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MODAL ANALYSIS OF MECHANICAL SYSTEMS WITH
IMPACT NON-LINEARITIES: LIMITATIONS TO A MODAL

SUPERPOSITION

C. H. LAMARQUE AND O. JANIN

Ecole Nationale des ¹ravaux Publics de l'Etat, Laboratoire Ge&oMate& riaux, URA-CNRS 1652,
Rue Maurice Audin, 69518 Vaulx-En-Velin Cedex, France

This paper presents an attempt to generalize the modal superposition formula to
mechanical systems with impact type non-linearities following the procedure introduced for
smooth non-linearities. The study is restricted to simple one- and two-degree-of-freedom
systems with a unilateral constraint on one of the degrees of freedom, for which the response
can be analytically determined. Generalized frequencies, modes and masses are built in the
procedure. The results obtained for various sets of parameters point out some limitations to
the validity of a general modal superposition formula.
1. INTRODUCTION

Analysis of the response of structures is convenient if a linear model can fully describe the
structure. Within this framework, it is useful to introduce in either the "nite or in"nite
dimension (Hilbertian case) the notion of eigenmodes of the structure. They are either
normal modes (de"ned by adding conservative conditions to the model) or complex modes
(taking into account viscous damping for example) [1, 2]. The linear theory of di!erential
systems provides the response of the structure to an external elementary sinusomKdal
excitation in an interesting form: the full response is simply the superposition of the
responses of each mode to the excitation. Such a formula is well known; this is the
superposition formula which is the basis of modal synthesis [2, 3]. The notion of modal
synthesis can be extended to the case of sub-structures by using linear operator theory
[3, 4].

In the non-linear case, the notion of non-linear modes had been considered "rst. In the
case of mathematically smooth non-linearities and for a "nite number of degrees of freedom
(d.o.f.) with particular polynomial non-linearities, Rosenberg and others "rst introduced
natural modes [5] and then non-linear normal modes [6}9], and investigated their stability.
Since then, many methods have been used to introduce modes (natural, non-linear,
non-linear normal, minimal normal, non-linear similar normal, etc.) in the case of
non-linear structures; methods derived from the works of Rosenberg [10}13];
a stroboscopic method [14]; methods based on averaging and modal truncation [15}17];
direct or geometrical methods for conservative systems [18}20] or in the Hamiltonian
frame [21}25]; PadeH approximation [26, 27]; multi-spectral, Volterra series and HFRFs
[28, 29]; integral transforms [30]; Lie series [31]; methods based on normal forms in the
Hamiltonian [32}34] or general frame [35}40]; or methods using centre manifold theory
[41}47] or amplitude equations [48]. JeH zeH quel and Lamarque extended the modal
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superposition starting from non-linear modes built via normal forms, for systems with a few
d.o.f. and smooth non-linearities [49}51], even for the case of complex modes [52]; this
method is valid for su$ciently small non-linear oscillations. The non-linear modes and
generalized masses obtained depend on the amplitudes of the normal co-ordinates. They are
built up in order to agree at best with a resonance equation. The modes do not always verify
the reciprocity condition which exists in the linear case.

The question of non-linear modes is obviously related to the search for periodic solutions
to non-linear dynamical systems and the study of their stability [52, 53]. It therefore
involves a huge amount of literature dealing with numerous analytical methods,
perturbation methods, and methods for bifurcation analysis for example references
[32, 54}66].

In the "eld of stochastic behaviour, the question of non-linear modes has been examined
already [67] and tools are available [68]. In the case of non-smooth non-linearities, only
particular cases have been investigated; that is, normal modes for piecewise linear systems
[69, 70]. Sometimes, in order to deal with localized or weak non-linear non-smooth
phenomena using linear methods, one can introduce a modi"ed dissipation or sti!ness
matrix.

From the point of view of dynamics, vibro-impact systems have been thoroughly studied
in the literature: global behaviours and periodic solutions have been investigated in the
single-d.o.f. case (both analytically and numerically in references [71}74] or by means of
a change of variables in reference [75]) and in the two-d.o.f. case (double impact oscillator in
references [76, 77] or impact damper in references [78, 79]). Singularities in the dynamics of
such systems have been pointed out in references in [80}82], and some authors have
examined the e!ect of dry friction on mechanical systems with impacts in [83}86]. General
results for vibro-impact systems can also be found in references [87, 88]. Moreover, a modal
approach has been introduced in reference [89] to deal with direct and inverse problems in
discrete systems with impacts, based on the theory of non-linear normal modes (see
reference [27]).

Nevertheless, to our knowledge, no attempt to build a modal superposition similar to the
linear case exists in the case of hard non-smooth non-linearities such as friction or impact.
The main aim of this work is to seek some answers to the question about possibility of
building a modal superposition and a modal synthesis in the case of structures exhibiting
a non-linearity of impact type. The problem is considered for the case of simple systems with
one and two d.o.f.

In section 2, a single d.o.f. system is considered. Using a piecewise exact integration (2.1),
the periodic responses under sinusomKdal excitation are studied (2.2). The building of a modal
superposition in equation (2.3) is then tested by introducing successively a generalized
eigenfrequency from free vibrations, a generalized mode and a generalized mass associated
with forced oscillations.

In section 3, two-d.o.f. systems are considered. First the case of weak coupling and impact
of a mass against a rigid stop is dealt with (3.1). Then the case of strong coupling is
examined, again with impacts against a external rigid stop (3.2). The results obtained are
applied to the case of direct impacts between two rigid solids (3.3). Finally, in section
4 conclusions are drawn on the relevance of the modal superposition formula obtained.

2. SINGLE-DEGREE-OF-FREEDOM SYSTEM

The system studied consists of a single-d.o.f. damped harmonic oscillator with
a unilateral constraint, for which an impact law is de"ned (see Figure 1). The impact process
2



Figure 1. Single-degree-of-freedom system with k"u2
1
m, c"am, g"fm.
is considered to be instantaneous and the behaviour of the system at the time of impact is
described using the coe$cient of restitution e3[0,1], characterizing the energy loss during
impact. The equations governing the dynamics of the system are then

xK#ax5 #u2
1
x"f cos (ut),

x (t))x
max

, (1)

x5 (t`)"!exR (t~) if x (t)"x
max

.

If the velocity immediately before the impact at tN is zero, several cases can occur: if at tN the
acceleration is negative, then the system is still described by equation (1) after the impact
and the trajectory is tangent to the stop at tN . If, on the other hand, the acceleration is
positive, then the system remains in contact with the stop for a non-zero time interval. It can
be shown that sticking never occurs if f(u2

1
x
max

. In the following, it is assumed that the
system's parameters satisfy this condition.

2.1. ANALYTICAL SOLUTION

The system with sinusomKdal forcing can be written:

xK#ax5 #u2
1
x"f cos (ut),

x5 (t`)"!ex5 (t~) if x (t)"x
max

, (2)

x (0)"x
0
, xR (0)"x5

0
.

