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STABLE PERIODIC VIBROIMPACTS OF AN OSCILLATOR 

N. POPPLEWELL AND C. N. BAPAT~ 

Department of Mechanical Engineering 

AND 
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Department of Civil Engineering, University of Manitoba, Winnipeg, Canada R 3T 2N2 

(Received 2 January 1982, and in revised form 11 June 1982) 

The asymptotically stable vibrations of a loaded oscillator colliding periodically with 
a rigid mass are described. Comparison of the numerical results with the few existing 
examples is encouraging but inconclusive. Better overall agreement is demonstrated with 
fairly comprehensive measurements from a specially built experimental rig. Impact 
motions are shown to be very sensitive to small fluctuations in the clearance between 
masses and the stiffness and loading of the oscillator near its linear, or collisionless, 
resonant frequency. The rigid mass is quite an effective damper at or just above this 
frequency condition. 

1. INTRODUCTION 

A general theory to describe the stable periodic motions of two colliding rigid bodies 
called an impact-pair has been developed and verified experimentally in a companion 
paper [l]. The theory will be extended by letting one of the bodies have flexibility and 
damping in order to assess resonant effects. Such effects are likely important in high 
speed mechanisms or machinery where clearances arise from tolerances, wear, etc. On 
the other hand, an extra impacting body may be introduced deliberately into a resonant 
system to reduce excessive vibration excursions. The device is normally termed an “impact 
damper” and can be quite effective despite the high transient accelerations generated 
by the impacts [2-211. The basic theory of these applications will be checked against 
previous, rather restricted, theoretical results and new, exhaustive experimental data. 

A closed form solution has been derived for impacts consistently happening twice for 
every cycle of a sinusoidal load [2-5, 7, 8, 10, 11, 14, 22, 231. The impacts have been 
assumed generally instantaneous and distributed primarily evenly in time. Masri [7, 131 
and the Kobrinskii’s [23] subsequently applied the concept of error propagation in 
difference equations to ascertain whether these periodic motions were asymptotically 
stable or not. These approaches are fundamental but the practical application of the 
solutions is quite restricted. For example Sadek [6] and Dittrich [9] suggested from 
limited experimental and theoretical studies that uneven temporal distributions are most 
likely at frequencies close to where the collisionless, flexible system is resonant. Sadek 
also inferred after careful experimentation that “equally spaced impacts hardly ever 
occur” even away from this resonance. Therefore it is not surprising that Sadek [6] and 
Masri [ 131 attempted an extension to unevenly spaced impacts. Two impacts per loading 
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Blvd West, Montreal, Canada H3G lM8. 

41 
0022-460X/83/050041 + 19 $03.00/O 0 1983 Academic Press Inc. (London) Limited 

1



42 N. POPPLEWELL, C. N. BAPAT AND K. McLACHLAN 

cycle were emphasized; only a single, probably analog computed illustration of three 
impacts was given by Masri alone. The lone three impact example may well be the 
consequence of a slowly converging and, hence, computationally time consuming iteration 
scheme for non-linear equations. An efficient algorithm will be used here for a comparable 
set of linearized equations to facilitate the computation of stable periodic motions 
involving any number of impacts. Numerical examples however will be confined to five 
or fewer impacts in each loading cycle. The theory basically is an elaboration of Masri’s 
work which is itself based on the concept of a coefficient of restitution and the conservation 
of linear momentum. Previous experiments suggest that answers may not be unique in 
those instances when the theoretically neglected transients cannot be ignored [l]. 

2. GENERAL THEORY 

The idealized vibroimpact device is shown in Figure 1. Its primary system consists of 
a linear spring with stiffness K, a viscous dashpot having damping constant C, and mass 

Figure 1. Single degree of freedom system with a second impacting mass. 

M excited by the external harmonic load, FO sin Lb. The secondary system is composed 
of a rigid mass, m, which can move uniaxially in a slot inside the usually much heavier 
mass h4. The supposed frictionless motion of m is instigated by collisions with M which 
occur intermittently because of clearance d. Any one impact, typically i, is assumed, 
reasonably for metals [l, 22,231, to be instantaneous and to be described by a coefficient 
of restitution, Ri. This coefficient may vary periodically in the general formulation but 
constant values, RI and R2 corresponding to collisions on the right- and left-hand sides 
of the slot in Figure 1, will be stipulated in illustrative examples. 

Equations of motion and their solutions will be developed in a manner similar to that 
in reference [l]. The main difference is that the conservation of linear momentum now 
has to be employed along with the definition of Ri to accommodate the discontinuous 
velocities at a collision. Displacements, conversely, are invariably continuous and the 
sinusoidal load sustains motions of the primary and secondary systems which bear similar 
periodicity conditions to before. However, the periodicity is related more conveniently 
to the temporal behaviour of the load rather than the displacement of the primary mass. 
This relationship is illustrated in Figure 2. A motion’s periodicity is shown in Figure 2(b) 
to be To during which time the load in the particular example of Figure 2(a) has undergone 
two cycles. Meanwhile N impacts between m and M, represented by the spikes in Figure 
2(c), have happened. Consequently this motion will be labelled N impacts/two cycles 
(of the load) with the generalization being obvious. The motion is periodic so that spike 
YcNtlj at instant t(N+l), equal to (tl + To), iS identical to Y1, YcN+z) at t(N+Z), or (h + To), 
is identical to Y2, etc. The traditional approach will be taken of considering the periodicity, 
To, the number of impacts, N, and their occurrence at instants tl, t2, . . . , tN as known. 
The load’s amplitude and phase with respect to the first impact on the other hand will 
be treated together with the absolute displacement of M at each of the N collisions as 
unknown. Relationships between these (N + 2) unknowns will be developed next. 
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Figure 2. General periodic motion of N impacts happening during period To. (a) Load F0 sin 01; (b) 
distribution in time of the N impacts; (c) presumed sequence of impacts. 

