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Introduction

Modern dynamical systems theory supplies tools for local analysis of the dynamics of ordinary di¬erential equations. Concepts such as Poincaré mappings, centre manifolds and normal forms are helpful in understanding motion and bifurcations. The underlying assumption for these techniques is that the vector eld is su¯ciently well behaved. However, in models of mechanical systems one can nd that assumptions that are natural from the modelling point of view give vector elds that lack smoothness across boundaries in state space. Oscillating systems where impacts are possible is one example where it is not straightforward to employ standard methods.

In impact oscillators one or more motion limiters are present. Typically, a wall acts as a one-sided amplitude constraint. This situation is not uncommon in engineering systems, where models that incorporate this behaviour have been used to understand gears [START_REF] Pfei® Er | Rattling models from deterministic to stochastic processes[END_REF][START_REF] Karagiannis | Theoretical and experimental investigations of gear-rattling[END_REF], railway wheelsets [START_REF] Nordstr¿ M Jensen | On a new route to chaos in railway dynamics[END_REF][START_REF] Knudsen | Bifurcations and chaos in a model of a rolling railway wheelset[END_REF], mooring towers [START_REF] Thompson | Complex dynamics of compliant o® -shore structures[END_REF], printing devices [START_REF] Tung | The dynamics of an impact print hammer[END_REF], the mechanics of bipedal walking [START_REF] Garcia | The simplest walking model: stability, complexity and scaling[END_REF][START_REF] Mcgeer | Dynamics and control of bipedal locomotion[END_REF]Adolfsson et al. 1999), and several other dynamical problems.

The motion during contact has a much shorter time-scale than the typical motion of the system; consequently, a very common model for the impact is to assume that velocities change at an instant. This is the model that will be used in this paper.

Many papers have dealt with this subject. Among the rst investigations using a dynamical systems perspective we nd [START_REF] Shaw | A periodically forced piecewise linear oscillator[END_REF], Shaw (1985a;b) and [START_REF] Thompson | Chaotic dynamics of an impact oscillator[END_REF]. Subsequent work has revealed dynamical features found in smooth systems, as well as special features of the model, such as the dynamics close to grazing impact (see [START_REF] Nordmark | Non-periodic motion caused by grazing incidence in an impact oscillator[END_REF], and the possibility of an in nite number of impacts in nite time (see [START_REF] Budd | Chattering and related behaviour in impact oscillators[END_REF]. The main focus has been on one-degree-of-freedom systems, but systems with several degrees of freedom have been considered in [START_REF] Shaw | The onset of chaos in a two-degree-of-freedom impacting system[END_REF], Aidanp a a & [START_REF] Gupta | Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system[END_REF], [START_REF] Fredriksson | Grazing bifurcations in multibody systems[END_REF] and the thesis of [START_REF] Lee | The theoretical and numerical analysis of impact oscillators[END_REF]. The study of such systems are, in general, complicated by the abundance of parameters, thus special cases are usually considered in order to reduce the number of parameters. To the authors' knowledge no review paper has been written, but the theme issue edited by Bishop (1994) is dedicated to impact oscillations.

Previous investigations usually assume that the dynamics between impacts is given by linear equations of motion. As the impact law relates the velocity after impact to the velocity before impact, a coe¯cient of restitution is used. The advantage of this approach is that a closed-form solution for the motion between impacts can conveniently be written down, at least as long as the system has one degree of freedom. For impact oscillators little attention has been paid to more general approaches to local stability calculations, where one cannot rely on special features of the system. A scheme for the derivation of local expressions would be desirable, giving means to analyse systems where the interesting dynamics is impossible to capture using linearized equations of motion. This would also be of interest for the engineering community. The aim of the present paper is to propose such an idea. Combined with standard techniques it gives a way to obtain a local Poincaré mapping P on the form

P (z) = Lz + N (z); (1.1)
where z is a local coordinate in the Poincaré section, L is the matrix that gives the linear part of the mapping and N (z) are the higher-order terms. To obtain (1.1) is the starting point if one would like to use normal forms to study bifurcations. The paper is organized as follows. Firstly, we discuss the type of systems that we have in mind. Local mappings are introduced, and an idea on how to handle the impact part of the local dynamics is presented. This is done by de ning a discontinuity mapping. This mapping encapsulates the contribution to the dynamics coming from impacts. Three examples are studied. Finally, we discuss the results and how these can be extended.