Since this system is linear between two consecutive impacts, it is possible to determine

a piecewise analytical form of the solution on R`. Setting u8
1
"Ju2

1
!a2/4 and g"a/2u8

1
.

∀k3N*, the solution on [t
k~1

, t
k
] can be written in the form

x(t)"e~at@2[A
k
cos (uJ

1
t)#B

k
sin (uJ

1
t)]#f

1
cos (ut)#f

2
sin (ut),

x(t`
k
)"x (t~

k
)"x

max
, (3)

x5 (t`
k
)"!ex5 (t~

k
),
3



where t
0
"0 and

f
1
"f

u2
1
!u2

(u2
1
!u2)2#a2u2

,

f
2
"f

au
(u2

1
!u2)2#a2u2

.

From equations (3), the following recursive relation gives the values of the constants A
k

and B
k
:

A
A

1
B
1
B"A

x
0
!f

1

x5
0
!f

2
u

u8
1

#g (x
0
!f

1
)B ,

A
A

k`1
B
k`1
B"A

A
k

B
k
B#(1#e)u (A

k
,B

k
, t

k
) A

!sin (u8
1
t
k
)

cos (u8
1
t
k
) B , (4)

u(A
k
,B

k
, t

k
)"[sin (uJ

1
t
k
)#g cos(uJ

1
t
k
)]A

k

#[!cos (uJ
1
t
k
)#g sin (uJ

1
t
k
)]B

k

#

u
uJ

1

eat
k
/2 [ f

1
sin (ut

k
)!f

2
cos (ut

k
)].

2.2. PERIODIC SOLUTIONS

Owing to the analytical form of the solution given by equations (3) and (4) it is possible to
seek analytically a periodic solution, similar to that achieved in reference [72] or [71] for
example. A solution of period n¹ with k impacts per cycle is here called (n, k)-periodic,
where ¹"2n/u is the period of the external excitation.

2.2.1. (n, 0)-periodic solutions

The simplest case consists of looking for n¹-periodic solutions which never impact
against the stop. Such a case implies n"1 and the initial conditions leading to
a (1,0)-periodic solution are

x
0
"f

1
,

x5
0
"f

2
u.

Setting:

u
`
"SuJ 2

1
!

a2

4
#S

f 2

x2
max

!a2uJ 2
1
,

u
~
"SuJ 2

1
!

a2

4
!S

f 2

x2
max

!a2uJ 2
1

(5)
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and as it is assumed that f(u2
1
x
max

, it can be shown that (n, 0)-periodic solutions exist if
and only if u)u

~
or u*u

`
.

The stability of these periodic solutions can be determined using a PoincareH map de"ned
by a constant phase plane Z"¹ in the co-ordinates (X,>,Z)"(x, x5 , tmod¹). As pointed
out in reference [80], such a mapping is not everywhere continuous nor di!erentiable.
Therefore, for each periodic solution corresponding to a "xed point of the PoincareH map
where it is continuously di!erentiable, the stability can be investigated. It can be shown that
(1, 0)-periodic solutions are always stable.

2.2.2. (n, 1)-periodic solutions

Similar to section 2.2.1, n¹-periodic solutions with one impact per cycle can be sought by
using equations (3) and (4). In this case, the impact time can be analytically determined, and
the initial conditions leading to (n, 1)-periodic solutions are then given by

x
0
"A

1
(t
1
)#f

1
,

x5
0
"u8

1
[B

1
(t
1
)!gA

1
(t
1
)]#uf

2
,

where A
1
(t
1
) and B

1
(t
1
) depend analytically on the system's parameters. An example of

(1, 1)-periodic solution is shown in Figure 2.
As in section 2.2.1, the PoincareH map can be used (when it is de"ned and of class

C1 locally) in order to determine the type of the periodic solutions obtained (see in Figure 3).
The Jacobian matrix can be calculated analytically from the analytical form of the PoincareH
map by taking into account the in#uence of the partial derivatives of the impact time t

1
with

respect to the initial conditions.
It can be shown that such a stability study is valid only if uOu

`
and uOu

~
for in that

case the PoincareH map is not di!erentiable at the "xed point considered.
Figure 2. (1, 1)-periodic solution to the system (2) for u"2)6, x
0
"13)32968 and xR

0
"19)36619.
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2.2.3. (n, 2)-periodic solutions

The method for seeking n¹-periodic solutions with two impacts per cycle is identical to
the case with one impact per cycle, with a new unknown due to the second impact time t

2
.

By characterizing the periodicity of the solution and by using the analytical form (3), (4)
a system of two non-linear equations with two unknowns (t

1
, t

2
) can be obtained which can

for example be solved using Newton's method. Once the value of t
1

and t
2

are known, the
initial conditions of the system are given by

x
0
"A

1
(t
1
, t

2
)#f

1
,

xR
0
"uJ

1
(B

1
(t
1
, t

2
)!gA

1
(t
1
, t

2
))#uf

2
.

Figures 4}6 show three examples of (n, 2)-periodic solutions that can be obtained
analytically.

As in the case of (n, 1)-periodic solutions, the stability of the (n, 2)-periodic solutions can
be studied by using the PoincareH map: when u N Mu

`
, u

~
N, it is possible to calculate

analytically the Jacobian matrix of the PoincareH map, and its eigenvalues determine the
stability or instability of the periodic solution.

2.3. MODAL SUPERPOSITION

2.3.1. Free oscillations

The free oscillations of the system are described by the following equation:
Figure 3. Existence of (1, 1) periodic solutions. Stable (square: x
0
, diamond: x5

0
) and unstable (dotted curve)

solutions.

xK#axR #u2
1
x"0,
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Figure 4. (1, 2)-periodic solution for u"1)45, x
0
"!9)89493 and x5

0
"!20)71102.

Figure 5. (3, 2)-periodic solution for u"2)6, x
0
"9)77211 and xR

0
"35)46891.
xR (t`)"!exR (t~) if x (t)"x
max

, (6)

x (0)"x
0
, xR (0)"xR

0
.

The solution of this equation can also be piecewise analytically written: the expression is
identical to equation (3), the constants of integration being given by equation (4), with
f
1
"f

2
"0.
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Figure 6. (4, 2)-periodic solution for u"2)6, x
0
"4)76445 and xR

0
"47)91445.

Figure 7. Existence of (1, 2) periodic solutions. Stable (square: x
0
, diamond: x5

0
) and unstable (dotted curve)

solutions.
If the equilibrium is a position that the system can physically reach, namely if x
max

'0,
and if aO0, it can be shown that the system (6) has a "nite number K of impacts. This result
is interesting from the modal point of view; it means that the free oscillations of the system
are governed by the frequency u

1
, except for a bounded time span. Hence, it will be

considered later on that the natural frequency of the system is u
1
.
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Figure 8. Existence of (3, 2)-periodic solutions: stable (solid curve) and unstable solutions (dotted curve): (a)
initial displacements; (b) initial velocities.
Remark. When a"0, the number of impacts is in"nite and lim
k?`=

t
k`1

!t
k
"2n/uJ

1
. If

x
max

"0, there also is an in"nite number of impacts and t
k`1

!t
k
"n/uJ

1
, ∀k. Finally, if

x
max

(0 then lim
k?`=

t
k`1

!t
k
"0.