The equation of motion of mass M between impacts is 

MX+CX+KX=F,sinRt, (1) 

where X(t) represents the absolute displacement of the primary mass M. A dot superscript 
indicates differentiation with respect to time. The solution of equation (1) can be obtained 
by superimposing free and forced motions [5, 241. A typical solution between two 
consecutive collisions, say the i and the (i + 1) impacts happening at ti and tci+l) respec- 
tively, is 

X(t) = exp (-~[.flt-~i]}[~i sin (: [Rt-oi])+bicos(~[nt-~iI)]+Asin[~t+~I, 

tin s t c f(i+l)b, i=l,2,3 ,..., N. (2) 

The temporal origin is taken at tl so that t in equation (2) is the convenient abbreviation 
of (t - tl). Quantities just after and just before an impact are represented by subscripts 
a and b respectively. Consequently tia, for example, is the instant immediately after the 
ith impact. Variables 5, o, r, 7, T and A are given conventionally by 

6 = C/2(KM)‘j2, w = (K/M)‘12, r = O/w, q = (1 - t2)l’*, (3) 

7 = Rtl -tan-’ {2&/(1- r2)}, A = (Fo/K){(l - r2)’ + (2@)2}-“2. (4) 

Remaining variables are defined as 

ai =(l/n){(l/~)Xi, -Arcos [ai +r]+[bi}r i=l,2 ,..., N, (5) 

bi =Xi -A sin [ai + T], i=l,2 ,..., N, (6) 

Xi =X(ti)y 
I 

0, i=l 
ffi = 

fIti, i=2,3 ,..., N * 
(7) 

(a~ is zero because the temporal origin has been taken as the instant of the first impact.) 
The displacement of M is continuous at collisions so that equation (2) remains valid 
then. Consequently, the unknown displacement of M at the N collisions within To, Xi, 
may be obtained by merely substituting their instants of occurrence, ti where i = 1,2, . . . , 
N, into equation (2). For example, the displacement at the (i + 1)th impact is 

X(ti+l) ‘Xci+l) = Cliai +Czibi +A sin [(Y(i+1)+T], i=l,2 ,..., N, (8‘) 
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where, by employing equation (7), 

C2i = exp [ -~(~(i+~~-~i)) cos { 5 (a,i+,,-ai)], i = 1,2, * * ., N* 

The Xci+l) and, from equation (4), A and T are certainly not known in these last three 
expressions. The (Y~, i = 1, 2, . . . , N, may be calculated from the given driving frequency, 
0, and impact instants, ti, by using equation (7). Then the Cl; and Czi may be evaluated 
by substituting these ai and the determinable parameters of equation (3) into equations 
(9) and (10). Similar substitutions into equations (5) and (6) leave the final two variables 
in equation (8), ai and hip requiring Xi, other than the Xi, A and T. The discontinuity 
in the velocity of A4 at the ith impact may be obtained from the conservation of linear 
momentum and the definition of Ri. 

Linear momentum conservation gives [5, 13, 231 

MXib + &ib = MXia + t&i,, i=1,2 ,..., N, (11) 

for the ith impact whereas the definition of the coefficient of restitution is 

Ri = -(i, -gia)/(kib -Z!ib)p i=1,2 ,..., N. (12) 

The Pib and ii, are the absolute velocities of the secondary mass just before and after 
the ith impact, respectively. Equations (11) and (12) may be solved straightforwardly to 
give 

Xiii;., ={(l+~~)Ril(l+Ri)Iiib +{(l-ccRi)l(l+Ri)>ii,, i=1,2 ,..., N, (13) 

p=m/M (14) 

being the (known) mass ratio of the secondary and primary systems. The velocity of m 
must remain constant between two consecutive impacts because no forces are assumed 
to act upon it then. Consequently, its velocity ii, between the i and (i + 1) impacts, for 
example, is simply the ratio of the absolute distance travelled by m and the time elapsed 
between these two impacts. Mathematically, 

Zia = (z,i+l,-zi)l(tci+l,-ti), i=1,2 ,..., N. (15) 

Substituting equation (7) into equation (15) produces 

ii, =n[X~i+I,+ Y(i+l)-Xi - Yi]/{a(i+l)-ai), Yi = Zi -Xi, i=l,2,...,N 

(16, 17) 

being the relative displacement between m and AI. The Yi is introduced because impacts 
occur only when the relative displacement is +d/2 for a collision on the right side of M 
in Figure 1 and -d/2 for a collision on the left. Hence, at impact, 

y, = d/2, collision on right of M 
’ {-d/2, collision on left of M 1 ’ 

i=l,2 ,..., N. (18) 

Consequently, the only unknowns in expression (16) for & are the xi. Similarly, the 
velocity of the secondary mass just before the ith impact, &, equals its velocity between 
the (i - 1)th and ith impacts. Therefore, 

iib = 0[Xi + Yi -Xci-lJ- Yci-r,]/{ai -aci-1,}, i=1,2 ,..., N. (19) 
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Equations (13), (16) and (19) may be combined to give 

(1 +PWifJ 
xia =~l+RiI~ai_a(i_l)~ LxiAx(i-l)+ Yi-y(i-l)l 

(1 -PRiW 

+ (1 +Ri)(a(iP*yJ-ai) 
[X(i+l)-Xi + Y(i+l)- Yil, i=l,2 ,...) N. (20) 

This last relationship may be substituted into equation (5) to produce an expression for 
ai in terms of the unknown Xi, A and T. Consequently, 

(l+PUW ai = (1 +Ri)?jU(LYi -CX(i_l)) 
[Xi -X(i-l)+ Yi - Y(i-111 

C1-CLRiW 

+(1+Ri)7)~(~(i+l)-ai) 
[X(i+l)-Xi + Y(i+l)- Yi]-ArCOS[ai+7]+‘6i, 

rl T 

i = 1,2,. . . ,N, (21) 

where, the bi of equation (6) are already in the desired form, 

bi=Xi-Asin[ai+T], i=l,2 )...) N. (22) 

Equations (9), (lo), (17), (21) and (22) can be substituted into equation (8) to give N 
linear, simultaneous equations. 

