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1. Introduction

In recent years, mobile mechanisms which are driven by
autogenous internal force have attracted significant attention
from researchers in different disciplines fueled by their broad
applications in medical inspection, engineering diagnosis,
and disaster rescues. The basic idea originally proposed by
Chernousko [1] is that the rectilinear motion of a system can be
engineered using a periodically driven internal mass interacting
with the main body in the presence of dry friction (see Fig. 1). The
advantage of this method is that no external driving mechanism is
required, so the system can be encapsulated and move indepen-
dently in the complex environment. Imagine for example, a
miniaturized medical capsule which is moving inside human
body by adopting this method. In this case, many complications
induced by external driving mechanism, e.g. [2,3], can be avoided.
However, understanding of the dynamics and efficient control of
such driving mechanism are critical, and they have to be carefully
analysed and designed for the system to be able to complete
its tasks.

This paper studies mathematical model of a new capsule
system, which employs an internal vibro-impact force for driving.
Similar mobile mechanisms driven by self-propulsion and dry
friction have been previously considered in robotics. For instance,
Vartholomeos and Papadopoulos [5] designed a micro-robotic
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platform which was able to perform translational and rotational
motions by employing vibration micro-actuators. In [6], horizon-
tal and vertical oscillations of internal masses within carrying
body were utilised to create a vibration-driven mechanism. It has
been shown that the motion of the system can be controlled by
the phase shift between masses oscillations in horizontal and
vertical directions when the frequency of these oscillations is the
same. An example of an unbalanced rotor acting as a vibration
exciter was considered and optimal frequency of the oscillation
was determined to maximise the average velocity. Li et al. [7]
theoretically studied an optimal motion for an internal mass
moving inside a capsule, and Su et al. [8] designed a capsule

system driven by an electromagnetic force and investigated it

experimentally. Furthermore, Liu et al. [9] proposed a mobile cart

which may exhibit planar motions on a surface when excited by

two parallel pendulums rotating in a specified manner. Fang and

Xu [10,11] studied dynamics of a mobile system in a resistive

medium by controlling an internal mass. The common issue for

the capsule-type mechanisms (e.g. [6–8,10,11]) is that, the cap-

sule progression is constrained by the motion of internal mass,

and driving such a mass within a limited dimension is extremely

difficult in experiment. On the other hand, the problem for the

large-scale mobile platforms (e.g. [5,9]) is that they are difficult to

be miniaturized and therefore have limited applicability. To

address these issues, we propose a new mechanism, where in

addition to the harmonic oscillations of the internal mass, the soft

impacts between this mass and the capsule are used in order to

enhance the progression of the entire system.



Fig. 1. Physical models of the capsule system: (a) on a resistive surface and (b) in a

resistive medium (adopted from [4]).

Fig. 2. Physical model of the vibro-impact capsule system.
This paper proposes a vibro-impact capsule system which is
inspired by a drifting oscillator studied by Pavlovskaia et al. [12].
As shown in [12], the behaviour of this impact oscillator may vary
from periodic to chaotic due to nonsmooth nature of the under-
lying equations of motion and the progressive motion of the
system is possible in one direction. For our proposed system,
the case is more complicated, since the rectilinear motion of the
system is bidirectional. So bifurcation studies are carried out in
the paper in order to provide a better insight for design of such
system. The purpose of this study is to analyse a physical model of
our proposed capsule system which can be used, for example, for
capsule endoscopy [13], where a swallowable capsule equipped
with a miniature camera is able to move inside human body and
help to determine gastrointestinal symptoms. The applications of
such system can be even broader extending to pipeline fault
diagnosis, life searching in collapsed building, and others.

This paper is organized as follows. In Section 2, mathematical
modelling of the vibro-impact capsule system is described. In
Section 3, nonlinear dynamic analysis is presented, and the
periodic and chaotic regimes of the system under varying control
parameters are discussed. In particular, the best progressions
under different control parameters are obtained. In Section 4,
energy consumption of the system is considered and discussed.
Finally, some concluding remarks are drawn in Section 5.
2. Mathematical modelling