Motion and impact

Our assumptions about the system are largely inspired by models based on connected rigid bodies. Such multibody models often o¬er su¯ciently accurate and computationally e¯cient models. They also relate well to the impact approximation, since a truly rigid body must change velocities discontinuously upon impact with a rigid surface. We assume that impact is due to a single body colliding with a surface. Thus, only one condition for contact needs to be checked. The motion of the impacting body is coupled to a larger system (in an arbitrary way) between impacts.

(a) State space and °ow

The system is assumed to have n degrees of freedom. We denote coordinates on the con guration manifold by q 1 ; q 2 ; : : : ; q n . Similarly, the velocities of the system are u 1 ; u 2 ; : : : ; u n . The state x is

x = q 1 u 1 . . . q n u n (2.1)
and the time derivative _ x of a motion is related to x by a vector eld F :

_ x = F (x): (2.2)
In many practical cases, time-periodic forcing is present. Indeed, all examples below have periodic forcing. In developing the general arguments, we do not need to treat this case separately. We can always rewrite the equations in the standard fashion, by extending x with a phase angle 2 S 1 , and add _ = 1 to the equations of motion.

We denote the state space where the motion limiter is removed (or thought to be penetrable) by X . This is partly a notational convenience. The main concern here is how to obtain locally valid expressions, thus we will not have much to say about global features of the state space. We write = (x; t) for the state space ®ow:

: X R ! X ; (2.3)
the mapping given by the solution of the di¬erential equation (2.2). When writing the arguments explicitly we sometimes use an indexed time t, t (x). Thus, t (x) is the state reached by following a trajectory from an initial point x during the time interval t.

(b) The impact law

We de ne the function H = H(x) to be equal to the distance from the impacting body to the motion limiting surface when H(x) > 0. The equation H(x) = 0 is the condition for contact. We also allow H(x) < 0, meaning a state which breaks the geometry imposed by the model. The contact condition can be interpreted as a surface in X with an equation H(x) = 0. We denote the set of points that ful ls this equation as :

= fx 2 X : H(x) = 0g:
(2.4) When a trajectory reaches , it is disrupted by the impact law. We view the impact law as a mapping G : X ! X , which is only of interest on . The impact law leaves coordinates on the con guration manifold unchanged. The velocities are changed, where we allow the new velocities to depend on both velocities and the con guration coordinates of the impact. We write

x a = G(x b ); (2.5)
where x a is the state immediately after impact, and x b is the state immediately before impact.

S x = t 1 (x) ~- x x' - F G ° t 1 (x) - F G ° t 1 (x) - F t 2 °F t 1 (x') F t 2 °F t 1 (x') F Figure 1.
Impacting and non-impacting motion.

The discontinuity mapping

We now develop the main idea of the paper. Related work can be found in [START_REF] Fredriksson | Bifurcations caused by grazing incidence in many degrees of freedom impact oscillators[END_REF] and in Dankowicz & Nordmark (2000). For a derivation of the linearization, see also M uller (1995).

(a) Motivation

Away from , all of the dynamics is in the ®ow. If we wish to analyse non-impacting motion close to a point x 0 , it is natural to consider the mapping T , where T > 0 is the time-interval of interest (the period in the case of periodic motion). A trivial decomposition can be made,

T = t 2 t 1 ; (3.1)
where

t 1 + t 2 = T .
Including impacts, we assume that t 1 is also the time of ®ight for an orbit starting at a point •

x to reach a point x 2 :

x = t1 (• x): (3.2)
Using the impact law, and then t 2 , the image of • x is

t 2 G t 1 (• x): (3.3)
This situation is indicated in gure 1. However, one should note that the expression t 2 G t 1 is valid as a mapping only for points having a ®ight time equal to t 1 . In general the ®ight time for points in a neighbourhood of •

x will be di¬erent. A decomposition similar to that of ®ow maps would be convenient, which inspires the following idea: can we nd a mapping C such that the correct mapping for all points close to •

H < 0 H = 0 H > 0 G (x) x x ~G ° t C (x ) F t C (x ) F C (x)

S

x can be written as t 2 C t 1 ? This mapping C must then incorporate the jump in velocities implied by the mapping G as well as the di¬ering ®ight times. The mapping C will be referred to as the discontinuity mapping, since it takes care of all aspects of passing the discontinuity imposed by the impact law.