A perusal of relation (21) should indicate that terms like a(i-1) and a(i+i) have not yet 
been defined at the two extreme values of i. They have to be obtained from the 
requirement for periodic motion. It has been seen already that periodicity implies 
f(N+i) = tl + rr,, t(Nc2) = t2 + TO, . . . , or, in general, 

t(N+i) = ci + TO, Y(N+i) = Yi, X(N+i) =xiv R(N+i) = Riv i=l,2,... , N. (23,24) 

Multiplying equation (23) by 0 and using equation (7) leads to 

(Y (N+i) = (Yi + C!To = (Yi + 2rky i=l,2,...,N (25) 

if the load undergoes k cycles in time To. Consequently, when i equals N, CY((+~) is simply 
((~1 +L?To), or l2T0 in view of equation (7). When i is unity on the other hand, terms 
like ((Wi -(Yci-i)) in relation (21) may be Written as (a(N+i) -“(N+i-1)) by eII’@Oying 

equation (25). These last expressions can be evaluated by using the known driving 
frequency, 0, the assumed periodicity, To, and presumed contact instants ti, i = 1,2, . . . , 
N. Terms such as Y(N+i-1) can be computed by further presuming the side of it4 at 
which any particular impact happens. Then equation (18) can be used straightforwardly. 
All other variables except for the Xi, i = 1, 2, . . . , N, A and T are understood to be 
given or calculable from equations (3), (14) and (24). Consequently (N + 2) unknowns 
exist. If trigonometric terms like sin [cz(i+i) +r] in equations (8) and (22) are expanded 
and the resulting coefficients of the unknowns unified, the N simultaneous equations 
can be shown to be [25] 

Wlixi + W2iX(i+l) + W3i-X (N+i-1) + WJiA COS T + WSiA Sill 7 = Whi, i = 1,2, . . . , N. 

(26) 

The often cumbersome but calculable coefficients Wriy r = 1, 2, . . . , 6 and i = 1, 2, , . . , 
N, are given more conveniently in the Appendix. The Xi must still satisfy periodicity 
condition (24) so that only X1, X2, . . . , XN are actually involved in equation (26). 

An additional N linear simultaneous equations may be developed by considering the 
velocity rather than primarily the displacement of M. The velocity of M just before the 
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(i +l)th impact, for example, is simply the derivative of equation (2) at t(i+i)b. An 
alternative expression may be found like that for the velocity just after an impact from 
linear momentum and the definition of the coefficient of restitution. Relating the two 
expressions produces the desired equations. From equation (2) 

X(i+l)b = exp 1 -Fta(i+l) -ai))[ [ 4 coS ff ((Y(i+l) -cWi)-bi sin y (aci+i) -ai) I 
rln 7 

Ui sin? (a(i+i) -Lyi) +bi COS p ((Y(i+l) -(Yi) II +AR COS [(Y(i+l) +T], 

i = 1,2, . . . , N, (27) 

with equation (7) and Xci+ijb rather than X(fci+l)b)) being employed. Solving the 
momentum and restitution equations (11) and (12) for X;.b rather than Xi, gives 

J;riib={(Ri-CL)/(l+Ri)}iib+{(l+E.L)/(l+Ri)}ii,, (28) 

where p is defined by equation (14). Expressions (16) and (19) for ii, and .& may be 
substituted into equation (28) to yield 

[xi -X(i-1) + Yi - Y(i-I)1 

[X(i+l) -Xi + y(i+l) - yil, i = 1,2,. . . ) N. (29) 

NOW Xci+l)b is needed rather than Xib. It is obtained by replacing every i in equation 
(29) with (i + 1). Identifying the resulting relationship to equation (27) leads to the 
following simultaneous equations [25]: 

VI&i + V;?iX(i+l) + V3iX(i+2) + V4iXcN+i_l) + VSiA COS T + VeiA sin r = Vyi, 

i = 1,2,. . . , N, (30) 

after expanding trigonometric terms and accounting for periodicity in the manner needed 
to generate equation (26). The computable coefficients Vri, r = 1, 2, . . . , 7 and i = 1, 
2 **, N, are again detailed for a given i in the Appendix. The (N + 2) unknowns of Xi, 
ill, 2,..., N, A and T are common to both equations (26) and (30) because of the 
periodicity condition (24). Consequently 2N linear simultaneous equations have been 
formed in (N + 2) unknowns?. 

Exact closed form solutions are possible when the number of equations and unknowns 
are identical (N equal to two). Then the Xi, i = 1,2, . . . , N, can be eliminated completely 
leaving only A and T as unknowns [25]. The two resulting equations are independent 
except in the special, essentially symmetric case when coefficients of restitution are 
identical and the durations between any three consecutive impacts are the same. This 
situation is analogous to that observed previously for exclusively rigid impacting mechan- 
isms [l]. Consequently the same procedure as before was adopted: i.e., assume some 
value for A then calculate the ensuing T. More generally however, the IMSL subroutine 
LEQTlF was used to solve the four independent equations (26) and (30) numerically 
by utilizing Gaussian elimination [26]. This course was felt more expedient than solving 
the equations analytically to produce extremely lengthy expressions. A numerical tech- 

t Alternatively, the A and r may have been assumed rather than the (Y~ and the 2N unknowns of Xi and 
air i = 1,2,. . . , N, calculated, maybe somewhat more precisely, from the 2N equations. However, the resulting 
equations are linear no longer so that numerical computations are very likely to be much more time consuming. 
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nique appears virtually essential on the other hand when N exceeds two. Then the least 
squares subroutine LLSQF of the IMSL library [26] was employed. Values of the 
unknowns were finalized when the square of the difference between the left and right 
sides of relations (26) and (30), g2, was reduced so that E was less than 3% of these 
values. (The 3% was decreased to 1.5% with virtually no effect in several arbitrarily 
chosen examples.) All computations were performed throughout the present work with 
double precision arithmetic on an AMDAHL V7 digital computer. 

