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Periodic solution finder for an impact oscillator with a drift

E. Pavlovskaia, M. Wiercigroch

Centre for Applied Dynamics Research, Department of Engineering, King’s College, Fraser Noble Building, Aberdeen

University, Aberdeen AB24 3UE, UK

In this paper, an efficient semi-analytical method is developed to compute periodic solutions for a new
model of an imp act oscillator with a drift, which exp lains the p rogression mechanism in vibro-impact
systems and can be used to op timize their p erformance. The method constructs a p eriodic response
assuming that each period is comprised of a sequence of distinct phases for which analytical solutions are
known. For example, a period may consist of the following sequential phases: (I) contact with progression,
(II) contact without p rogression, (III) no contact and (IV) contact without p rogression. Using this
information, a system of four piecewise linear first order differential equations is transformed to a system of
non-linear algebraic equations. The method allows one to accurately predict a range of control parameters
for which the best progression rates are obtained.

1. Introduction

Impacting systems have numerous engineering applications, for example, pile driving [1],
percussive drilling [2,3] and ground moling [4]. For a better illustration of the problem, consider a
particular engineering application such as vibro-impact ground moling. During operation, the
generated impact forces are used to drive a penetrating head into the ground. This can result in
complex dynamic responses, as the system not only oscillates but also moves forward. A
combination of oscillatory and progressive motion has been recently studied by Pavlovskaia et al.
[5,6] using an elasto-viscous model of the soil, which is more realistic than previously reported
(see, for example, Refs. [7,8]). From those studies and others including experimental ones (e.g.,
[3,4]), it is clear that the best progression rates are achieved when the system responses are
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periodic. Strictly speaking, when the impacting mass oscillates with a period one motion and
steadily moves forward.
Non-linear dynamics of impacting oscillators has received a considerable theoretical and

experimental attention in the past (see for example Refs. [9–16]). Practical aspects of vibro-impact
and percussion systems have been vigorously studied for many years. For example, works by
Kobrinskii [17] and Babitsky [18] provide detailed analyses assuming that the dynamics of vibro-
impact systems can be reduced to only oscillatory motion. This might be justifiable for some
regimes of operation, but in general, the progression has an influence on the oscillatory motion,
and therefore a comprehensive model accounting for both motions is required. This has been
pointed out in the recent paper by Pavlovskaia et al. [5]; however, the method to analyze the
oscillatory progressive motion has only been mentioned. Therefore, the main aim of this paper is
to present a robust algorithm capable of determining periodic solutions (responses) for an impact
oscillator which is also drifting from its initial position.

2. Governing equations

A simple dynamical system shown in Fig. 1 is considered, where a mass m is excited by an
external force containing a harmonic component of amplitude Pd ; frequency O and phase
shift j; and a static component, Ps: The slider has weightless top and bottom plates connected
to each other by a linear elasto-viscous pair of stiffness k and damping c: Similar to the
stick–slip phenomena reported for example in Refs. [19,20], the progressive motion of the mass
occurs when the force acting on the slider exceeds the threshold of the dry friction force Pf : As
proposed in Ref. [5] Xm; Xt; Xb represent the absolute displacements of the mass, slider top and
slider bottom, respectively. It is assumed that the model operates in a horizontal plane, or the
gravitational force is compensated. At the initial moment, there is a distance separating the mass
and the slider top called a gap, E: Now introduce a new variable U ¼ Xt � Xm þ E to monitor
this distance.

P=Ps+Pd cos(Ωt+ϕ)

Xm

Xt

Pf

Xb

m

k c

U

slider

Fig. 1. Physical model of an impact oscillator with a drift.
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For the case when the mass and the slider move separately, the dynamics of the system is
described by one second and two first order differential equations:

m .Xm ¼ Ps þ Pd cosðOt þ jÞ;

cð ’Xt � ’XbÞ þ kðXt � XbÞ ¼ 0;

’Xb ¼ 0: ð1Þ

When the mass and the slider are in contact, their motion is described by one second order and
one first order differential equation, which can be either oscillatory

m .Xm þ cð ’Xt � ’XbÞ þ kðXt � XbÞ ¼ Ps þ Pd cosðOt þ jÞ;