Using this viewpoint, the in®uence of impacts is in a natural way separated from the dynamics of the ®ow. Calculating the ®ow for a xed time is also natural in numerical computations, where can be locally expanded and the coe¯cients can be determined by integrating the variational equations for the xed times t 1 and t 2 .

If, rstly, we follow the ®ow for a xed time t 1 , the image of the starting point might have H < 0. This is not consistent with the model, and the discontinuity mapping C will have to address this. The de nition set for C is thus a neighbourhood N of x, where N X . The rst step in de ning C is to note that for x 2 N we can trace the ®owline passing through x to the intersection with . We use t C = t C (x) to denote the short time of ®ight from x to . If H(x) < 0 then t C (x) < 0, and if H(x) > 0 the time of ®ight to is positive. The latter situation is shown in gure 2.

In this way we obtain a mapping from N to , and the image of x is tC (x) (x). Using the impact law we get a point G tC (x) (x) close to G(x). We now use this as an initial condition and we follow the motion (disregarding the wall) for a time t C (x). The discontinuity mapping is then

C(x) = tC (x) (G tC (x) (x)): (3.4)
It follows that C is a mapping from a state space neighbourhood of x (disregarding the wall) to a state space neighbourhood of G(x) (again disregarding the wall). Choosing x = x we have t C (x) = 0; hence C(x) = G(x), as expected.

(b) Expansions

To write C in a useful form, we wish to express it as an expansion in y = x x:

C(x) = G(x) + Ly + N (y); (3.5)
where L is the matrix giving the linearized mapping and N denotes nonlinear terms. It is not hard to translate the ideas in the previous section into a step-by-step description of how to obtain this expression.

(i) Firstly we calculate the ®ow close to x. We use the tilde to stress the expansion point, thus writing ~. It is sought as

~= x + t ~(y; t); (3.6)
where ~is an expansion in y and t. We determine the unknown coe¯cients in ~(y; t) by using the fact that the ®ow satis es (3.10)

@ @t (x; t) = F ( (x; t)) ( 
where O(y) 2 denotes terms of order two and higher. We then have

x a = G(x b ); (3.11)
where x b (x) is known.

(v) The ®ow close to x = G(x) is now calculated. This is similar to the rst step, with only a change in the expansion point. For obvious reasons it is convenient to denote the initial condition with a subscript `a', and we use the circum®ex as we have previously used the tilde: ^= x a + t ^(x a x; t):

(3.12) (vi) Lastly, we insert t = t C in the expression for the ®ow:

C(x) = ^(x a ; t C ); (3.13)
where x a = x a (x) has been calculated in previous steps. Finding the linearization is straightforward. The zeroth-order term in ~is F = F (x), thus ~= x + t( F + O(y; t)):

(3.14)

By writing Hx = @H @x (x);

(3.15)

the function H(x) is

H(x) = Hx y + O(y) 2 ; (3.16)
where the gradient Hx is a row vector. We use an unknown row vector tCx to tentatively write t C as

t C = tCx y + O(y) 2 :
(3.17 Note that this form of the linearized map is uniquely speci ed by demanding that vectors v orthogonal to Hx should be mapped to Gx v (since C is the same as G on ) and that F should map to F (since C maps a ®owline through x to a ®owline through x).

If we wish to derive the mapping to higher order the computations rapidly get complex. A computer algebra system is very helpful in order to automate the calculations and to minimize errors. For error checking it is also helpful to note some of the characteristics of the mapping. If we tentatively use the identity mapping for G, then C is identity. If we take x 2 , then C = G. These observations can be used to check that complicated expressions evaluate as expected.