Periodic solutions are grouped conventionally into asymptotically stable or unstable 
subsets. A periodic motion is asymptotically stable if, after a small perturbation, the 
original motion is restored eventually [7, 13, 231. Consequently asymptotic stability 
would enable machinery performance to be predictable [22,27-291. On the other hand, 
asymptotic instability implies that a small perturbation will change some aspect of the 
periodic motion for all time. The asymptotic stability of periodic motions was determined 
by the Kobrinskii’s [23] and Masri [7, 131 for contact surfaces having a single constant 
coefficient of restitution. Small perturbations at or just after the first impact were related 
to corresponding changes at or just after the second, third, etc., impacts. This technique 
was adapted in a companion paper to a rigid impact-pair with different, maybe periodically 
varying, coefficients of restitution. A similar, somewhat minor extension is possible here. 
The absolute displacement and velocity of M are no longer prescribed here so they need 
perturbing along with the previously changeable 2 and 2. Some of the presumed 
collision instants, and hence the ai, may be modified in accordance with the equations 
of motion and periodicity conditions. However, these adjustments must be transitional 
for asymptotically stable motion because the timing sequence must revert eventually to 
the claimed periodic form. Masri [13] adopted a slightly different approach but with the 
same end results. He replaced 2, which equation (16) indicates depends upon (yi, by the 
(Y, of equation (7). Then the initial perturbation and subsequent changes, each denoted 
by A, were shown to be related by 

I I*/ 

AX1, 

=[P] ;;a , [PI = [Ewll[~u-lkzl . . * [Pial * . * [J’~cz], (31932) 
la 

Aala 

if terms involving a single perturbation are significantly larger than expressions containing 
products of perturbations. Nomenclatures of previous references have been adjusted to 
be compatible with earlier formulations in this section. The a in a subscript for instance 
still implies an instant immediately after an impact. Different coefficients of restitution 
have been accommodated in the elements of the typical component matrix [Pia] given 
by equations (A5) through (A7) of the Appendix. These coefficients and variables like 
Xi and Y, must fulfil periodicity condition (24) and the ai must similarly comply with 
equation (25). In addition, the Y, must satisfy equation (18). All elements of the 
component matrices may be calculated once the unknown Xi, i = 1, 2,. . . , N, A and r 
have been computed in the fashion detailed previously. Then [P] may be formed according 
to equation (32). If all the moduli of the eigenvalues of [P] are strictly less than unity, 
then a periodic motion is asymptotically stable [13]. Eigenvalues were computed by 
employing Hessenberg’s method in the readily available EIGRF of the IMSL library [26]. 

2.1. COMPARISON WITH PREVIOUS THEORETICAL RESULTS 

Computations were performed by using the theory of the last section in order to 
compare the results with more limited theoretical data available for several particular 
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Figure 3. Comparison of predicted two equispaced, two and three unequispaced impacts/cycle stability 
zones with the previously most comprehensive results at d =37(F,/K) alone. - - -, Masri’s results [ 131 including 
the single case “a” of three impacts/cycle, stable motion. t, Implies equispaced, e, or unequispaced, u, 
impacts/cycle. g=O.OOS; h =0.042; R,=R2=0.75. 

TABLE 1 

A numerical comparison of previous [13] and present theoretical results for two equispaced 
and two unequispaced impacts/cycle of the external load 

Parameters of primary and secondary system 
6 = 0.005, r = O-94, p = O-042, RI = R2 = O-75, d/(F,/K) = 37 

%/T 
Rhla 

717 
XI 
X, 
21 
z2 
XI, 

*2a 

X lb , 
X .2b 
2 *la 

X2$ 

Modulus of 
eigenvalues 
of PI 

Stability 

2 Equispacedt 
I 

Present Previous 
results results 

1 1 
0.68 0.68 
0.66 0.65 

16.17 16.21 
-16.17 -16.21 

34.67 34.71 
-34.67 -34.71 

-2.22 -2.22 
2.22 2.22 

-3.96 -3.96 
3.96 3.96 

-20.74 -20.77 
-16.67, 20.74 -16.72, 20.77 

16.67 16.72 

3.83 4.02 
0.95 0.77 
0.95 0.52 
0.09 0.03 

Unstable Unstable 

2 Equispaced 2 Unequispaced 
r \ r 

Present Previous Present Previous 
results results results results 

1 1 1.37 1.37 
-0.53 -0.53 0.52 0.52 
-0.56 -0.55 0.50 0.49 
-5.10 -5.07 13.65 13.76 

5.10 5.07 -9.31 -9.37 
13.41 13.42 32.15 32.26 

-13.41 -13.42 -27.8 1 -27.87 
-0.86 -0.85 5.47 5.56 

0.86 0.85 9.81 10.03 
-1.53 -1.53 3.73 3.80 

1.53 1.53 11.66 11.78 
-8.02 -8.03 -13.09 -13.10 
-5.18, 8.02 -5.16, 8.03 -15.17, 28.48 -15.32, 28.69 

5.18 5.16 14.77 13.79 

12.08 12.15 0.93 0.93 
0.99 0.69 0.93 0.93 
0.99 0.43 0.58 0.58 
0.25 0.01 0.58 0.58 

Unstable Unstable Stable Stable 

t Impacts/cycle is implied. 
I x,,, is the maximum deflection of the primary system with impacts. 

