragmentation kernel is in our case equal to
kpy, xq “ 1

yk0p
x
y q with k0pzq “ αδz“ 1

α
. We see that k0 satisfies the assumptions

of Theorem 2.3. (b) of [8], namely that it is a singular discrete measure whos
support satisfies the Assumption H of [8] - since it is a unique point θ “ 1

α .
The following asymptotic formula was then obtained in Theorem 2.3. (b) of [8]
for x ă 1:

vpt, xq “ x´s`pt,xqepα
2´s`pt,xq´1qt

ř

kPZ
U0pskqe

2iπk
logα log x

?
2πtplogαqα1´

s`pt,xq

2

`

1` opt´βq
˘

, (6)

for some β ą 0 and s`pt, xq defined by

s`pt, xq “ K 1´1

ˆ

log x

t

˙

“ 2´

log

ˆ

´
logpxq
t logα

˙

logα
, x “ e´tplogαqα2´s`

, sk “ s`´
2ikπ

logα
.

Using the Poisson formula, it was also noticed in Remark 3 of [8] that it gives

vpt, xq “ epα
2´s`pt,xq´1qt

ř

nPZ
u0pα

nxqαs`n

?
2πtα1´

s`pt,xq

2

`

1` opt´βq
˘

. (7)
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By a straightforward calculation, we can use this formula to obtain the asymp-
totic formulae for the general case b, g ą 0, by the transformation upt, xq “
e´gtvpbt, xe´gtq. We take however here b “ 1 for the sake of simplicity, and still
denote in short s` the function now defined in s`pt, xe

´gtq. We have

upt, xq „ x´s`pt,xe
´gt
qepα

2´s`pt,xe
´gtq

´1`gps`´1qqt

ř

kPZ
U0pskqe

2iπk
logα

log x

?
2πtplogαqα1´

s`pt,xe
´gtq

2

p1` optβqq,

upt, xq „ epα
2´s`pt,xe

´gtq
´1´gqt

ř

nPZ
u0pα

nxe´gtqαs`n

?
2πtα1´

s`pt,xe
´gtq

2

.

(8)
Despite its resemblance with (3), no immediate link appears.

2.2 Weak convergence result

Can we use the formula (6) or (7) to make appear an oscillatory asymptotic
behaviour? Following [3], let us first focus on the following rescalings of v :

rpt, yq :“ te2tyvpt, etyq “ te2ty`gtup
t

b
, epy`gqtq, y0 :“ ´ logα,

r̃pt, zq “ rpt, y0 `
σz
?
t
q
σ
?
t
, σ2 “ K2py0q “ plogαq2.

Such a rescaling is motivated by the fact that the lines x “ ety, with y ă 0
constant, correspond to the lines s`pt, xq constant in time, leading to a given
asymptotic profile in (6) or (7). Moreover it is such that the integral of r and r̃
is preserved, i.e.

8
ż

´8

rpt, yqdy “

8
ż

´8

r̃pt, yqdy “

8
ż

0

xvpt, xqdx “

8
ż

0

xu0pxqdx, @ t ě 0.

Theorem 1 in [3] apparently contradicts any oscillatory behaviour by stating
the following weak convergence result, for which we sketch below an alternative
proof using Formula (6).

Proposition 2 (Specific case of Theorem 1 in [3]). Let u0 P C2
0pR`q.

rpt, ¨q á δ´ logαU0p2q, r̃pt, ¨q á U0p2qG,

with Gpzq “ e´
¨2

2
?

2π
in a weak sense: for any bounded C1 function φ on R, we

have

`8
ż

´8

φpyqrpt, yqdy Ñ U0p2qφp´ logαq and

`8
ż

´8

φpzqr̃pt, zqdz Ñ U0p2q

`8
ż

´8

φpzq
e´

z2

2

?
2π

dz,

with U0p2q “
8
ş

0

xu0pxqdx the initial mass and K 1p2q “ logα.

6



Proof. First, for y ă 0, let us denote s`pyq :“ s`pt, e
tyq “ 2´

logp´ y
logα q

logα , which

is independent of the time t. We also notice that α2´s`pyq “ ´
y

logα .

In Corollary 1 of [8], this result has been obtained in the case where the

kernel is not singular, so that instead of the infinite sum
ř

kPZ
U0pskqe

2iπk
logαyt there

was only the term U0ps`pyqq. Hence to prove the result, it only remains to show
that the terms with U0pskq vanish for k ‰ 0. Under our simpler assumption of
u0 P C2

0pR`q, we have for any continuous and bounded test function φpyq with
y P R:

`8
ż

´8

φpyqrpt, yqdy “

´A
ż

´8

`

´ε
ż

´A

`

`8
ż

´ε

φpyqrpt, yqdy.