2.3.2. Generalized mass and modal superposition

In this section, it is intended to establish a modal superposition formula for the irregular
non-linear model previously introduced. The case x

max
'0 is considered for which the
9



Figure 9. Existence of (4, 2)-periodic solutions: stable (solid curve) and unstable solutions (dotted curve): (a)
initial displacements; (b) initial velocities.
natural frequency is u
1
, and an attempt is made to obtain a modal superposition formula

similar to the linear case, connecting the nth harmonic amplitude of the response to the
amplitude of the forcing.

If a (n, k)-periodic solution is considered, i.e. a solution with period n¹ and k impacts per
cycle. Due to the n¹-periodicity of the response, the Fourier coe$cients can be de"ned; for
10



all j3Z we have

c
j
(u)"

1

n¹P
nT

0

x (t) expA!i
j

n
utB dt

"

1

n¹CP
t
1

0

x (t) expA!i
j

n
utB dt#

k~1
+

m/1
P

t
m`1

t
m

x (t) expA!i
j

n
utB dt

#P
nT

t
k

x (t) expA!i
j

n
utB dtD .

x (t) is known to be piecewise via equation (3). These k#1 integrals can then be calculated
analytically. If kO0 de"ne

Hj
n,k

(u)"
2uJ

1
n¹

MB
1
#A

k`1
e~anT@2 sin (nuJ

1
¹)!B

k`1
e~anT@2 cos (nu8

1
¹)

#(g#ic
j
) [A

1
!A

k`1
e~anT@2 cos (nuJ

1
¹)!B

k`1
e~anT@2 sin (nu8

1
¹)] (7)

#(1#e)
k
+

m/1

e!at
m
/2 expA!i

j

n
ut

mB u (A
m
, B

m
, t

m
)H ,

where c
j
"ju/nuJ

1
, and if k"0, Hj

n,0
(u)"0. Then

c
j
(u)"

f
1
!if

2
2

dn
j
#

f
1
!if

2
2

d~n
j

#

Hj
n,k

(u)

2
. (8)

Let

*I
1
(u)"u2

1
!u2#aiu. (9)

The nth Fourier coe$cient is then given by

c
n
(u)"

f
1
!if

2
2

#

Hn
n,k

(u)

2DI
1
(u)

"

f#Hn
n,k

(u)

2DI
1
(u)

. (10)

Let the modal mass m
n,k

be:

m
n,k

"

1

1#Hn
n,k

(u)/f
. (11)

Because the free damped steady state oscillations are linear oscillations, the generalized
mode is here represented by the scalar 1. The nth harmonic amplitude can then be written in
the form

A
n
(u)"J2 (Dc

n
D2#Dc

~n
D2)"2Dc

n
D"K

f

m
n,k

DI
1
(u) K . (12)

This is a modal superposition formula connecting the nth harmonic amplitude of the
forced response to the amplitude of the forcing via the free response. This formula is similar
to the formula that obtained in the linear case, but the mass (which should be equal to 1) is
replaced by a modal mass (11).

Due to this de"nition, the mass is a complex: to give it a more physical meaning, it is
necessary to consider its module. Thus, the unitary mass system with impact is modelled
and, subjected to a sinusomKdal forcing of frequency u, like a linear system without impact of
11



mass Dm
n,k

D, subjected to the same forcing. This modelling holds in terms of spectral
amplitude for a (n, k)-periodic response: the spectral amplitude is the same one for both
systems.

Remark.
* In the case of a n¹-periodic response without any impacts, it was seen that only the case

n"1 was possible. Thus, m
1,0

"1 which is coherent since in this case the classical
modal superposition formula applies and gives A

1
(u)"D f/DI

1
(u)D.

* There is no longer a unique modal superposition formula as in the linear case, but an
in"nity a priori; it depends on the period and number of impacts per cycle of the periodic
solution.

* Preceding calculations give access to the whole Fourier series of a (n, k)-periodic
response.

* An analytical expression of the module of the modal mass is obtained if an only if k"1,
i.e., when the periodic solution has only one impact by period. Setting

X
1
"

2 (1#e)u
nf¹

!1#2eanT@2 cos (nu8
1
¹)!eanT

e#eanT@2M(1!e) cos (nuJ
1
¹)#(1#e)g sin(nu8

1
¹)N!eanT

][ f
1
sin(ut

1
)!f

2
cos (ut

1
)]

for the modal mass:

m
n,1

"

1

1#X
1
e!iut

1
(13)

Since t
1

is analytically known in the case of a (n, 1)-periodic response, the modal mass
Dm

n,1
D can be expressed analytically as a function of the parameters of the system.

2.3.3. Examples of modal superposition

It is now possible to show some applications of the modal superposition formula
previously established, using the analytical search for periodic solutions carried out in
section 2.2. First consider the following set of parameters for the system: u

1
"2)5,

a"0)05, x
max

"14, e"0)9 and f"20. Note that for these values of parameters u2
1
x
max

'f
and e'0, so that sticking never occurs.

Figures 10 outlines an important di!erence compared to the linear case: the peak of
amplitude corresponding to resonance does no longer exist around u

1
. Consequently, for

u close to the natural frequency of the system, the modal mass is the largest because there is
no resonance between the external forcing and the system. The maximum amplitude occurs
at a frequency higher than the natural frequency, but the maximum reached is much weaker
than in the linear case; there is not a true peak of amplitude in the usual sense.

In addition, the modal superposition formula previously established enables the
amplitude of nth harmonic of a solution, whose period is n¹ to be computed. In the linear
case (without impact), this is su$cient to know the whole spectral response of the system:
only n"1 occurs and the Fourier coe$cients are all zero except the "rst one. In this case, it
is no longer su$cient, for the occurrence of impacts leads to periodic solutions with many
harmonics, and the nth harmonic amplitude can be a poor approximation to the spectral
amplitude of the response. For example, Figure 12 shows that the second-harmonic
amplitude for a ¹-periodic solution can be the largest one. In the same way, the Fourier
coe$cient c

0
can become large, can be seen in Figure 10. Table 1 summarizes the di!erence
12



Figure 10. First-harmonic amplitude (dotted curve) and modal mass (solid curve) of the (1, 1)-periodic solutions.

Figure 11. Fourier coe$cients of the (1, 1)-periodic responses.
between the spectral amplitude and the nth harmonic amplitude for various periodic
solutions.

For this example, a modal superposition formula can be built and is worthwhile as long
as u remains close to the &&primary resonance''. Nevertheless, this frequency area does not
always correspond to the largest amplitudes.
13



Figure 12. First-harmonic amplitude (dotted curve) and modal mass (solid curve) of the (1, 2)-periodic solutions.