We consider a two degrees-of-freedom system, which is
composed of a rigid capsule containing within an attached
internal mass as shown in Fig. 2. The movable internal mass m1

is driven by an external harmonic force with amplitude Pd and
frequency O generated by a linear actuator (e.g. piezoelectric
actuator). The actuator contains a movable part connected to the
internal mass and a fixed part mounted on the rigid capsule m2.
We simplify the model of the actuator here and represent the
interaction between the mass and the capsule by using a linear
spring with stiffness k1 and a viscous damper with damping
coefficient c. A weightless plate is connected to the capsule by a
secondary linear spring with stiffness k2. X1 and X2 represent the
absolute displacements of the internal mass and the capsule,
respectively. The internal mass will contact the plate when the
relative displacement X1�X2 is larger or equals the gap G. The
bidirectional motion of the capsule occurs when the force acting
on the capsule from the internal mass exceeds the threshold of
the dry friction force Pf between the capsule and the environment
surface.

2.1. Equations of motion

As the system may operate in bidirectional stick-slip phases,
the relative displacement X1�X2 and the velocity of the capsule
_X 2 have to be closely monitored to ensure the appropriate
switches between various sets of the equations of motion which
2

are discussed below. In this study, Coulomb friction model is used
to calculate the frictional force between the capsule and the
sliding surface

f ¼
0, _X 2 ¼ 0,

�signð _X2Þ � Pf , _X 2a0,

(
ð1Þ

where Pf ¼ mðm1þm2Þg, m is the friction coefficient between the
capsule and the environment surface, and g is the acceleration
due to gravity.

For the case when the internal mass and the plate are not in
contact (X1�X2oG), the motion of the internal mass is governed
by

m1
€X 1 ¼ Pd cosðOtÞþk1ðX2�X1Þþcð _X 2�

_X 1Þ: ð2Þ

The capsule is either stationary

_X 2 ¼ 0 ð3Þ

when the force acting on the capsule from the internal mass is
smaller than the threshold of the dry friction force
9k1ðX2�X1Þþcð _X 2�

_X 1Þ9oPf , or moves ( _X 2a0) as described by
the following equation:

m2
€X 2 ¼�signð _X 2Þ � Pf�k1ðX2�X1Þ�cð _X 2�

_X 1Þ: ð4Þ

It is important to note that once the force acting on the capsule
reaches the critical level, i.e. 9k1ðX2�X1Þþcð _X 2�

_X 1Þ9¼ Pf , the
capsule begins to move and the direction of the dry friction force
acting on the capsule at this moment is opposite to the elastic
force acting on the capsule. In this moment the dry friction force
is calculated as

f ¼�signðk1ðX2�X1Þþcð _X 2�
_X 1ÞÞ � Pf : ð5Þ

When the internal mass and the plate are in contact
(X1�X2ZG), the motion of the internal mass is governed by

m1
€X 1 ¼ Pd cosðOtÞþk1ðX2�X1Þþcð _X 2�

_X 1Þ�k2ðX1�X2�GÞ: ð6Þ

The capsule is either stationary as Eq. (3) (in this case
9k1ðX2�X1Þþcð _X 2�

_X 1Þ�k2ðX1�X2�GÞ9oPf ) or moving ( _X 2a0)
as described by the following equation:

m2
€X 2 ¼ k2ðX1�X2�GÞ�signð _X 2Þ � Pf�k1ðX2�X1Þ�cð _X 2�

_X 1Þ: ð7Þ

Again, once the force acting on the capsule reaches the critical
level, i.e. 9k1ðX2�X1Þþcð _X 2�

_X 1Þ�k2ðX1�X2�GÞ9¼ Pf , the capsule
begins to move and the direction of the dry friction force acting
on the capsule at this moment is opposite to the elastic force
acting on the capsule. In this moment the dry friction force is
calculated as

f ¼�signðk1ðX2�X1Þþcð _X 2�
_X 1Þ�k2ðX1�X2�GÞÞ � Pf : ð8Þ

It is clear that the motion of the capsule system can be very
complex and in general may consists of four phases (i.a) sta-
tionary capsule when the internal mass and the plate are not in



contact, (i.b) moving capsule without contact, (ii.a) stationary
capsule with contact, and (ii.b) moving capsule with contact.