For ε ą 0 small enough and A ą 0 large enough fixed, the first and the third
integrals are estimated as in the proof of Corollary 1 in [8] (in the notations
of [8] we have p0 “ ´8 and q0 “ `8 due to the fast decay of u0 in 0 and 8):
vpt, xq being exponentially decreasing in time on these interval, and using the
regularity assumptions on the test function, these integrals go to zero. Let us
call I the second integral, where the mass concentrates, and use the asymptotic
behaviour recalled above:

I :“
´ε
ş

´A

φpyqrpt, yqdy

“
`

1` opt´βq
˘

´ε
ş

´A

φpyqte2tye´s`pyqytepα
2´s`pyq´1qt

ř

kPZ
U0ps`pyq` 2ikπ

logα qe
2iπk
logα

ty

?
´2πtplogαqy

dy

“
`

1` opt´βq
˘

´ε
ş

´A

φpyqte
logp´

y
logα

q

logα ytep´
y

logα´1qt

ř

kPZ
U0ps`pyq` 2ikπ

logα qe
2iπk
logα

ty

?
´2πtplogαqy

dy.

“
`

1` opt´βq
˘
ř

kPZ
Ik.

The term for k “ 0 is the same as in Corollary 1 in [8]:

I0 “
`

1` opt´βq
˘

´ε
ş

´A

φpyq
?
teΨpyqt U0

`

s`pyq
˘

?
´2πplogαqy

dy ÑtÑ8 φp´ logαqU0p2q,

using Laplace’s method and the fact that

Ψpyq :“
logp´ y

logα q

logα
y´

y

logα
´1, Ψ1pyq “

logp´ y
logα q

logα
, Ψ2pyq “

1

y logα

has a unique maximum at y0 “ K 1p2q “ ´ logα, with Ψp´ logαq “ 0 and
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Ψ2p´ logαq “ ´ 1
plogαq2 . For the terms Ik with k ‰ 0 we have

Ik “
`

1` opt´βq
˘

´ε
ş

´A

φpyqte2tye´s`pt,e
ty
qytepα

2´s`pt,e
tyq
´1qt U0ps`pt,etyq` 2ikπ

logα qe
2iπk
logα

ty

?
´2πtplogαqy

dy

“
`

1` opt´βq
˘

´ε
ş

´A

φpyq
?
tepΨpyq`

2ikπ
logαyqt

U0

`

s`pyq`
2ikπ
logα

˘

?
´2πplogαqy

dy ÑtÑ8 0,

by the stationary phase approximation. The proof for convergence of r̃ is similar.

2.3 Pointwise oscillatory asymptotic behaviour

Despite its seemingly contradiction, we see by the above proof that the steady
convergence obtained does not necessarily contradict pointwise oscillations: a
weak convergence may happen even for pointwise oscillatory solutions, oscilla-
tory terms compensating each other when averaged by integration.

The weak convergence results above have shed light on the line where the
mass concentrates: the line x “ ety0 “ α´t. Let us first keep the above seen
change of variables rpt, yq “ te2tyvpt, etyq, Formulae (6) and (7) become, for
y “ y0 ´ logα :

rpt, y0q “ tα´2tvpt, α´tq “

c

t

2π

ÿ

kPZ
U0p2`

2ikπ

logα
qe´2iπkt

`

1` opt´βq
˘

,

or, using the Poisson formula

tα´2tvpt, α´tq “ tα´2t

ř

nPZ
u0pα

n´t
qα2n

?
2πt

`

1` opt´βq
˘

“

b

t
2π

ř

nPZ
u0pα

n´tqα2pn´tq
`

1` opt´βq
˘

.

These two formulae make obvious the periodic behaviour, of period T “ 1, of

the quantity rpt,yq
?
t

. More generally, for a given y ă 0 fixed, these two formulae

also show that the function

fyptq “
?
te2ty´Ψpyqtvpt, eytq

is periodic in time of period Ty “ ´
logα
y . Since the exponential term eΨpyqt

is maximal for y “ ´ logα, the line pt, α´tq dominates all the others - what
explains the weak convergence result - but each of these lines follow a specific
type of periodicity. The period is larger when |y| is smaller, which corresponds
to the lines x “ eyt going more slowly to zero - other said, to the righ-hand side
of the gaussian in y (see also Figure 2). This is explained by the fact that the
gaussian becoming wider and wider since its standard deviation is proportional
to
?
t, the periodicity needs to be faster in the forefront (left-hand side of the

gaussian in Figure 2) and slower after.
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2.4 Numerical illustration

To simulate more easily the asymptotic behaviour, we define

npt, yq “ e2yvpt, eyq,

which satisfies the following equation

B

Bt
npt, yq ` npt, yq “ npt, y ` logαq, np0, yq “ e2yu0pe

yq. (9)