Figure 13. Fourier coe$cients of the (1, 2)-periodic responses.
An example showing a spectral behaviour di!erent from the preceding one can now be
considered. In this case u

1
"1, a"0)02, x

max
"1, e"0)9 and f"20 (sticking to the stop

may then occur, but only responses without sticking will be considered).
In Figure 18 two important characteristics can be seen. First of all, and contrary to the

previous example, the response exhibits a true peak of spectral amplitude similar to the
14



Figure 14. Third-harmonic amplitude (dotted curve) and modal mass (solid curve) of the (3, 2)-periodic solutions.

Figure 15. Fourier coe$cients of the (3, 2)-periodic responses.

resonance peaks observed in linear systems. However, the peak does not occur at the
natural frequency u

1
, but at u+2u

1
. Furthermore, the approximation to the whole

amplitude by the amplitude of "rst harmonic is very rough: resonance occurs through the
Fourier coe$cient c

0
of the solution, and the remainder of the harmonics are negligible in

the neighbourhood of the peak.

15



Figure 16. Fourth-harmonic amplitude (dotted curve) and modal mass (solid curve) of the (4, 2)-periodic solutions.

Figure 17. Fourier coe$cients of the (4, 2)-periodic responses.
The last two examples have shown that the building of a modal superposition formula
similar to the linear case comes up against two major di$culties. On one hand, the
multiplicity of types of periodic solutions prevents a unique formula which holds for any
case: it is necessary to know a priori the period of the response and the number of impacts
per cycle. On the other hand, taking into account only one harmonic in this superposition
16



TABLE 1

Di+erence between Fourier amplitude and nth harmonic amplitude

Periodic Di!erence (%) Di!erence (%)
solution stable or unstable solution stable solution

(1, 1) 36)65 36)65
(1, 2) 67)89 67)89
(3, 2) 15)56 13)96
(4, 2) 40)89 28)96

Figure 18. Fourier coe$cients of the (1, 1)-periodic responses.
may not be su$cient any more; it would be necessary to include at least the four "rst
harmonics in the formula in order to get a closer approximation in the examples shown.

3. TWO-DEGREE-OF-FREEDOM SYSTEMS

This section deals with a system with two d.o.f., one of them being constrained by a stop:

xK#axR #u2
1
x#k

1
y"f

1
cos (ut),

x3C0 (R`,]!R, x
max

]),

x (t)"x
max

NxR (t`)"!exR (t~),

yK#ayR #u2
2
y#k

2
x"f

2
cos (ut),

y3C1(R`,R).
17



 

 This system can be written in the form

XG#AX0 #KX"F cos (ut)#impact, (14)

with

X"A
x

yB, A"A
a 0

0 aB, K"A
u2

1
k
1

k
2

u2
2
B, F"A

f
1
f
2
B

and the term &&# impact'' represents the constraint induced on x by the occurrence of
impacts.

The model just introduced is a general mathematical model. It will be studied in three
stages: "rst of all, consider the case k

1
"0 (which will be referred to as &&weak coupling'') for

which the study is very close to the single-degree-of-freedom case in term of periodic
solutions: it will give an initial outline of modal superposition with two d.o.f.

The general case where k
1
O0 (referred to as &&strong coupling'') will then be studied, for

which the modal superposition is similar to the case k
1
"0, except that the search for

periodic solutions becomes more complex. Finally it can be seen how the modal
superposition can be written in the case of two rigid bodies colliding.

Note, initially, that the "rst case is a mathematical model which cannot easily be
expressed in mechanical terms. Indeed, the action}reaction principle prevents x from acting
on y without y acting on x. Therefore, it is necessary to consider carefully the physical
conclusions that could be drawn from this model.

3.1. WEAK COUPLING

System (14), the special case where k
1
"0, which is close to the single-d.o.f. case

previously studied can be dealt with.

3.1.1. Analytical solution of the system

3.1.1.1. Decoupling equations. The system (14) can be decoupled in order to obtain explicit
solutions for x and y. If

v
2
"

k
2

u2
1
!u2

2

and P"A
1 0

v
2

1B,
and pre-multiply the system 14 without impacts by P~1, a system in the new co-ordinates

A
x
1

x
2
B"P~1X is obtained:

xK
1
#axR

1
#u2

1
x
1
"f 1 cos (ut),

xK
2
#axR

2
#u2

2
x
2
"f 2 cos (ut), (15)

where

f 1"f
1
,

f 2"!v
2
f
1
#f

2
.
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Written in that form, the system is easy to solve and as long as there is no impact:

x
1
(t)"e~at@2[A1 cos (uJ

1
t )#B1 sin(uJ

1
t)]#f 1

1
cos (ut)#f 1

2
sin (ut),

x
2
(t)"e~at@2[A2 cos (uJ

2
t)#B2 sin (uJ

2
t)]#f 2

1
cos (ut)#f 2

2
sin (ut), (16)

where u
1
8 "Ju2

1
!a2/4, uJ

2
"Ju2

2
!a2/4 and

f 1
1
"f 1

u2
1
!u2

(u2
1
!u2)2#a2u2

,

f 1
2
"f 1

au
(u2

1
!u2)2#a2u2

,

f 2
1
"f 2

u2
2
!u2

(u2
2
!u2)2#a2u2

,

f 2
2
"f 2

au
(u2

2
!u2)2#a2u2

.

Moreover, if g
1
"a/2uJ

1
and g

2
"a/2uJ

2
, the solution is given in the initial co-ordinate

system by

x"x
1
,

y"v
2
x
1
#x

2
. (17)

3.1.1.2. Gluing at impact times. An impact occurs when x (t)"x
max

, which is equivalent to
x
1
(t)"x

max
. If it is assumed that there is an impact at t

k
, on [t

k~1
, t

k
], the solution (16) is

given by

x
1
(t)"e~at@2[A1

k
cos (uJ

1
t)#B1

k
sin (uJ

1
t)]#f 1

1
cos (ut)#f 1

2
sin (ut),

x
2
(t)"e~at@2[A2

k
cos (uJ

2
t)#B2

k
sin (uJ

2
t)]#f 2

1
cos (ut)#f2

2
sin (ut).

From this equation it can be inferred that t
k
is solution of the equation

f (t
k
)"e!at

k
/2 [A1

k
cos (uJ

1
t
k
)#B1

k
sin (uJ

1
t
k
)]#f 1

1
cos (ut

k
)#f 1

2
sin (ut

k
)!x

max
"0.