2.2. Non-dimensional equations

We introduce the following non-dimensional variables and
parameters:

t¼O0t, xi ¼
k1

Pf
Xi, yi ¼

dxi

dt ¼
k1

O0Pf

_X i,

_yi ¼
dyi

dt
¼

k1

O2
0Pf

€X i, O0 ¼

ffiffiffiffiffiffiffi
k1

m1

s
, o¼ O

O0
, a¼ Pd

Pf
,

x¼
c

2m1O0
, d¼

k1

Pf
G, b¼

k2

k1
, g¼ m2

m1
,

where i¼1,2. Then the equations of motion is re-written as
follows.

2.2.1. (i.a) Stationary capsule without contact

If the relative displacement between the mass and the capsule
is smaller than the gap,

x1�x2od ð9Þ

the mass has no contact with the plate. The motion of the mass is
then described by

_x1 ¼ y1,

_y1 ¼ a cosðotÞþðx2�x1Þþ2xðy2�y1Þ: ð10Þ

If the force on the capsule from the spring and damper is
smaller or equals to the threshold of the dry friction force,

9ðx2�x1Þþ2xðy2�y1Þ9r1 ð11Þ

the capsule is stationary,

_x2 ¼ 0, _y2 ¼ 0: ð12Þ

Once the force acting on the capsule reaches the threshold
9ðx2�x1Þþ2xðy2�y1Þ9¼ 1, the capsule begins to move, and the
direction of the dry friction force is determined by the elastic
force acting on the capsule, so it is equal to �sign ððx2�x1Þþ

2xðy2�y1ÞÞ.

2.2.2. (i.b) Moving capsule without contact

If the force on the capsule from the spring and damper is larger
than its dry friction force,

9ðx2�x1Þþ2xðy2�y1Þ941 ð13Þ

the capsule is moving ðy2a0Þ as

_x2 ¼ y2,

_y2 ¼ ð�signðy2Þ�ðx2�x1Þ�2xðy2�y1ÞÞ=g ð14Þ

and the motion of the mass is described by Eq. (10).

2.2.3. (ii.a) Stationary capsule with contact

The impact occurs when the relative displacement between
the mass and the capsule is larger or equals to the gap,

x1�x2Zd: ð15Þ

In this case, the motion of the mass is governed by the following
differential equations:

_x1 ¼ y1,

_y1 ¼ a cosðotÞþðx2�x1Þþ2xðy2�y1Þ�bðx1�x2�dÞ: ð16Þ

The capsule remains stationary as described by Eq. (12), when the
3

force acting on the capsule from the springs and damper is
smaller or equals to its dry friction

9ðx2�x1Þþ2xðy2�y1Þ�bðx1�x2�dÞ9r1: ð17Þ

Once the force acting on the capsule reaches the threshold
9ðx2�x1Þþ2xðy2�y1Þ�bðx1�x2�dÞ9¼ 1, the capsule begins to
move, and the direction of the dry friction force is determined
by the force acting on the capsule from the springs and damper,
so it is equal to �signððx2�x1Þþ2xðy2�y1Þ�bðx1�x2�dÞÞ.

2.2.4. (ii.b) Moving capsule with contact

If the force on the capsule is larger than its dry friction force,

9ðx2�x1Þþ2xðy2�y1Þ�bðx1�x2�dÞ941 ð18Þ

the capsule is moving ðy2a0Þ as described by the following
equations:

_x2 ¼ y2,

_y2 ¼ ½bðx1�x2�dÞ�signðy2Þ�ðx2�x1Þ�2xðy2�y1Þ�=g ð19Þ

and the motion of the mass is described by Eq. (16).
Let us define a set of auxiliary functions,

H1 ¼Hð9ðx2�x1Þþ2xðy2�y1Þ9�1Þ,

H2 ¼Hð9ðx2�x1Þþ2xðy2�y1Þ�bðx1�x2�dÞ9�1Þ,

H3 ¼Hðx1�x2�dÞ,

where Hð�Þ is the Heaviside function.
Finally, the comprehensive equations of motion for the vibro-

impact capsule system can be written as

_x1 ¼ y1,

_y1 ¼ a cosðotÞþðx2�x1Þþ2xðy2�y1Þ�H3bðx1�x2�dÞ,

_x2 ¼ y2ðH1ð1�H3ÞþH2H3Þ,

_y2 ¼ ðH1ð1�H3ÞþH2H3Þð�signðy2Þ�ðx2�x1Þ�2xðy2�y1Þ

þH3bðx1�x2�dÞÞ=g: ð20Þ
3. Nonlinear dynamic analysis

The purpose of the considered system is to drive the capsule in
a desired direction overcoming the resistance force from the
environmental surface. Although there are some similarities in
principals of operation between this system and the drifting
oscillator studied in [12,14], the main difference is that the
motion of the drifting oscillator is unilateral (i.e. in no circum-
stances the slider can move backwards), while our system is
capable of bidirectional motion in horizontal direction. The
numerical calculations were carried out using the first-order
Euler method with a fixed time step calculated as 1/104 of the
period of the external excitation.