’Xb ¼ 0; ð2Þ

or progressive

m .Xm ¼ �Pf þ Ps þ Pd cosðOt þ jÞ;

cð ’Xt � ’XbÞ þ kðXt � XbÞ ¼ Pf : ð3Þ

Note that for Eqs. (2) and (3), the distance between the mass and the slider top U ¼ 0; which
means that the displacement of the slider top, Xt is in phase with the displacement of the mass, Xm;
but is smaller by a gap, Xt ¼ Xm � E:
The equations of motion (1)–(3) were transformed to sets of first order differential equations

using the following non-dimensional variables [5]:

t ¼ O0t; x ¼
k

Pmax

Xm; y ¼
dx

dt
¼

k

O0Pmax

’Xm;

z ¼
k

Pmax

Xt; v ¼
k

Pmax

Xb; u ¼
k

Pmax

U

and parameters

o ¼
O
O0

; O0 ¼

ffiffiffiffi
k

m

r
; a ¼

Pd

Pmax

; b ¼
Ps

Pmax

; d ¼
Pf

Pmax

;

x ¼
c

2mO0
; e ¼

k

Pmax

E;

where Pmax is the normalized threshold force.
As has been discussed above, the considered system can operate in one of the following modes:

no contact, contact without the progression of the slider, or contact with the progression of the
slider. For each of these modes a careful consideration will be given next. For simplicity of further
analysis, the dimensionless friction threshold force, d is set to 1, e ¼ 0:02 and j ¼ p=2:

2.1. No contact

If the distance between the mass and the slider top is greater than zero, u > 0; then the mass and
the slider top move separately. The motion of the mass can be determined from the following set
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of equations:

x0 ¼ y;

y0 ¼ a cosðotþ jÞ þ b; ð4Þ

where 0 denotes d=dt: Velocities at the top and the bottom of the slider are

z0 ¼ �
1

2x
ðz � vÞ; ð5Þ

v0 ¼ 0: ð6Þ

2.2. Contact without progression

This mode occurs when the distance between the mass and the slider top is equal to zero, u ¼ 0;
and the force acting on the mass from the slider is greater than zero but smaller than the threshold
of the dry friction force. This can be expressed as

0o2xz0 þ ðz � vÞo1: ð7Þ

The mass and the slider top move together without progression, and the second equation of (4)
gains additional elastic and viscous terms:

x0 ¼ y;

y0 ¼ �2xz0 � ðz � vÞ þ a cosðotþ jÞ þ b: ð8Þ

The velocity of the slider top is equal to the velocity of the mass, and the displacement of the slider
top is in phase with the mass displacement but differs by gap, e:

z0 ¼ x0; x ¼ z þ e: ð9Þ

When there is no progression, the bottom of the slider remains stationary, hence its velocity is
equal to zero, v0 ¼ 0:

2.3. Contact with progression

When the distance between the mass and the slider top is equal to zero, up0; and the force
acting on the mass is greater than the threshold of dry friction force which can be described as

2xz0 þ ðz � vÞX1; ð10Þ

then the mass and the top and the bottom of the slider move together, and progression takes
place. Equations of motion for the mass are

x0 ¼ y;

y0 ¼ a cosðotþ jÞ þ b � 1: ð11Þ
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The displacement and the velocity of the slider top are as before (see Eq. (9)). The velocity of the
slider bottom motion can be calculated from the expression

v0 ¼ z0 þ
1

2x
ðz � v � 1Þ: ð12Þ

3. Algorithm for determining periodic solutions

Let us now focus on periodic regimes as they are most beneficial from the practical point of
view [7]. It should be noted that since the considered system is piecewise linear, its dynamic
response can be constructed by stitching linear solutions at points of discontinuities. The
following approach has been adopted. Initially, it is assumed that the displacement and velocity of
the mass have certain (yet unknown) values. Starting from these values, the system is in one of the
phases described in Section 2, and its analytical solution can be constructed. This enables one to
calculate a time interval for which a particular phase of motion persists. The final displacements
and velocities of the preceding phase define the initial conditions for the next phase. Finally, the
initial conditions of the first phase are determined from the periodicity conditions. In Fig. 2, a
typical sequence of period one motion is presented. It is comprised of

* Phase I—progression; the mass and the slider are in contact.
* Phase II—contact without progression; the mass and the slider are in contact but the slider
bottom is not moving.

* Phase III—no contact; the mass and the slider are moving separately.
* Phase IV—contact without progression; the same as Phase II.

D
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em
en

t, 
x,

 z
, �

Time, τ

Fig. 2. One period broken into four phases of progression (I), contact without progression (II), no contact (III) and

contact without progression (IV). Durations of these phases are a; b; g and d; respectively. Solid, dashed and dotted

lines mark displacements of the mass, the slider top and the slider bottom, respectively.
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The beginning of progression was chosen as an initial point. At this moment, the mass and the
slider top are joined together, and the force acting on the mass from the slider has reached the
threshold value. Since the velocities of the mass and the slider top are equal, the following relation
between the initial displacement and velocity can be written as