Moreover, by assumptions on x and y, at impact time

x(t`
k
)"x(t~

k
),

xR (t`
k
)"!ex5 (t~

k
),

y (t`
k

)"y (t~
k

),

yR (t`
k
)"yR (t~

k
),

which yields for the new variables:

x
1
(t`
k
)"x

1
(t~
k
),

xR
1
(t`
k
)"!exR

1
(t~
k

),

x
2
(t`
k
)"x

2
(t~
k
),

xR
2
(t`
k
)"xR

2
(t~
k
)#(1#e)v

2
x5
1
(t~
k

).
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Thus, obtain the following relationships provide the constants of integration

A1
k`1

"A1
k
!(1#e)

2
sin (uJ

1
t
k
) u (A1

k
,B1

k
, t

k
),

B1
k`1

"B1
k
#(1#e) cos (uJ

1
t
k
)u(A1

k
,B1

k
, t

k
),

A2
k`1

"A2
k
#(1#e)v

2

uJ
1

uJ
2

sin (uJ
2
t
k
)u (A1

k
,B1

k
, t

k
),

(18)

B2
k`1

"B2
k
!(1#e)v

2

uJ
1

uJ
2

cos (uJ
2
t
k
)u (A1

k
,B1

k
, t

k
),

where u is given by

u (A,B, t)"A[sin(uJ
1
t)#g

1
cos(uJ

1
t)]#B[!cos (uJ

1
t)#g

1
sin (uJ

1
8 t)]

#eat@2
u
uJ

1

[f 1
1
sin (ut)!f 1

2
cos (ut)].

3.1.2. Search for periodic solutions

The search for periodic solutions (x, y) is equivalent to the search for periodic solutions
(x

1
,x

2
). According to equation (17), x

1
"x, therefore the search for periodic solutions for

x
1

is similar to the one carried out in the case of a single-d.o.f. system. Thus, it is possible to
determine x0

1
and x5 0

1
so that x

1
is (n, k)-periodic where k3M0, 1, 2N. As regards x

2
, the method

is identical; only the recursion that gives A2
2
and B2

2
being di!erent. Thus 2]2 linear systems

are obtained in (A2
1
(t
1
),B2

1
(t
1
)). When the determinant is non-zero, x0

2
and xR 0

2
are obtained

so that x
2

is (n, k)-periodic where k3M0, 1, 2N.
The initial conditions for the original system co-ordinates (x, y) are given by equation

(17):

x
0
"x0

1
,

y
0
"v

2
x0
1
#x0

2
,

xR
0
"xR 0

1
,

yR
0
"v

2
xR 0
1
#xR 0

2
.

3.1.3. Modal superposition

3.1.3.1. Free oscillations of the system. It was seen in Section 2.3.1 that, in the case of
a single-d.o.f. system without external forcing, the number of impacts is "nite and the steady
state response is periodic with frequency u

1
. Hence, in the case of weak coupling, the free

response also exhibits a "nite number of impacts, and the steady state response for x
1

is
periodic with frequency u

1
. As for x

2
, since there are no more impacts once the steady state

response is reached, the equation of its movement is given by equation (15):

xK
2
#ax5

2
#u2

2
x
2
"0.

This is the equation of a classical damped oscillator without external forcing, whose steady
state response has frequency u

2
. In order to establish a modal superposition formula, it is

necessary to start from the natural frequencies u
1

and u
2
. Moreover, in that case again, the

generalized modes correspond to linear modes.
20



3.1.3.2. Generalized masses and modal superposition. Consider a (n, k)-periodic solution. The
Fourier coe$cients of the functions x

1
and x

2
can be calculated. These are quite similar to

the coe$cients found for the single-d.o.f. system. Setting

Hj
n,k

(u)"
2uJ

1
n¹

1

u2
1
!

j2u2

n2
#ia

ju
n

GB1
1
#A1

k`1
e~anT@2 sin (nuJ

1
¹)!B1

k`1
e~anT@2 cos (nuJ

1
¹)

#(g
1
#ic1

j
) [A1

1
!A1

k`1
e~anT@2 cos (nuJ

1
¹)!B1

k`1
e~anT@2 sin (nuJ

1
¹)]

#(1#e)
k
+

m/1

e!at
m
/2 expA!i

j

n
ut

mB u (A1
m
,B1

m
, t

m
)H

Gj
n,k

(u)"
2uJ

2
n¹

1

u2
2
!

j2u2

n2
#ia

ju
n

]GB2
1
#A2

k`1
e~anT@2 sin (nuJ

2
¹)!B2

k`1
e~anT@2 cos (nuJ

2
¹)

#(g
2
#ic2

j
) [A2

1
!A2

k`1
e~anT@2 cos (nuJ

2
¹)!B2

k`1
e~anT@2 sin (nuJ

2
¹)]

!(1#e)v
2

uJ
1

uJ
2

k
+

m/1

e!at
m
/2 expA!i

j

n
ut

mB u (A1
m
, B1

m
, t

m
)H

with c1
j
"ju/nuJ

1
and c2

j
"ju/nuJ

2
, the Fourier coe$cients are given by

c1
j
(u)"

f 1
1
!i f 1

2
2

dn
j
#

f 1
1
#if 1

2
2

d~n
j

#

Hj
n,k

(u)

2
,

c2
j
(u)"

f 2
1
!if 2

2
2

dn
j
#

f 2
1
#i f 2

2
2

d~n
j

#

Gj
n,k

(u)

2
.

The Fourier coe$cient corresponding to the nth harmonic are inferred by using the
coordinate transformation (17)

cx
n
(u)"c1

n
(u)"

f 1

2mn,k
1

DI
1

,

cy
n
(u)"v

2
c1
n
(u)#c2

n
(u)"v

2

f 1

2mn,k
1

DI
1

#

f 2

2mn,k
2

DI
2

, (19)

where, DI
1
"u2

1
!u2#aiu, DI

2
"u2

2
!u2#aiu and

mn,k
1
"

1

1#Hn
n,k

(u)/f 1
,

mn,k
2

"

1

1#Gn
n,k

(u)/f 2
. (20)
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The nth Fourier coe$cients are then in the original basis:

cx
n
(u)"

f
1

2mn,k
1

DI
1

,

cy
n
(u)"v

2

f
1

2mn,k
1

DI
1

#

!v
2
f
1
#f

2
2mn,k

2
DI

2

.

The contribution of the nth harmonic to the Fourier spectrum is given (as seen in
equation (12)) by

AX
n
(u)"DX

n
(u)D"K

f
1

mn,k
1

DI
1
K ,

AY
n
(u)"D>

n
(u)D"Kv2

f
1

mn,k
1

DI
1

#

!v
2
f
1
#f

2
mn,k

2
DI

2
K, (21)

which can also be written as

A
X

n
(u)

>
n
(u)B"

A
1 0

v
2

0B
mn,k

1
DI

1
A

f
1
f
2
B#

A
0 0

!v
2

1B
mn,k

2
DI

2
A

f
1
f
2
B . (22)

If

A
1
"A

1 0

v
2

0B and A
2
"A

0 0

!v
2

1B ,

we can express A
1

in the form Tt
1
T@
1
, and A

2
in the form Tt

2
T@
2

where T
1
, T@

1
, T

2
and

T@
2

denote the generalized modes of the system.
If T

1
"(a

1
, b

1
) and T@

1
"(a@

1
, b@

1
): then

Tt
1
T@

1
"A

a
1
a@
1

a
1
b@
1

b
1
a@
1

b
1
b@
1
B ,

three equations with four unknowns are obtained

b@
1
"0,

a
1
a@
1
"1,

b
1
a@
1
"v

2
.