3.1. Period-1 motion

A typical time history of the system displacement is presented
in Fig. 3, where the displacement of the mass (solid black line)
and the capsule (dash red line) are shown. To show the details, a
zoom up of the time history between 52.4 and 57.9 (Interval A) is
depicted in Fig. 4, where a sequence of four phases for a period-
one motion is shown during one period T of the external loading.
This typical pattern comprised the following phases:
�
 Phase I—the mass and the plate are in contact, and the capsule
is stationary.



Fig. 3. (colour online) Time histories of displacements of the mass, x1 (solid black

line), and the capsule, x2 (dash red line), calculated for a¼ 0:8, o¼ 1:19, d¼ 0:02,

x¼ 0:05, b¼ 6:6, and g¼ 3:0.

Fig. 4. (colour online) Time histories of displacements of the mass, x1 (solid black

line), the capsule, x2 (dash red line), and the plate (dot blue line) in four phases for

a period-one motion, calculated for a¼ 0:8, o¼ 1:19, d¼ 0:02, x¼ 0:05, b¼ 6:6,

and g¼ 3:0.
�
 Phase II—the mass and the plate are in contact, and the
capsule is moving.

�
 Phase III—the mass and the plate are not in contact, and the

capsule is moving.

�
 Phase IV—the mass and the plate are not in contact, and the

capsule is stationary.

As seen from Fig. 4, the period-one motion starts when the
mass and the plate are just in contact while the capsule is
stationary. A blow-up window clearly shows the displacements
of the mass, the capsule, and the plate at the beginning of Phase I.
Once the force acting on the capsule from the springs and damper
reaches the threshold of dry friction, the capsule starts to move
and Phase II begins. The mass and the plate separates in the
beginning of Phase III, and then the plate moves forward together
with the capsule. When the force acting on the capsule becomes
smaller than the threshold of dry friction, the Phase IV begins and
the capsule and the plate remain stationary until the end of this
phase.

3.2. Bifurcation analysis

In order to gain an understanding of the system dynamics, the
bifurcation analysis is carried out next. First we consider the
behaviour of the system for varying mass ratio, g. The bifurcation
diagram presented in Fig. 5(a) shows the velocity yn

1, which is a
4

projection of the Poincaré map on the y1 axis. In contrast to the
displacements of the mass and the capsule, velocities are bounded
and therefore yn

1 has been chosen to construct the bifurcation
diagram. The calculations were run for 300 cycles of the external
loading and, to ensure the steady state response, the data for the
first 100 cycles were omitted, whereas the next 200 values of the
velocity, yn

1 were plotted.
As can be seen in Fig. 5(a), the system has period-one motion

for all the values of mass ratio, g. Additional windows in Fig. 5
show the trajectories on the phase plane, where the relative
displacement (x1�x2) is given on the horizontal axis, and the
relative velocity (y1�y2) is on the vertical axis. Numerical simula-
tion shows that the system has a small window of period-one
response with one impact (contact phase between internal mass
and the plate) per period of excitation for gA ½0:1,0:185�. As the
mass ratio increases, period-one response with two impacts per
period of excitation is observed for gA ð0:185,6:4�, and then a
period-one response with one impact per period of excitation for
gAð6:4,10� is obtained. In Fig. 5(b), the average progression of the
capsule per period calculated for steady state response is pre-
sented. Our study has revealed that the maximum average
progression is achieved at g¼ 0:315. As the mass ratio increases
(g40:315), the average progression decreases. This result is easy
to understand, since the mass of the capsule becomes much larger
than the internal mass, the motion of the mass becomes ineffec-
tive to drive the capsule.