Examples

Let us investigate how the ideas above can be used in practical calculations. When writing out expansions we use brackets [i; j; : : : ; k] as indices to label coe¯cients. If A is a function of the real variables x 1 ; x 2 ; x 3 , we write

A = i;j;k 0 i+ j+ k<m Ã[i;j;k] i!j!k! (x 1 x1 ) i (x 2 x2 ) j (x 3 x3 ) k + O(x x) m : (4.1)
An expansion that includes linear terms is then

A = Ã[0;0;0] + Ã[1;0;0] (x 1 x1 ) + Ã[0;1;0] (x 2 x2 ) + Ã[0;0;1] (x 3 x3 ) + O(x x) 2 : (4.2) (a) A forced n-degree-of-freedom system
We introduce some assumptions to obtain a system with an arbitrary number of degrees of freedom, but with similarities to the familiar one-degree-of-freedom periodically forced case. The basis for the one-degree-of-freedom model is a particle moving along a line. This motion is now coupled to another system. Thus, the state space without motion limiter, X , has the structure

X = R 2 M S 1 ; (4.3)
where the factor R 2 is due to the position and velocity of the particle, M denotes the submanifold of the state space which describes the system that is coupled to the particle and the factor S 1 is included by assuming periodic forcing. Furthermore, we assume that the equations of motion are

_ q 1 _ u 1 . . . _ q n _ u n _ = u 1 A 1 (x)
. . .

u n A n (x) 1 : (4.4)
When the motion limiter is taken into the model we assume that the impact process only involves the particle model. The coordinate q 1 describes the position of the particle and the motion limiter is located at a critical coordinate q 1 = q c , hence

H(x) = q 1 q c : (4.5)
The impact law only changes the velocity of the particle, which we write as

u 1a = g(u 1 b ): (4.6)
All other velocities are una¬ected by the impact. Writing the impact law as

u 1a = û1 + g [1] (u 1b ũ1 ) + O(u 1b ũ1 ) 2 ; (4.7)
and denoting

A i [0;:::;0] = A i [0] ; (4.8)
we obtain from (3.23) the expression for the linearization L of C: for some choice of • . The Poincaré mapping using this section is sometimes called the stroboscopic mapping and denoted as P S . For impacting systems the situation is more complicated. The impact velocity is often of major interest. A natural idea is then to use a subset of (u 1 > 0 or u 1 < 0) as a Poincaré section. The mapping is then referred to as the impact mapping, P I . Another choice is to use (with q 1 > q c ) and use this set as a section. This choice is more in conformity with the current approach. Assume that we have a motion, making m impacts at the phases ~1; ~2; : : : ; ~m before returning to ; let P ! ~ 1 be the mapping, using only the ®ow, from a neighbourhood of the starting point in to the section of xed phase where the rst impact occurs. Similarly we write P ~ 1 ! ~ 2 ; P ~ 2 ! ~ 3 ; : : : ; P ~ m ! . We use Cj = ~ to denote the restriction of C by xing the phase angle to the impact phase. The stroboscopic mapping is then

L = û1 ũ1 0 0 0 0 0 0 Â1 [0] g [1] Ã1 [0] ũ1 g [1] 0 0 0 0 0 0 0 1 0 0 0 0 Â2 [0] Ã2 [0]
P S = P ~ m ! Cj = ~ m P ~ 1 ! ~ 2 Cj = ~ 1 P ! ~ 1 : (4.14)
To nd periodic motion, standard root-nding algorithms can be employed. The linearization of Cj = ~ is then useful. We obtain it simply by removing the last row and last column in (4.9). It is worth noting that the determinant is the same for the restricted mapping, thus the Poincaré section volume change due to impact is also given by (4.10).

(b) A general one-degree-of-freedom system

We now consider a one-degree-of-freedom system, and we calculate an expansion of C to order two. We use (4.4) with n = 1, where for simplicity we write q = q 1 , u = u 1 and A = A 1 . The special structure of the system can be used to nd shortcuts in the calculations. Using Q, U and for the components of the ®ow, we make the trial solution

Q = q + t(u + 1 2 t (x; t)); (4.15)
where we use ~for expansions at (x; 0), and similarly we write ^to stress that x is the point of expansion. By di¬erentiating Q with respect to time we obtain U :

U = @Q @t = u + t (x; t) + 1 2 t @ (x; t) @t : (4.16)
The unknown coe¯cients in can be determined by di¬erentiating U with respect to time and inserting all expressions in an expansion of A. We obtain

+ 2t @ @t + 1 2 t 2 @ 2 @t 2 = A(Q; U; ): (4.17)
Carrying out the rst step, we wish to obtain U to order two, hence we need ~to order one: ~= ~[0;0;0;0] + ~[1;0;0;0] (q q) + ~[0;1;0;0] (u ũ) + ~[0;0;1;0] ( ~) + ~[0;0;0;1] t + O(x x; t) 2 : (4.18)