8



OSCILLATOR STABLE PERIODIC VIBROIMPACTS 49 

Ratlo of durattans between 
three camecuttve Impacts 

Figure 4. Comparison of two unequispaced impacts/cycle theoretical results with those of Sadek [6]. Both 
data sets were computed without regard for stability. -, Sadek’s results; - - - -, particular results of general 
theory. 5=0.004, *=0.0484, R1=R2=06 

problems. Previous problems involve mainly two equispacedt impacts per cycle of the 
sinusoidal load, F0 sin at [2-5, 7, 8, 10, 11, 14, 22, 231. Information pertaining to two 
unequispaced and three impacts per cycle is very sparse [6, 131. The limitations are 
reflected in the comparisons where earlier data is restricted to d = 37(F,JK) in Figure 
3 and Table 1 or, regardless of stability, to two unequispaced impacts/cycle in Figure 
4. More comprehensive calculations based upon the general theory are presented conven- 
tionally in Figure 3 as continuous curves relating values of dK/Fo to the frequency ratio 
r or 0/w. Particulars of the parameters employed are given at the top of each figure or 
in Table 1. In addition the periodicity, location, number and distribution of impacts were 
presupposed from values assumed by previous authors. Consequently, two values of r 
were considered for the equispaced impact cases of Table 1[13]. Stability zones displayed 
in Figure 3 are similar to ones measured for the analogous impact-pair. Associated 
boundaries are indicated by two curves having a common symbol. Any point within 
compatible boundaries corresponds to a stable motion with the same periodic form. 
Further comparisons are possible for two equispaced impacts/cycle alone but they do 
not add to conclusions from present communications [25]. 

Table 1 suggests that agreement is normally closest with Masri’s results for two 
unequispaced impacts/cycle. Then the otherwise strong correlations intimate that the 
single major change in X,,, from 13.79 to 14.77 arises most likely from a printing error 
in reference [13]. Similar conformity is demonstrated initially for the equispaced impacts 
but significant differences seem to develop in the eigenvalues. These differences have 

t Equispaced indicates that the durations between any three consecutive impacts are identical. More general, 
unequispaced impacts where consecutive durations are unequal will be implied when the distribution of impacts 
is not stated. The future abbreviation of cycle will infer cyck of the sinusoidal load. 
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been shown [25] to stem largely from a slight slip in former manipulations of the 
simultaneous equations which affects only the equispaced case. The slip also, plausibly, 
.explains the premature termination of Masri’s equispaced results at r equal to 1.04 on 
the line d = 37(F0/K) in Figure 3. It does not account on the other hand for Masri’s not 
obtaining the very narrow two unequispaced impacts/cycle stability zone near r equal 
to 1.00. The maximum eigenvalue modulus is near unity in this zone. Consequently the 
“all-or-nothing” stability criterion could easily produce opposite conclusions from even 
minor variations in numerical data. Such variations could well arise from Masri’s, 
apparently, using single rather than, presumably more accurate, double precision arith- 
metic in numerical computations [7]. Apart from these discrepancies, agreement is 
reasonable overall in Figure 3 and also at point “a” corresponding to the lone three 
impacts/cycle example. The absence in this figure of stable equispaced impacts between 
0.960 < r < 0.985 supports the previous observation that unevenly spaced impacts are 
most likely when r is near one. 

An additional comparison is given in Figure 4 of the results from the degeneration of 
the general theory into two unequispaced impacts/cycle and those from a Fourier series 
approach proposed by Sadek [6]. Sadek disregarded the question of stability so that the 
information is presented without such a determination. Figure 4(a) indicates that values 
of dK/Fo correlate quite closely whereas large differences occur generally in Figure 4(b) 
for sin r at frequency ratios, r, near unity. A detailed examination of Sadek’s theory 
indicates that the discontinuity in the velocity of the primary mass at an impact is treated 
improperly. Consequently, equation (13) of reference [6] implies that the phase angle T 
is independent of the amplitude F. of the external force. This assertion is refuted clearly 
by Sadek’s own results presented as the solid curves in Figure 4. An independent increase 
in F. reduces dK/F,, but r remains unaltered at a value, for example, of 0.999. Con- 
sequently point B is transposed leftward along the solid curve r = O-999 to position B’, 
say, if the periodic motion, despite a change in the ratio of durations, is still to have two 
unequispaced impacts/cycle. Points B and B’ respectively correspond to points A and 
A’ in Figure 4(b) which obviously relate to different T. 

In summary, the theory’s conformity with previously meagre results is promising but 
not convincing. More complete verification is needed. Therefore a mechanical system 
was built to simulate the mathematical model as far as possible in order to provide a 
further independent test. 

3. EXPERIMENTAL DETAILS 

The experimental analog of the ideal primary system in Figure 1 was composed of 
items 4, 6 and 18 in Figure 5. Slotted mass 6 with adapters, 4, was supported on two 
sides by flexible, spring steel strips interposed by a very stiff but light hollow beam, 18. 
These supports were made so long, 12.00 * 0.08 in, that their ends closest to the slotted 
mass never moved more than 0*38”* 0.05” from the vertical. Consequently gravitational 
effects should be negligible. The supports were also much stiffer in torsion than flexure 
so that the experimental movement was almost uniaxial to conform to conditions imposed 
by theory. Tightened screws and bolts were used to connect structural components and 
enable the primary system to move integrally. It is practically impossible to prevent all 
relative motions, however, so that friction developed at joints. Dissipation was found 
from conventional free decay and sinusoidal resonance tests [24, 301 to be equivalent 
to a viscous damping ratio, 6, of 0.0114 f 0.0005. In addition the first and second natural 
frequencies of the primary system were found to be 19.87 f 0.03 Hz and 430* 2 Hz. 
Further measurements of select amplitudes and phases of the displacement of the primary 
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Figure 5. Details of experimental apparatus and instrumentation. 0 Electromagnetic shaker, Ling Model 
400 Series 192; 8 Hewlett-Packard function generator 3110B; 0 amplifier Ling Model PA300; @ aluminium 
adapter; 0 secondary mass made from stainless steel; @ slotted primary mass of die tool steel; 8 Briiel & 
K’aer accelerometer 

d 

@ Wayne-Kerr capacitance transducer; 8 support for capacitance probe; 
10 two light cotton threads; solid frame; @ Wayne-Kerr feed back amplifier TE MK II; @J Hewlett- 
Packard multimeter 5306A; 
@ cold rolled plate; @J 