The influence of the stiffness ratio, b is studied next and
Fig. 6(a) presents the bifurcation diagram where b is used as a
branching parameter. Again it can be observed that the system
response is period-one motion for all the values of stiffness ratio.
The trajectories of the mass on phase plane are shown in the
additional windows in Fig. 6, where a period-one response with
one impact per period of excitation for bA ½0:1,8:864� and a
period-one response with two impacts per period of excitation
for bA ð8:864,15� are presented. The average progression of the
capsule per period is shown in Fig. 6(b) where the maximum
average progression is observed at b¼ 8:918. Time histories of the
displacements calculated for different stiffness ratios are pre-
sented in Fig. 7. As can be seen from this figure, for a small
stiffness ratio b¼ 1:5 (Fig. 7(a)), the secondary spring cannot
generate sufficient force to enhance the progression of the
capsule, and the capsule acts like vibrations absorber rather than
a force transmitter. When the stiffness ratio increases, the
progression of the capsule is enhanced by the impacts as shown
in Fig. 7(b) and (c) for b¼ 3:5 and b¼ 7:0, respectively. When the
mass has two impacts with the plate per period of excitation, a
maximum progression is achieved as shown in Fig. 7(d) for
b¼ 8:918. Then as the stiffness increases further ðb48:918Þ, the
interactions become less affective and the average progression
per period is decreasing as observed in Fig. 6(b).

A bifurcation diagram using the frequency of excitation, o as a
branching parameter is presented in Fig. 8. It can be seen that the
motion of the system is a period-one response for oA ½0:1,2:225�,
and additional windows demonstrate its bifurcations from a
period-one response with three impacts per period of excitation
to a period-one response with one impact per period. As the
excitation frequency increases, a small window of period-three
response is observed for oAð2:225,2:3�, followed by a period-two
response for oA ð2:3,2:575�. And then a small window of period-
four response is recorded for oAð2:575,2:675� before a large
region of period-two response for oA ð2:675,3:675�. For
oAð3:675,3:775�, a period-five response is observed followed by
a small region of period-two response for oAð3:775,3:975�. It is
also found that there are two co-existing attractors for
oAð3:909,3:928Þ where the above mentioned period-two
response co-exists with period-five response which undergoes



Fig. 5. (colour online) Bifurcation diagrams constructed for varying mass ratio, g: (a) velocity of the internal mass, yn

1 and (b) average progression of the capsule per period

calculated for a¼ 0:4, o¼ 0:8, d¼ 0:02, x¼ 0:05, and b¼ 12:0. (c) Additional windows demonstrate the trajectories on the phase plane ðx1�x2 ,y1�y2Þ obtained for

g¼ 0:1, 0:7, 5:0 and 9.0, respectively. The locations of the impact surface are shown by red lines and Poincaré sections are marked by red dots.
period-doubling bifurcations leading to chaos. Finally, a period-
three response is recorded for oAð3:975,5:0�. From our study, we
have obtained that the maximum average progression occurred at
o¼ 1:675 as shown in Fig. 9, where a period-one response with one
impact per period of excitation is observed. As the excitation
frequency increases ðo41:675Þ, the average progression decreases
until the capsule becomes stationary. A small progression occurs at
oA ½2:25,2:3�, where the motion of the internal mass is a period-
three response with three impacts per period of excitation. Another
two local peaks of average progression are observed at o¼ 3:175 and
4.625, which correspond to period-two and period-three responses,
respectively.

A bifurcation diagram using the amplitude of excitation, a as a
branching parameter is shown in Fig. 10. As can be seen, a period-
one response is obtained for all the values of a, and additional
windows demonstrate the transitions of its relative trajectories
from a period-one response with one impact per period of
excitation to a period-one response with two impacts per period
as the excitation amplitude increases. A special consideration is
given to the discontinuity observed for a� 0:2675 where the
response jumps from the period-one attractor with one impact
per period to the period-one attractor with two impacts. Our
numerical study reveals that these two attractors co-exist for
aAð0:2675,0:3Þ as shown in Fig. 10 (the co-existing period-one
response with one impact per period is shown in red in this region)
and there is a grazing bifurcation of the period-one response with two
impacts per period at a� 0:2675 where it ceased to exist. An
interesting bifurcation is observed at a¼ 0:618. Although the changes
in the system motion are not visible on the trajectories shown on the
phase plane ðx1�x2,y1�y2Þ, they are clearly seen in the time histories
of capsule velocity. As can be seen in Fig. 11, for ao0:618, the
capsule has only forward motion, but for a40:618, the backward
5

motion appears at every cycle. Another interesting bifurcation is
observed at a¼ 1:0. As can be seen from typical trajectories shown in
Fig. 12, for aAð0:2675,1:0Þ the capsule has three short stationary
pauses between two progressive and one backward motions at every
cycle, but for a41:0 two of these stationary pauses disappear.