Expanding A to order one and using (4.17 To nd t C we note that since t C = 0 when q = q, it is natural to seek t C of the form t C (x) = (q q) (x);

(4.20)

where is an expansion in x x. The unknown coe¯cients in are found by inserting t = t C into Q(x; t) = q, from which we obtain 1 + (u + (q q) 1 2 ) = 0: 

u b = u 1 ũ Ã[0;0;0] (q q) + 1 2ũ Ã[1;0;0] + 1 ũ Ã[0;0;1] + 1 ũ Ã[0;0;0] Ã[0;1;0] 1 ũ2 Ã2 [0;0;0] (q q) 2 + 1 ũ Ã[0;1;0] + 1 ũ Ã[0;0;0] (q q)(u ũ) 1 ũ Ã[0;0;1] (q q)( ~) + O(x x) 3 : (4.23)
The expansion of the impact law is

u a = û + g [1] (u b ũ) + 1 2 g [2] (u b ũ) 2 + O(u b ũ) 3 : (4.24)
To get the expansion of the ®ow close to x we just change the tilde to a circum®ex. Inserting t = t C and the initial conditions, we nd that the position component q C of C(x) is q C = q + û ũ (q q) + 1 2ũ 2 Â[0;0;0] + û ũ 2g [1] Ã[0;0;0] (q q) 2 + 1 ũ g [1] û ũ (q q)(u ũ) + O(x x) 3 ; (4.25) and the velocity component u C is

u C = û+ 1 ũ f Â[0;0;0] g [1] Ã[0;0;0] g(q q)+g [1] (u ũ) + 1 2ũ û ũ Â[1;0;0] g [1] Ã[1;0;0] 1 2ũ 2 ( Â[0;0;1] g [1] Ã[0;0;1] ) + 1 2ũ 3 Ã[0;0;0] ( Â[0;0;0] g [1] Ã[0;0;0] ) + 1 2ũ 2 ( Â[0;0;0] Â[0;1;0] 2g [1] Â[0;1;0] Ã[0;0;0] +g [1] Ã[0;0;0] Ã[0;1;0] )+ g [2] 2ũ 2 Ã2 [0;0;0] (q q) 2 + g [1] ũ ( Â[0;1;0] Ã[0;1;0] ) 1 ũ2 ( Â[0;0;0] g [1] Ã[0;0;0] ) g [2]
ũ Ã[0;0;0] (q q)(u ũ)

+ 1 ũ f Â[0;0;1] g [1] Ã[0;0;1] g(q q)( ~)+ 1 2 g [2] (u ũ) 2 +O(x x) 3 : (4.26)
The phase-angle component C is simply where z is the Poincaré section coordinate and P ~ ! ~ is a linear mapping. This viewpoint can be practical both for (numerically) nding periodic orbits and for studying the e¬ects of the nonlinear terms. As an example we take the one-degree-of-freedom system with the acceleration given by A = ! 2 q 2 !u + af(! 2 1) cos( ) 2 ! sin( )g; (4.29)

and with the impact law

u a = ru b : (4.30)
Here the forcing is chosen so that if impacts are disregarded the motion will settle on q = a cos( ), u = a sin( ). In the following a is varied while the parameters are kept Since we work with the restriction Cj = ~ , the point of expansion is the triplet q, ũ, a c . We use the notation C [i;j;k] for the coe¯cients in the expansion of Cj = ~ . Hence C [1;1;1] is the coe¯cient in front of (q q)(u ũ)(a a c ).

We can obtain the coe¯cients C [i;j;k] by applying the result of the previous section. The Jacobian of (the restriction of ) I is the identity matrix and T is the period of interest.