Tektronix double beam storage oscilloscope 7313; @ 
concrete block; @ hollow beams; @ weak spring; 

impedance head, type 
amplifier type 2626; 
5306A. 

riiel & Kjaer conditioning amplifier type 2626. @ Briiel& Kjaer conditioning 
Kiaer mass compensation unit type 5565; @ Hewlett-Packard multimeter 

mass also indicated good linearity over extreme load characteristics. Hence, the primary 
system fairly represented a linear oscillator for the frequencies between 10 and 30 Hz 
employed subsequently. The total weight was equivalent to the tip weights of brackets, 
slotted mass and accelerometer, labelled 7 in Figure 5, plus 33/140 times the weight of 
each support for an essentially fundamental cantilevered action [24]. This total was 
calculated from straightforward measurements to be l-61 lb(f). The corresponding 
stiffness was approximated for light damping as the square of the measured fundamental 
radian frequency multiplied by the equivalent weight divided by the gravitational constant. 
This procedure gave K in Figure 1 as 65.01 lb(f)/in. 

The secondary system consisted of a dumbbell-like mass, item 5 in Figure 5, strung 
by two light threads, 10, from a solid frame. It was identical to the mature stainless steel 
secondary mass described previously in similar impact-pair experiments [l]. The dumbbell 
reduced extraneous lifting which happened increasingly at higher loading amplitudes but 
the threads alleviated rotations about the vertical. Hence, the theoretically assumed free, 
uniaxial motion was duplicated reasonably for the secondary mass which weighed 0,044 f 
0.002 lb(f). This mass was effectively rigid too because its lowest natural frequency was 
500 times, or more, greater than any loading frequency. High speed photography 
measurements of coefficients of restitution have been reported earlier [l, 251. Experi- 
ments were performed only with magnetically insensitive, mature steel which gave the 
most consistent results for impact-pairs. As before, unequal coefficients of restitution 
were achieved by taping one side of the primary mass. 

The primary system was connected as in Figure 5 through an impedance head and 
spring to the electromagnetic shaker. The spring was much weaker than the primary 
system’s effective stiffness so that a force rather than a displacement-like input was 
obtained. The sinusoidally time varying input, generated to within 2% of the nominal 
amplitude, was monitored with the aid of the directly coupled impedance head. Com- 
pensation for the extraneous mass of this head was achieved by employing the electrical 
compensation circuit recommended by its manufacturer [31]. Measurements were taken 
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at night to avoid extraneous building vibrations. Absolute displacements and accelerations 
of the slotted primary mass were observed separately by using a capacitance displacement 
transducer, 8, and accelerometer, 7. Displacements were determined relative to one of 
the aluminium brackets, 4. The other bracket maintained symmetry and prevented 
unbalance. Experimental procedures have been detailed previously [l, 251 and, hence, 
will not be described again. The only additional limitation was imposed by the restricted 
force of the shaker [32] which curtailed measurements at the highest periodic impact 
numbers. Stability had to be demonstrated conclusively again within an arbitrarily 
imposed but previously satisfactory time limit of 2 min [l]. 

4. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS 

Experimental and theoretical stability zones are compared in Figures 6-8 with the 
inverse of dK/Fo in Figure 3 taken as the ordinate. Vertical lines correspond invariably 
to experimental data whilst the continuous curves present related theoretical results. 
Coefficients of restitution both average 0.75 in Figures 6 and 7 whereas Figure 8 shows 
the results of taping one contact surface to produce dissimilar coefficients of 0.75 and 
0.61. In actuality, a coefficient of restitution was not constant but decreased generally 
by about 9% as the frequency ratio, I, increased within the experimental range indicated 
in the abscissa. Variations from the constant coefficients assumed can be anticipated 
from analogous impact-pairs to give various but on the whole small fluctuations for the 
different stability zones considered [ 1, 251. Other parameters observed experimentally 
and employed in the numerical computations are reported in the figure captions. Figures 
6 and 7 relate to the same vibroimpact system; the two impacts/cycle stability zones 
were separated only to improve clarity. The experimental five impacts/cycle stability 
zone, distinguished in Figure 7 by vertical lines terminated with dots, was abbreviated 
by the restricted force capability of the shaker. Corresponding theoretical extremities 
are indicated simply by dots. Periodicity, impact rate and temporal distribution needed 

0.32 7 

I I I I I 
0.6 0.8 I.0 I.2 1.4 

Frequency rotlo, I 

Figure 6. Comparison of experimental and theoretical stability zones for two impacts/cycle with identical 
coefficients of restitution. Gap size is 0.0105 f 0.001 in. (a) Equispaced impacts; (b) unequispaced impacts. 
1, Range of experimental results. Values used theoretically: [=0.0114, ~=0.028, Ri=R2=0.75. Symbols 0, 
0 as in Figure 3. 
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0.32 

0.28 

1 
0.24 
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k 
P 0.20- 
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4 01 ’ 1 I I I I I I 
0.6 0.7 0.8 0.9 I.0 1.1 I.2 I.3 
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Figure 7. Comparison of experimental and theoretical stability zones for three, four and five impacts/cycle 
with identical coefficients of restitution. Gap size is 0~0105+0~001 in. 1, Range of experimental results. Values 
used theoretically: [=0.0114, p =0.028, R1=R2=0.75. 0 0, Theoretical stability boundary; ??---@, experi- 
mental stability zone. Other symbols as in Figure 3. 