The average progression as function of the amplitude of the
excitation, a is presented in Fig. 13. It is clearly seen that the
maximum average progression is achieved at a¼ 1:2, and addi-
tional windows show that the system exhibits a period-one
response with two impacts per period of excitation. It is interest-
ing to note that for this set of parameters the capsule has a large
forward and a small backward motions every cycle. As the
excitation amplitude increases ða41:2Þ, the average progression
of the capsule decreases, and eventually the direction of the
capsule motion is reversed at a� 1:93 so that the negative
progression of the capsule is obtained for aA ½1:93,2:0�.
4. Remarks on energy consumption and optimization

In the previous section we have analysed the system dynamics
and determined the parameters which provide the optimal
progression per one period of external excitation. However, it is
clear that the faster forward motion of the system will require
higher energy input. Therefore, the successful operation of the
capsule should be based on the balanced approach where both
the speed of progression and the required energy are considered
and taken into account. As discussed above, in some cases back-
ward motion of the capsule could lead to decrease in average
progression and it is likely to result in an increase in energy
consumption.



Fig. 6. (colour online) Bifurcation diagrams constructed for varying stiffness ratio, b: (a) velocity of the internal mass, yn

1 and (b) average progression of the capsule per

period calculated for a¼ 0:4, o¼ 0:8, d¼ 0:02, x¼ 0:05, and g¼ 3:0. (c) Additional windows demonstrate the trajectories on the phase plane ðx1�x2 ,y1�y2Þ obtained for

b¼ 1:5, 3:5, 7:0 and 10.0, respectively. The locations of the impact surface are shown by red lines and Poincaré sections are marked by red dots.

Fig. 7. (colour online) Time histories of displacements of the mass, x1 (shown by black solid line) and the capsule, x2 (marked by red dash line) for a¼ 0:4, o¼ 0:8, d¼ 0:02,

x¼ 0:05, and g¼ 3:0: (a) b¼ 1:5; (b) b¼ 3:5; (c) b¼ 7:0; (d) b¼ 8:918.

6



Fig. 8. (colour online) Bifurcation diagram obtained for the velocity of the mass, yn

1 under varying frequency of excitation, o calculated for a¼ 0:6, d¼ 0:02, x¼ 0:05,

b¼ 12:0, and g¼ 3:0. Additional windows demonstrate the trajectories on the phase plane ðx1�x2 ,y1�y2Þ obtained for o¼ 0:58, 1:675, 2:275, 3:175, 3:725, 3:925

(Poincaré map) and 4.625, respectively. The locations of the impact surface are shown by red lines and Poincaré sections are marked by red dots.
In order to take the energy consumption into account, we
introduce the ratio of the capsule progression per period of the
external excitation, T to the work done by the external force over one
period

Pavg ¼
x2ðTÞ�x2ð0ÞR T

0 a cosðotÞ � v1ðtÞdt
: ð21Þ

To optimize the system operation, we need to find out the
external parameters (i.e. amplitude and frequency of the external
excitation) which maximize either average progression per period or
ratio Pavg. The results of the calculations are presented in Fig. 14
(a) and (b), respectively. From Fig. 14, the maximum average
progression is obtained at o¼ 1:0 and a¼ 2:0, and the maximum
ratio Pavg is achieved at o¼ 0:1 and a¼ 0:95. As can be seen, the
optimal control parameters from the point of view of the maximum
average progression of the capsule per period are not the most
efficient parameters from the energy consumption point of view, and
vice versa. This difference also indicates that for designing such a
capsule system, ‘‘fast’’ and ‘‘efficient’’ modes have to be considered
separately for different optimization purposes.
5. Concluding remarks

A dynamics vibro-impact model of the capsule driving system
was studied in this paper. The system consists of a capsule main
body interacting with an internal mass driven by a harmonic
excitation. Coulomb’s friction model was used to describe the
7

interactions of the capsule with the environment. The motion of
the capsule is possible when the force acting on the capsule
exceeds the threshold of the dry friction force.