It is thus possible to arbitrarily set one of the unknowns; for example, as in the case of linear
modes, if a@

1
"1, then

a
1
"1,

b
1
"v

2
,

hence

T
1
"(1, v

2
),

T@
1
"(1, 0). (23)
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The same type of calculations and assumptions for A
2

lead to

T
2
"(0, 1),

T@
2
"(!v

2
, 1). (24)

Using equations (23) and (24), relation (22) can then be written in the form

A
X

n
(u)

>
n
(u)B"

Tt
1
T@

1
mn,k

1
DI

1
(u)A

f
1
f
2
B#

Tt
2
T@
2

mn,k
2

DI
2
(u)A

f
1
f
2
B . (25)

This has just established a modal superposition formula holding for a two-d.o.f. system
with weak coupling. This formula links the nth harmonic amplitude to the free response and
the forcing by means of a modal mass. The vectors T

1
, T@

1
, T

2
and T@

2
represent the modes

(left and right respectively). Note that T
1
and T

2
are merely the eigenvectors associated with

u2
1

and u2
2
.

Finally, as in the case of the single-d.o.f. system, there is no unique modal superposition
formula which holds in all cases, but according to the period of the response and the
number of impacts per cycle, it is necessary to choose the right formula.

Remark. The modal superposition formula seems to exhibit a reciprocity breaking
compared to the linear case: ¹

1
and ¹@

1
are di!erent whatever choice is made when setting

one of the unknowns. Indeed, the second component of ¹@
1

is always zero whereas that of
¹

1
is always non-zero. This is in fact due to the choice of the model, for which k

1
"0 and

k
2
O0.

3.1.3.3. Examples of modal superposition. For the "rst example, the following parameters
are chosen: u

1
"2)5, u

2
"3)8, a"0)05, e"0)9, x

max
"14, f

1
"20, f

2
"18 and k

2
"1.

The second example is derived from the single-d.o.f. case and the chosen parameters are
the following: u

1
"1, u

2
"3)8, a"0)02, e"0)9, x

max
"1, f

1
"20, f

2
"18 and k

2
"1.

The spectral amplitude for x is the same one as that obtained in the single-d.o.f. case. The
continuous d.o.f. y exhibits a resonance for uKu

2
similar to the linear case, but several

additional secondary resonances occur for uKu
2
/2 and uKu

2
/3. Furthermore, for the

frequency associated with a spectral amplitude peak for x, a small peak for y is found, which
can become large if k

2
is su$ciently large. Lastly, if u

1
is close to u

2
/2 and k

2
is rather large,

then the main peak of resonance can occur in the neighbourhood of u
2
/2.

3.2. STRONG COUPLING

In this section, the system (14) with k
1
O0 is studied.

3.2.1. Analytical solution of the system

3.2.1.1. Decoupling equations. System (14) will be decoupled in order to be able to write the
solutions x and y explicitly. The matrix K has the following characteristic polynomial:

P
K
(j)"j2!(u2

1
#u2

2
)j#u2

1
u2

2
!k

1
k
2

with discriminant D"(u2
1
!u2

2
)2#4k

1
k
2
.
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Figure 19. First-harmonic amplitude (dotted curve) and modal mass (solid curve) of the (1, 1)-periodic
responses: (a) First degree of freedom x; (b) second degree of freedom y.
The system parameters will be chosen so that D'0. Then the matrix K admits two
distinct real eigenvalues:

j
1
"

u2
1
#u2

2
!JD

2
,

j
2
"

u2
1
#u2

2
#JD

2
.
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Figure 20. First-harmonic amplitude (dotted curve) and modal mass (solid curve) of the (1, 1)-periodic
responses: (a) First degree of freedom x; (b) second degree of freedom y.
Assume that u
1
Ou

2
; if v

1
"k

1
/(u2

1
!u2

2
) and v

2
"k

2
/(u2

1
!u2

2
), then two eigenvectors

associated with j
1

and j
2

are respectively (1v
2
) and ( v

1
~1

), which de"ne the matrix

P"A
1 !v

1
v
2

1 B .
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The assumption D'0 implies that its determinant is nonzero, and P is invertible with

P~1"
1

1#v
1
v
2
A

1 v
1

!v
2

1 B .

Then, if X"PY, the system (14) is multiplied by P~1 in order to obtain

YG#aY0 #P~1KPY"P~1F cos (ut)#impact

Let

f 1"
f
1
#v

1
f
2

1#v
1
v
2

,

f 2"
f
2
!v

2
f
1

1#v
1
v
2

.

The new system obtained using the new basis is given by

xK
1
#axR

1
#j

1
x
1
"f 1 cos (ut),

xK
2
#axR

2
#j

2
x
2
"f 2 cos (ut)

(26)

as long as there is no impact. Thus these equations can be solved easily;

x
1
(t)"e~at@2[A1 cos (uJ

1
t)#B1 sin (uJ

1
t)]#f 1

1
cos (ut)#f 1

2
sin (ut),

x
2
(t)"e~at@2[A2 cos (uJ

2
t)#B2 sin (uJ

2
t)]#f 2

1
cos (ut)#f 2

2
sin (ut)

(27)

with uJ
1
"Jj

1
!a2/4, uJ

2
"Jj

2
!a2/4 and

f 1
1
"f 1

j
1
!u2

(j
1
!u2)2#a2u2

,

f 1
2
"f 1

au
(j

1
!u2)2#a2u2

,

f 2
1
"f 2

j
2
!u2

(j
2
!u2)2#a2u2

,

f 2
2
"f 2

au
(j

2
!u2)2#a2u2

.

The solution in the original basis is "nally given by

x"x
1
!v

1
x
2
,

y"v
2
x
1
#x

2
.

(28)

3.2.1.2. Gluing solutions at impact times. An impact occurs when x(t)"x
max

, namely when
x
1
(t)!v

1
x
2
(t)"x

max
. Assume that there is an impact at t

k
. For t3[t

k~1
, t

k
], the decoupled

solution is given by

x
1
(t)"e~at@2[A1

k
cos (uJ

1
t)#B1

k
sin (uJ

1
t)]#f 1

1
cos (ut)#f 1

2
sin (ut),

x
2
(t)"e~at@2[A2

k
cos (uJ

2
t)#B2

k
sin (uJ

2
t)]#f 2

1
cos (ut)#f 2

2
sin (ut).
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From these equations it can be inferred that the equation veri"ed by t
k is

f (t
k
)"e!at

k
/2 MA1

k
cos (uJ

1
t
k
)#B1

k
sin (uJ

1
t
k
)!v

1
[A2

k
cos (uJ

2
t
k
)#B2

k
sin (uJ

2
t
k
)]N

#( f 1
1
!v

1
f 2
1
) cos (ut

k
)#( f 1

2
!v

1
f 2
2
) sin (ut

k
)!x

max
"0.