0.32 

0.24 

0 
0.6 0.8 I.0 I.2 I.4 

Unstable Unstable 

I I I I I 
0.6 0.8 I.0 I.2 I.4 

Frequency mtn. I 

6 

Figure 8. Comparison of (a) experimental and theoretical stability zones for two and three impacts/cycle 
and (b) experimental stability zone of sliding-like phenomenon. Coefficients of restitution are unequal and the 
gap size is 0~0081~0~001 in. 1, Range of experimental results. Values used theoretically: [=0.0114, F =0.028 
and Ri=0*75, R,=0.61. Symbols as in Figure 3. 
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(a) (b) 

(cl (d) 

Figure 9. Typical experimental motions of primary mass with unequal coefficients of restitution. Top and 
bottom trace in a figure represent the external load and absolute acceleration of the primary mass, respectively. 
(a) Two unequispaced impacts/cycle with one impact on steel and one on tape; (b) three impacts/cycle with 
one impact on steel and two on tape; (c) one impact on steel and many on tape; (d) two impacts on steel and 
many on tape. Horizontal time scale is 16.7 ms/division. 

at the start of calculations were obtained from experimental histories like those displayed 
in Figure 9. (The parts (a)-(c) of Figure 9 correspond to the identically lettered points 
in Figure 8.) A collision is identified by a sudden acceleration in Figure 9 followed by 
a gradually decaying envelope as the resulting elastic stress waves diminish. These later 
transients appeared unimportant providing they were attenuated completely before the 
subsequent collision [33]. Then the idealization of effectively an acceleration pulse with 
infinitesimal duration is reasonable. Furthermore, the number and timing of impacts in, 
for example, Figures 9(a) and (bj can be determined straightforwardly. Difficulties arose, 
however, when collisions occurred repeatedly and very rapidly on the taped side of the 
primary mass. This phenomenon is illustrated in Figures 9(c) and (d). It is analogous to 
the sliding observed for the impact-pair with unequal coefficients of restitution [l]. Such 
behaviour is outside the scope of the present theory. 

Figures 6-8 indicate that the non-sliding experimental and theoretical stability zones 
generally agree well. The largest differences occur in the highest numbered zones and, 
somewhat surprisingly, in the two equispaced impacts/cycle zone where coefficients of 
restitution are equal. A close inspection of the equispaced impact zone revealed that 
the maximum absolute eigenvalue of [P] in equation (32) varied between 0.996 and 
0.999. Computations were repeated with single precision arithmetic for this case alone 
and the ensuing upper stability boundary can be seen from Figure 6(a) to be clearly 
different. Correlation with experiment is usually poorer with single precision although 
double precision arithmetic gives an apparently superfluous spike in the practically 
significant region of r equal to unity. It was impossible, however, to control and load 
sufficiently finely there to obtain reliable experimental results which might confirm the 
spike’s existence. A similar difficulty was experienced previously [4] which suggests that 
this point is worthy of further investigation. These experiences together with the narrow- 
ness and closeness of all stability zones in the peaks or troughs in Figures 3 and 6-8 
indicate that the system’s behaviour in the vicinity of r equal to one is very sensitive to 
small fluctuations in the parameters. Consequently, the traditional two equispaced 
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impacts/cycle representation would appear to have limited applicability in such circum- 
stances. Remaining differences between experiment and theory are similar to those noted 
previously for an impact-pair [ 11. Consequently, sources of experimental error introduced 
by the new spring coupling to the shaker and interactions between closer modes of the 
primary system seem acceptable. Major discrepancies at the largest loads which excite 
the highest impact rates are largely created again by the uncontrolled lifting of the 
experimental secondary mass. 

Information presented virtually conventionally in Figures 6-8 cannot be applied easily 
to what is, probably, the most important practical application where vibroimpacts act as 
a “damper”. Then, the secondary mass should oppose and, hence, reduce the originally 
resonant displacement of the primary system. Attenuation happens only when _&,,,/A, 
the ratio of the maximum deflections of the primary system with and without impacts, 
is less than unity. Consequently the alternative representation of Figure 10, where 

0.2-r B 
:o 

L8r=I.000 
0 1 I I I 

0 0.05 0.10 0.15 0.20 0.25 

I I I I 

(b) 

&a-h “} r= I.057 1 
ODD’ 

p”} r- I.000 

,‘Z 
,o” 
(I 

I I I I 
0 0.05 0.10 0.15 0.20 0.25 

F, /dK 

Figure 10. Comparison of the theoretical and experimental displacement performance of an impact damper 
with (a) identical coefficients and (b) different coefficients of restitution. Values used theoretically: .$‘=0.0114, 
CL =0.028. (a) R,=R,=0.75; (b) R1=0.61, RZ=0.75. Symbols as in Figure 3. 

FO/(dK) is plotted for a constant r near unity against &,,,/A rather than a variable r, 
is most appropriate. The figure suggests that the primary system’s maximum periodic 
deflection is attenuated most when r equals unity. It then seems beneficial to have equal 
coefficients of restitution and two stable equispaced impacts/cycle. The attenuation at 
a given FO/(dK) diminishes for a small increase in r from unity but, very importantly, 
amplifications always occur and may be fairly large for a slight decrease in r. Therefore 
the performance of a traditionally designed, virtually viscous-less impact damper [7, 211 
will deteriorate noticeably if r falls consistently below one in practice. Consequently the 
driving frequency or speed will require close controls with the addition of an impact 
damper. 
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5. CONCLUSIONS 

A more general theory has been developed to accommodate any number of repetitive 
impacts influencing a, formerly, resonant system. Although most incongruences with 
earlier, sparse predictions of stability may be rationalized, a completely convincing case 
is not presented for the theory’s accuracy. Credibility is enhanced greatly therefore by 
the close correlation demonstrated between the results from the general theory and 
comprehensive experiments. The recommended procedure for designing impact dampers 
is seen to be reasonable for one example of a lightly damped primary system with external 
sinusoidal loading. This particular example, however, suggests that the operation of the 
primary system should be maintained at or slightly above its individual fundamental 
resonance. Careful control of the driving speed may be needed in practice because of 
the extreme sensitivity displayed by the response in this frequency region. 
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APPENDIX 