C is L C , L C = r 0 (1 + r) ũ r ; ( 4 
Choosing ! = 1=4:9, = 0:6, r = 1 and q c = 1, we can nd a saddle-node bifurcation involving 4-periodic motion with one impact when a = a c = 0:915 66. The impact velocity is ũ = 0:368 15 and the impact phase is ~= 2:727 95. To approximately nd the bifurcated motion we calculate the centre manifold and the reduced dynamics. Using À as a coordinate, we write an expansion for the centre manifold as

z = z + 1 À + M [0;1] (a a c ) + M [2;0] 1 2 À 2 + ; (4.42)
where 1 is the eigenvector corresponding to the eigenvalue

1 = 1 of L = L T L C .
There is an element of choice involved in normal form calculations. We have here taken where 1 is the left eigenvector of L with eigenvalue 1 , to make the expansion unique. A comparison of the approximate solution with a solution found numerically can be done in two ways. This is because a numerical routine for nding periodic orbits typically assumes that q > q c . Thus, either we nd the bifurcated solution numerically at a convenient phase and move it to the section ~, or else we move the approximate solution to the section used for the numerical solution. The latter approach is taken in gure 3, where a bifurcation diagram at = 0 is shown. The eventual fate of the branches is thoroughly investigated in [START_REF] Nordmark | Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators[END_REF]. Both the stable and the unstable branch are destroyed in grazing bifurcations as a is increased (the stable when a = 0:975 55, the unstable when a = 1).

Results and discussion

By using the discontinuity mapping, we have shown how to obtain series expansions of mappings in impact oscillators with a unilateral displacement limiter. This is helpful in analysing bifurcations. Some extensions of this work are straightforward. We can change the assumption that the impact law can be written explicitly, by allowing an implicit relation G(x a ; x b ) as long as it can be solved locally. Systems where only one impact can occur at a given time, but with many di¬erent contact possibilities, can be brought into the present framework by applying the di¬erent discontinuity mappings several times, once for each contact. Other aspects are more subtle and call for future studies. Models where spatially separated parts of one or several bodies can make contact simultaneously have not received much attention. In such models two contact conditions can be ful lled at the same time. One scenario that might be possible is that a parameter change will change the order in which the impact events occur for a periodic motion. Since linear stability is given by multiplying the Jacobians of the di¬erent mappings, which, when composed, gives the Poincaré mapping; this corresponds to switching order between the Jacobians of two discontinuity mappings. Since matrix multiplication in general does not commute, this might lead to non-di¬erentiable dynamics exactly when the order is switched.
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 2 Figure 2. The discontinuity mapping. Flowlines are dashed when H < 0.

  3.7) for all x; t 2 X R. (ii) The next step is to nd the time t C (x) as an expansion in y. The unknown coe¯cients in t C are calculated by inserting the expression for the ®ow into an expansion of H: H( ~(x; t C )) = 0: (3.8) (iii) We can now calculate the point of impact, x b : x b = ~(x; t C (x)): (3.9) (iv) We now direct our attention towards the impact law G. Using the notation Gx for the Jacobian of G at x, we write the expansion as G(x) = G(x) + Gx y + O(y) 2 ;

)

  By inserting this into (3.8) we get Hx y + Hx F tCx y + O(y) 2 = 0the identity matrix. Using the impact law we nd x a = G(x) + Gx I F Hx Hx F y + O(y) 2 ; (3.21) and by substituting x a and t = t C into ^we have C(x) = G(x) + Gx I

  local state-space volume change caused by an impact is given by the determinant of L. Since L is triangular we immediately havedet L = g [1] û1 ũ1 : (4.10)This is independent of the dimension of the system. For the much-used model where the impact law is modelled by a coe¯cient of restitution r,u 1a = ru 1 b ; Poincar ¶ e mappingsFor periodically forced systems without impacts, the canonical candidate for a Poincaré section is := fx 2 X : = • g; (4.13)

  t C into U gives u b :

  A saddle-node bifurcationIn the case where the equations of motion between impacts are linear, all nonlinearities are in C. Assuming that we study an orbit with one impact, we can use the section with = ~to write the Poincaré mapping as P S (z) = P ~ ! ~ Cj = ~ (z);(4.28)

C

  [0;2;0] = C [0;0;2] = C [0;1;1] = 0 0 ; (4.36) where = a c f(! 2 1) cos( ~) 2 ! sin( ~)g ! 2 q (4.37) and = ( 4 ! ũ) + a c ũf(! 2 1) sin( ~) + 2 ! cos( ~)g: (4.38) The mapping P ~ ! ~ is P ~ ! ~ (z; a) = P ~ ! ~ (ẑ; a c ) + L T (z ẑ) + (I L T )
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 3 Figure 3. Bifurcation diagram when = 0. The unstable branch is dashed.

M [0;1] = 0; 1 M [2;0] = 0;(4.43)
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