Yet by assumptions on x and y, at the impact time:

x (t`
k
)"x (t~

k
),

x5 (t`
k
)"!exR (t~

k
),

y(t`
k
)"y (t~

k
),

y5 (t`
k
)"y5 (t~

k
)

which yields, according to (28),

x
1
(t`
k
)"x

1
(t~
k

),

xR
1
(t`
k
)"A1!

1#e

1#v
1
v
2
Bx5

1
(t~
k
)#

(1#e)v
1

1#v
1
v
2

xR
2
(t~
k

),

x
2
(t`
k
)"x

2
(t~
k

),

x5
2
(t`
k
)"

(1#e)v
2

1#v
1
v
2

xR
1
(t~
k
)#A

1#e

1#v
1
v
2

!eBxR
2
(t~
k
).

For i3M1, 2N,

u
i
(k)"Ai

k
sin (uJ

i
t
k
)#g

i
cos (uJ

i
t
k
)]#Bi

k
[!cos (uJ

i
t
k
)#g

i
sin (uJ

i
t
k
)]

#

u
uJ

i

eat
k
/2 [ f i

1
sin (ut

k
)!f i

2
cos (ut

k
)],

then:

A1
k`1

"A1
k
!

1#e

1#v
1
v
2

sin (uJ
1
t
k
) Cu1 (k)!v

1

uJ
2

uJ
1

u
2
(k)D ,

B1
k`1

"B1
k
#

1#e

1#v
1
v
2

cos (uJ
1
t
k
) Cu1(k)!v

1

uJ
2

uJ
1

u
2
(k)D,

A2
k`1

"A2
k
#

(1#e)v
2

1#v
1
v
2

sin (uJ
2
t
k
) C

uJ
1

uJ
2

u
1
(k)!v

1
u
2
(k)D,

(29)

B2
k`1

"B2
k
!

(1#e)v
2

1#v
1
v
2

cos (uJ
2
t
k
)C

uJ
1

uJ
2

u
1
(k)!v

1
u
2
(k)D.

3.2.2. Search for periodic solutions

The search for periodic solutions (x, y) is equivalent to the search for periodic solutions
(x

1
, x

2
). Only (n, 0) and (n, 1)-periodic solutions will be sought. The following calculations

are similar to those found in reference [76], with the addition of damping.
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3.2.2.1. (n, 0)-periodic solutions. As for the single d.o.f system, it is easy to prove that the 
system admits a (n, 0)-periodic solution if, and only if, x

1 and x
2 are given by

x
1
(t)"f 1

1
cos (ut)#f 1

2
sin (ut),

x
2
(t)"f 2

1
cos (ut)#f 2

2
sin (ut).

According to equation (28):

x (t)"( f 1
1
!v

1
f 2
1

) cos (ut)#( f 1
2
!v

1
f 2
2
) sin (ut).

It is thus possible to get results similar to those obtained for a single-d.o.f. system in section
2.2.1. This gives a condition that a (n, 0)-periodic solution exists; it requires
( f 1

1
!v

1
f 2
1
)2#( f 1

2
!v

1
f 2
2
)2)x2

max
. From this inequality, a fourth degree polynomial in

u2 can be obtained, allowing the values of u for which the system admits a (n, 0)-periodic
response to be determined. The remark made in Section 2.2.1 still holds; the existence of
(n, 0)-periodic solutions requires x

max
'0.

3.2.2.2. (n, 1)-periodic solutions. n¹-periodicity requires

x
1
(n¹)"x0

1
,

xR
1
(n¹)"xR 0

1
,

x
2
(n¹)"x0

2
,

xR
2
(n¹)"xR 0

2

or using linear combination, for a solution with one impact per cycle:
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2
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2
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2
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1
"0.

Using equation (29), a 4]4 linear system in (A1
1
, B1

1
, A2

1
, B2

1
) is obtained. The resolution of

this system leads to A1
1
(t
1
), B1

1
(t
1
), A2

1
(t
1
) and B2

1
(t
1
).

It remains to determine t
1

via the equation

f (t
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1
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1
)!x
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Initial conditions of the system leading to a (n, 1)-periodic solution are then given by

x
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1
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1
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3.2.3. Modal superpositon

3.2.3.1. Free oscillation of the system. It can be shown that the system (14) without external
forcing has a "nite number of impacts. Thus the steady state of the system (26) with
f 1"f 2"0 is periodic with frequency j

1
for x

1
and j

2
for x

2
: these two frequencies will be

used as natural frequencies for the forced system.

3.2.3.2. Generalized masses and modal superposition. It is now possible to consider
a (n, k)-periodic solution and to calculate the Fourier coe$cients of x

1
and x

2
. The

calculation of c1
j
(u) and c2

j
(u) is similar to the one carried out in the weak coupling case:

only the recursive relation (29) changes. In this case
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The nth Fourier coe$cients of the system by the basis change (28) are then
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where DI
1
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In the original basis,
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The contribution of the nth harmonic is (as for the weak coupling in equation (21)) given by
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Let
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2
B and A
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we can express A
1

in the form Tt
1
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1

and A
2

in the form Tt
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2
.
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Three equations with four unknowns are obtained
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As in the case of weak coupling, it is possible to "x one of the unknows; for example, in order

to respect a reciprocity condition as long as possible, let a
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"1/(J1#v

1
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2
). Then
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'0, for the parameters of the system verify (u2
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In the same way, for A
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Using equations (34) and (35), the relation (33) then becomes
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Thus a modal superposition formula for the two-d.o.f. system with strong coupling has been
established.

Remark.
* ¹

1
and ¹

2
thus de"ned are in fact eigenvectors associated with j

1
and j

2
.

* ¹@
1

and ¹
2

are orthogonal, just as ¹@
2

and ¹
1
.

* There is no reciprocity when k
1
Ok

2
, but when the matrix K is symmetrical, reciprocity

occurs since then ¹
1
"¹@

1
and ¹

2
"¹@

2
.
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3.3. TWO RIGID BODIES COLLIDING

In this section, a mechanical system consisting of two oscillating rigid bodies which can
collide during their movement is studied.

It will be assumed that the equilibrium position x0
1

and x0
2

of the two solids are such that
x0
2
!x0

1
"x

max
'0 (system without preload). The equations of the system in relative

displacements are then
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and assume hereafter that a
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"a. The system becomes
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When x
2
(t)!x

1
(t)"x

max
, an impact occurs at t and the restitution law leads the relative

velocity between the two solids to be multiplied by a factor !e at the impact time:

xR
2
(t`)!xR

1
(t`)"!e (xR

2
(t~)!xR

1
(t~) ).