Coefficients in the 2N linear simultaneous equations (26) and (30) and elements of 
the component stability matrix [Pia] in equation (32) are given explicitly here. The 
following variables are needed in addition to the Cri and Czi, i = 1, 2, . . . , N, defined 
in equations (9) and (10) of the main text: 

(1 +CL)Rin 

G1i = (1 +Ri)(a(i+iV) -Ql(i+N-I))’ 

t1 -@Ri)R 

G2i = (1 +Ri)(cw(i+r) -(Yi)’ 

(R(i+l) -l*)fl 
G3i = (1 +R(i+l))(a(i+l) -ai)’ 

(l+CLW 
G4i = (l+R(i+l))(a(i+z) -a(i+l))’ 

i=l,2 ,..., N. 

Then, for i = 1, 2, . . . , N, 

Wli = (C,i/qW)(Gzi -Gli -&)-Gi, W2i = 1 - CriG2i/vW, W3i = CriGlilqw, 

W4i = Cli{(r/v) COS (Yi + (t/T/) sin ai}+ C2i sin Qi -sin LY(i+r), 

WSi = Cli{-(r/q) sin (Yi +(4/Q) COS cUi}+C2i COS (Yi -COS a(i+l), 

w6i = (Clil~W)(Gli{Y~i+r+, - Y~i+N-1)l+G2i{Y(i+l) - YiI), W) 
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Vii= -G3i-C4i-(C3i/7)W)(Gli_GZi+SW), 

Vzi = Gsi - Gqi - C3iGZi/qW, V3i = Gdi, V4i = C3iGli/qu, 

Vsi = C3i{(r/s) COS (Yi + (c/q) sin (Yi} + C4i sin (Yi - 0 COS a (i+*,, 

V6i =C3i{-(r/?j) sincuj+(c/n) COS(Yi}+C4i COSCYi+fl sina(i+l), 

V7i = -G3i(Y(i+l) - Yi)-G4i(Yci+2) - Yci+l))+(C3i/nw)x 

X (Gli{Yci+N) - Yci+N-l) I+ GZi{Y<i+l) - YiI), (A3) 

C3i =~(nCzi -tCri) and C4; = -w(nCli +[Czi). (A4) 
“ariables 5, w, r and n used in the above expressions are defined in equation (3). The 
ai, fi and Yi are given, respectively, by equations (7), (14) and (18). Periodicity conditions 
(24) and (25) are employed to bring subscripts within the range 1,2, . . . , N and then 
all the coefficients are calculable. 

Explicit expressions given by Masri [13] for elements of the component matrix [Pna] 
in equation (32) were modified slightly to accommodate different coefficients of restitu- 
tion. For example, coefficients k,, r = 1, 2, 3, 4, in reference [13] have to be generalized 
to kti, r = 1,2, 3,4 and i = 1, 2,. . . , N, where 

kli =(~-cLR(~+I))I(~+cL), k2i =~(l +R,i+~~)l(l+p), 

k3i=(1+R(i+~))l(l+~),k4i=(~--R(i+l))/(l+~). (A5) 
The following variables are defined to reduce the length of subsequent expressions: 

Sli = (Gli l’VGi)/77, S2i = Clil(WV), S3i = -WClilrl, S4i = C3il(Wrl), 

Ssi = (2?ia/O)-A COS [(Y(~+I) +T]-Ss6i, 

Sgi = (biS3i + (x%?i, -Al2 COS [Cyi + T])C3i/(Wq)}/O, 

S7i = SlilSSi, SSi = SZilSSi, S$Ji = -l/Ssi, SlOi = -(a(i+l) -ai)l(fiS5i), 

Slli = (-A’si -ASli COS [(Yi + 71 +AL!S2i sin [(Yi + 71 +L?!i,/O)/S,i, 

Srzi = A COS [a (<+I) + T] +Sei, 

S13i = {-WbiC3i + (qC4i -&Y3i)(*ia -Af2 COS [ai +~])}/(flq), 

S14i = S13i -AR sin [a(i+l) +7]. (A6) 

By using equations (A5) and (A6) the elements of [Pia] can be shown to be 

picz(l, l)=Sli +S12i(S7i +S9i), pia Cl, 2) = S2i + SSiS12i, pia(lv 3) = SlOiSlZi, 

PiJI, 4)=-ASli COS [ai +T]+AOS2i sin [oi +T]-Sci +Sll+!Sr2i, 

Pia(2, 1) = kri(S3i +S7$14i +S&14i), Pi,(2,2) = kri(S4i +SsiSr4i), 

Fia(293) = kriSlOiSr4i + k2i, 

Pi,(2,4)= kli(-AS3i COS [CXi +T]+AL?S4i sin [a; +T]-S13i) + 

+kliSlli(S13i -AR sin [Q(i+l) + T]), 

pia(3, 1) = ksi(S6i +S7iS14i +SgiS14i), Pia(3, 2) = kxi(S4i +S&r4i), 

Fi,(3,3) = k3iSrOiSr4i + k4i, 

Pi,(3,4) = k3i(-ASji COS [Cti +T]+AOS~~ sin [ai +T]-SI~~ fSlliSr4J, 

pia(4, 1) = S7i +S9i, pia(4,2) = SSi, Piat 3) =SlOiv Pia(4, 4, =Slli. (A7) 
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Variables can be computed in the same manner as the coefficients of equations (A2) 
and (A3) with the additional terms *ia, Zia, A and T determined by the particular 
periodic solution under consideration. Subscript i in equations (A6) and (A7) varies 
from 1 to iV. 
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