We choose as an initial condition for np0, yq a gaussian of mean zero and vari-
ance σ2. For σ large, we do not observe any oscillations - exactly as in the
previous numerical illustration of [8] where we did not pay attention to the os-
cillatory phenomena. But for σ small enough, clear oscillations appear and
illustrate exactly the results. In Figure 1, we take σ “ 0.1, α “ 2 and
draw the numerical value of

?
tnpt,´t logp2qq,

?
tnpt,´2t logp2qqep2 logp2q´1qt and

?
tnpt,´ t

2 logp2qqe
1
2 p1´log 2qt which as expected exhibit oscillations of period 1,

1
2 and 2 respectively. In Figure 2, we show the time evolution of the rescaled

profile
?
tnpt, yq : we clearly see the envelope shape of a gaussian appear and

become wider and wider, whereas equally-wide peaks are inside the gaussian.
To illustrate the importance of the initial condition, we take in Figure 3 and 4
the same quantities with the same parameter values, except the standard devi-
ation, there equal to 0.2. In Figure 5 we took σ “ 0.5 : no oscillation is visible
anymore. The shape of the initial condition has also an influence, as illustrated
in Figures 6 and 7 where we took a Heaviside function in r0.8, 1s: the shape
is conserved when the profile oscillates. Due to the nonlinearity of the initial
condition, contrarily to the gaussian initial data, the oscillations never totally
disappear for a larger initial support, as shown in Figures 8 and 9 where the
support is r´1, 0s, then Figure 10 where it is r´5, 0s.

10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2
y

0
=-log(2)

y
1
=-2log(2)

y
2
=-0.5log(2)

Figure 1: Numerical simulation for α “ 2, np0, yq a gaussian of mean
0 and standard deviation 0.1. Plot of the time variation of the quantity?
te2ty´Ψpyqtvpt, eytq “

?
te´Ψpyqtnpt, ytq for y “ ´ logp2q, y “ ´2 logp2q and

y “ ´0.5 logp2q.
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y

0

0.5

1

1.5

2

2.5

3

t=0
t=1
t=17
t=35
t=52

Figure 2: Numerical simulation for α “ 2, np0, yq a gaussian of mean 0 and
standard deviation 0.1. Plot of the size-distribution of

?
tnpt, yq “

?
te2yvpt, eyq.

We see the shape of the gaussian becoming wider and wider, whereas oscillations
are maintained.

10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8
y

0
=-log(2)

y
1
=-2log(2)

y
2
=-0.5log(2)

Figure 3: Numerical simulation for α “ 2, np0, yq a gaussian of mean
0 and standard deviation 0.2. Plot of the time variation of the quantity?
te2ty´Ψpyqtvpt, eytq “

?
te´Ψpyqtnpt, ytq for y “ ´ logp2q, y “ ´2 logp2q and

y “ ´0.5 logp2q.
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Figure 4: Numerical simulation for α “ 2, np0, yq a gaussian of mean 0 and
standard deviation 0.2. Plot of the size-distribution of

?
tnpt, yq “

?
te2yvpt, eyq.

We see the shape of the gaussian becoming wider and wider, whereas oscillations
are maintained but smaller than for σ “ 0.1.
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Figure 5: Numerical simulation for α “ 2, np0, yq a gaussian of mean 0 and
standard deviation 0.5. Plot of the size-distribution of

?
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te2yvpt, eyq.

We see the shape of the gaussian becoming wider and wider, and no oscillation
is anymore visible.
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Figure 6: Numerical simulation for α “ 2, np0, yq a Heaviside on r´0.2, 0s. Plot
of the time variation of the quantity
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Figure 7: Numerical simulation for α “ 2, np0, yq a Heaviside on r´0.2, 0s.
Plot of the size-distribution of

?
tnpt, yq “

?
te2yvpt, eyq. We see the shape of

the gaussian becoming wider and wider, whereas oscillations are maintained and
keep the shape of the Heaviside.
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Figure 8: Numerical simulation for α “ 2, np0, yq a Heaviside on r´1, 0s. Plot
of the time variation of the quantity

?
te2ty´Ψpyqtvpt, eytq “

?
te´Ψpyqtnpt, ytq

for y “ ´ logp2q, y “ ´2 logp2q and y “ ´0.5 logp2q.
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Figure 9: Numerical simulation for α “ 2, np0, yq a Heaviside on r´1, 0s.
Plot of the size-distribution of

?
tnpt, yq “

?
te2yvpt, eyq. We see the shape of

the gaussian becoming wider and wider, whereas oscillations are maintained
(though smaller than for more peaked initial data) and keep the shape of the
Heaviside.
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Figure 10: Numerical simulation for α “ 2, np0, yq a Heaviside on r´5, 0s. Plot
of the size-distribution of

?
tnpt, yq “

?
te2yvpt, eyq. We see that the oscillations

are maintained (though smaller than for more peaked initial data) and keep the
shape of the Heaviside.
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