Moreover, the conservation of the momentum provides the second equation to be able to
determine post-impact velocities:
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1
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A simple change of co-ordinates can be applied in order to express the system (14) in the
form previously studied; let

x"x
1
!x

2
,

y"
m

1
m

2

x
1
#x

2
.

(38)
Figure 21. Mechanical model of two rigid oscillating bodies colliding.
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For this new system of variables, the equations become
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Thus the system is of the type (14); the results of the preceding study are then applicable.
First of all note that k

1
and k

2
are proportional, so that there is always the case of the strong

coupling studied in section 3. As regards the solutions of the system between two impacts,
there is no work to do in order to decouple the system, since the initial system is already
written in decoupled form. Thus the eigenvalues of the system are always real, and are
exactly j

1
and j

2
.

In this case v
1
"1 and v

2
"m

1
/m

2
. According to equations (34) and (35), the modes of the

system are given by
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2
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¹
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, 1B ,
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1
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.

Figure 22. (1, 1)-periodic solution for u"4, x1
0
"!7)90482, xR 1

0
"!2)07935, x2

0
"11)20441, and

xR 2
0
"15)14127: absolute displacement.
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Figure 23. Existence of (1, 0)-periodic solutions: (a) initial displacements for x
1
(circle) and x

2
(x-mark); (b) initial

velocities for x
1

(circle) and x
2

(x-mark).
Using these modes, the modal superposition formula is as in equation (36), the expression
of the modal masses being given by equation (32). It is interesting to note that in general
there is no reciprocity, except if m

1
"m

2
.

Finally, the periodic responses of the system can be dealt with. First of all, according to
section 3.2.2, there are (n, 0)-periodic solutions because it was assumed that x

max
'0. In the

same way, calculations of section 3.2.2 can search for (n, 1)-periodic solutions. Diagrams of
existence of periodic solutions versus the frequency of the external excitation are obtained.
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Figure 24. Existence of (1, 1)-periodic solutions: (a) initial displacements for x
1
(circle) and x

2
(x-mark); (b) initial

velocities for x
1

(circle) and x
2

(x-mark).
From these periodic solutions, the modal superposition formula can then be tested, plotting
the di!erence between the spectral amplitude of the system's response and the nth harmonic
amplitude given by equation (36).

For the "rst example presented, let m
1
"1, m

2
"0)7, j

1
"5, j

2
"13, a"0)05, e"0)9,

f 1"20, f 2"18, and x
max

"14.
As it was the case for the single-d.o.f. system, note in Figure 25 that the usual resonance of

linear systems no longer occurs. Indeed, when the frequency of the external excitation is
35



Figure 25. First-harmonic amplitude (dotted curve) and modal mass (solid curve) of the (1, 1)-periodic solutions:
(a) "rst degree of freedom x

1
; (b) second degree of freedom x

2
.

equal to the natural frequency of the system, the modal mass corresponding to the excited
mode goes through a local maximum, so that the associated spectral amplitude does not
present a particular peak.

Nevertheless, spectral amplitude peaks appear for values of u far away from the natural
frequencies. The main peak is located in the neighbourhood of u

2
(which is one of the

natural frequencies of the system after the change of variables), but it is di$cult to show
a resonance in u

2
, for the peak is appreciably shifted from this frequency. From the modal
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Figure 26. Fourier coe$cients of the (1, 1)-periodic responses: (a) "rst degree of freedom x
1
; (b) second degree of

freedom x
2
.

point of view, the occurrence of such peaks does not correspond to a classical resonance
(where the generalized natural frequency of the system is close to the frequency of external
excitation); resonance can be interpreted as the locus of frequency where the generalized
modal mass is minimum with respect to u.

As regards the closeness of the approximation to the spectral amplitude by the nth
harmonic amplitude, note, as in the single-d.o.f. case, that the "rst harmonic is not always
the leading term in the amplitude of a (1, 1)-periodic response (see Figure 26). Thus, the
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TABLE 2

Di+erence between the whole spectral amplitude and the amplitude of nth harmonic

Degree of Di!erence (in %) Di!erence (in %)
freedom whole range neighbourhood of the peak

x
1

77)31 12)82
x
2

82)75 4)89

Figure 27. First-harmonic amplitude (dotted curve) and modal mass (solid curve) of the (1, 1)-periodic solutions:
(a) "rst degree of freedom x

1
; (b) second degree of freedom x

2
.
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Figure 28. Fourier coe$cients of the (1, 1)-periodic responses: (a) "rst degree of freedom x
1
; (b) second degree of

freedom x
2
.

constant coe$cient c
0

overrides all the others for some values of u. Yet if u is considered to
be close to the peaks in the spectral response, the "rst harmonic gives a close approximation
to the total amplitude (see Table 2).

For the last example, a set of parameters close to the second example in the single-d.o.f.
system is chosen: m

1
"1, m

2
"0)7, j

1
"1, j

2
"13, a"0)02, e"0)9, f 1"20, f 2"18, and

x
max

"1. Looking at Figures 27 and 28 "rst note that amplitude peaks appear at the same
frequencies for x

1
and x

2
, which is due to energy transmission between the two bodies
39



through impacts. Moreover, the "rst harmonic amplitude can once again be far lower than
the spectral amplitude; most of amplitude peaks in x

1
come from A

0
, and for x

2
the second

harmonic is often overriding.
Only the (1, 1)-periodic responses of the system have been studied. Nevertheless, it must

be kept in mind that many other types of periodic solutions are possible, as was seen for the
single-d.o.f. system, depending on the time period and the number of impacts per cycle.
Theoretically, nothing can prevent a modal superposition formula for any (n, k)-periodic
response from being written, but in practice such a response is hard to "nd by analytical
means when k'1.

4. CONCLUSION

The feasibility of building a modal superposition formula for systems with irregular
non-linearities of impact type has been investigated, imitating the procedure used in the
smooth non-linear case [49, 51]. The formula has been built for simple single- and two-d.o.f.
systems with unilateral constraint and restitution law. The generalized modes and
frequencies obtained turn out to be identical to the linear case, the non-linearity of the
system being concentrated into the modal masses.

The examples considered show that the formula is valid in the case of a primary
resonance for which the spectral amplitude is given by the Fourier coe$cient corresponding
to the periodicity of the forced solution obtained. Nevertheless, these examples have above
all illustrated the limitations to such a formulation. Firstly, the multiplicity of periodic
solutions, with di!erent periodicity or number of impacts per cycle, compels several
potential formulas to be built, and it is not possible to know a prori which one has to be
used. Furthermore, main amplitude peaks may appear away from any a priori clearly
identi"able resonance, which may be overidden by some unusual harmonics and
consequently cause the modal superposition formula to fail.

Therefore, it is not possible, in a general case, to build a modal superposition formula
using only the usual sequence de"nition of generalized frequencies, de"nition of generalized
modes and then de"nition of generalized modal masses; the non-linearities of impact type
produce a limitation on the formulation of a general formula following the usual procedure.
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