Our bifurcation studies have revealed that the behaviour of the
system was mainly periodic, and the best rate of progression can
be achieved by a proper choice of system parameters. Investigat-
ing various mass ratio g, it was found that for the considered set
of parameters the system experienced period-one motion for all
studied values of mass ratio, and the maximum average progres-
sion per period was achieved at g¼ 0:315. As the mass ratio
increases above this value, g40:315, the motion of the internal
mass becomes ineffective, and the average progression decreases.

Investigating various stiffness ratio b, we observed that the
system response varied from period-one motion with one impact
per period of loading to period-one motion with two impacts, and
the maximum average progression was reached at b¼ 8:918.

From the bifurcation study on the frequency of excitation o,
we have found abundant periodic motions, and co-existing
periodic and chaotic attractors. However, the capsule progression
was not obtained for all frequency values. The maximum average
progression was reached at o¼ 1:675 where the capsule was in
period-one motion with one impact per period of loading.

The bifurcation analysis on the amplitude of excitation a
indicates that, a period-one response exists again for all the
values of the amplitude for the considered set of parameters. As
the amplitude of excitation increases, the motion of the system
varies from period-one motion with one impact to period-one
motion with two impacts, and these two attractors co-exist for a



Fig. 9. (colour online) Average progression of the capsule per period calculated for a¼ 0:6, d¼ 0:02, x¼ 0:05, b¼ 12:0, and g¼ 3:0. Additional windows show the time

history of displacement of the mass, x1 (shown by black solid line) and the capsule, x2 (marked by red dash line) obtained for o¼ 0:475, 0:85, 1:7, 2:275, 3:175 and 4.625,

respectively.

Fig. 10. (colour online) Bifurcation diagram obtained for the velocity of the mass, yn

1 under varying amplitude of excitation, a calculated for o¼ 0:8, d¼ 0:02, x¼ 0:05,

b¼ 12:0, and g¼ 3:0. Co-existing attractors observed at aA ð0:2675,0:3Þ are shown by different colours (red and black). Additional windows demonstrate the trajectories on

the phase plane ðx1�x2 ,y1�y2Þ obtained for a¼ 0:1, 0:2655, 0:27, 1:205, and 2.0, respectively. The locations of the impact surface are shown by red lines and Poincaré

sections are marked by red dots.
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Fig. 11. Time histories of velocity of the capsule, y2 for o¼ 0:8, d¼ 0:02, x¼ 0:05, b¼ 12:0, and g¼ 3:0: (a) a¼ 0:5; (b) a¼ 0:7. As can be seen at a¼ 0:5 the capsule either

moves forward (the velocity is positive) or remains stationary whereas at a¼ 0:7 it can also move backwards (the velocity is negative).

Fig. 12. Time histories of velocity of the capsule, y2 for o¼ 0:8, d¼ 0:02, x¼ 0:05, b¼ 12:0, and g¼ 3:0: (a) a¼ 0:75; (b) a¼ 1:25. As can be seen at a¼ 0:75, the capsule has

three short stationary pauses between two progressive and one backward motions at every cycle, but at a¼ 1:25 two of these stationary pauses disappear.

Fig. 13. (colour online) Average progression of the capsule per period calculated for o¼ 0:8, d¼ 0:02, x¼ 0:05, b¼ 12:0, and g¼ 3:0. Additional windows show the time

history of displacements of the mass, x1 (shown by black solid line) and the capsule, x2 (marked by red dash line) obtained for a¼ 0:1, 0:27, 1:205, and 2.0, respectively.
small region aAð0:2675,0:3Þ. Another two important bifurcations
were observed at a¼ 0:618 and a¼ 1:0, where backward motion
occurred and some intermittent pauses between capsule forward
and backward motions disappeared, respectively.
9

From the point of view of energy consumption, we introduced
the ratio of the capsule progression per period of the external
excitation to the work done by the external force in one period. By
calculating the ratio Pavg, we have found that the optimum



Fig. 14. (colour online) (a) Average progression per period and (b) ratio Pavg as a function of amplitude and frequency of excitation calculated for d¼ 0:02, x¼ 0:05,

b¼ 12:0, and g¼ 3:0.
parameters for the maximum progression of the capsule were not
the most efficient parameters from the energy consumption point
of view, and vice versa, so that a trade-off between progression
and energy consumption is required for optimization.
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