2xy0 þ ðx0 � e � v0Þ ¼ 1: ð13Þ

As the initial displacement of the slider bottom, v0 does not influence the mass motion, it is set to
zero. Then the following holds:

x0 ¼ 1þ e � 2xy0: ð14Þ

The other unknown is the time at this initial moment t0: This means, that the phase shift between
the external force and the system response at the beginning of the process needs to be determined:

c0 ¼ jþ ot0: ð15Þ

There are two periodic conditions for the mass displacement and velocity, which can be used:

xðtþ TÞ ¼ xðtÞ þ D;

yðtþ TÞ ¼ yðtÞ; ð16Þ

where T is the period and D is progression of the slider per period. In the present study, the
interest is in the periodic regime, where the period T is equal to the period of external loading,
T ¼ 2p=o: Thus, three unknown functions c0; x0 and y0 can be found from this condition
together with Eq. (16). However, an arbitrary solution of these equations cannot guarantee that
x0 and y0 will also satisfy Eq. (14). For that reason first a substitution of x0 with the function of y0
(expression (14)) is made, and then a special function F to monitor the difference between the
exact periodic solution and the one calculated for these arbitrary initial conditions is constructed:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðtþ TÞ � xðtÞ � DÞ2 þ ðyðtþ TÞ � yðtÞÞ2

q
: ð17Þ

If the minimum of this function is equal to zero, then the periodic regime exists, and the durations
of all four stages can be determined. As this scheme is generic, the algorithm developed for
calculating periodic solutions will be explained in detail.

3.1. Phase I: progression

The first phase is progression, and the consideration is started at the moment when this phase
has just begun. Using the initial values of the unknown functions c0 and y0; a solution of Eq. (11)
can be constructed as

xðtÞ ¼ �
a

o2
½cosðotþ c0Þ � cosðc0Þ� þ

1

2
ðb � 1Þt2 þ y0t�

at
o
sinðc0Þ þ x0; ð18Þ

yðtÞ ¼
a

o
½sinðotþ c0Þ � sinðc0Þ� þ ðb � 1Þtþ y0: ð19Þ
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Having calculated xðtÞ and assuming that zðtÞ ¼ xðtÞ � e; the displacement of the slider bottom
is found by integrating Eq. (12):

vðtÞ ¼ xðtÞ � e � 1þ 2xy0 exp �
t
2x

� �
: ð20Þ

When the progression condition (10) fails, a new phase, the contact without progression begins,
and thus the end of the first phase can be determined from the following equation:

yðaÞ � y0 exp �
a
2x

� �
¼ 0: ð21Þ

By substituting Eq. (19) into (21) the following expression is obtained:

a

o
½sinðoaþ c0Þ � sinðc0Þ� þ ðb � 1Þaþ y0 � y0 exp �

a
2x

� �
¼ 0: ð22Þ

This enables one to calculate the duration of the first phase, a; which is a function of the initial
conditions, y0 and c0:

a ¼ aðy0;c0Þ: ð23Þ

Consequently, the progression of the slider per period, D can be expressed with respect to a as

D ¼ vðaÞ ¼ xðaÞ � e � 1þ 2xy0 exp �
a
2x

� �
: ð24Þ

At this point, the progression phase has finished and a new phase, the contact without
progression, has just begun. Hence, the initial conditions for the second phase are calculated from
Eqs. (18) and (19) and

xI ¼ xðaÞ; yI ¼ yðaÞ: ð25Þ

3.2. Phase II: contact without progression

In the second phase, the mass and the slider are moving together, but the force between them,
which is acting on the slider is too small for the slider bottom to move. The motion of the mass is
governed by Eq. (8), and the solution takes a form

xð*tÞ ¼ expð�x*tÞ K1 cos *t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q� �
þK2

sin *t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
2
4

3
5

þ k1 cosðo*tþ c1Þ þ k2 sinðo*tþ c1Þ þ b þ e þ D;

yð*tÞ ¼ expð�x*tÞ K3 cos *t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q� �
þK4

sin *t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
2
4

3
5

þ ok2 cosðo*tþ c1Þ � ok1 sinðo*tþ c1Þ; ð26Þ
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where

*t ¼ t� a;

c1 ¼ c0 þ oa;

k1 ¼
að1� o2Þ

ð1� o2Þ2 þ 4x2o2
; k2 ¼

2axo

ð1� o2Þ2 þ 4x2o2
;

K1 ¼ xI � k1 cosðc1Þ � k2 sinðc1Þ � b � e � D;

K2 ¼ yI þ xxI � xb � xe � xDþ ð�k1x� k2oÞ cosðc1Þ þ ðk1o� k2xÞ sinðc1Þ;

K3 ¼ yI þ ok1 sinðc1Þ � ok2 sinðc1Þ;

K4 ¼ �xI þ b þ e þ D� xyI þ ðk1 þ k2oxÞ cosðc1Þ þ ð�k1oxþ k2Þ sinðc1Þ:

xI and yI are determined from Eq. (25). The second phase ends when the force acting on the mass
is equal to zero, so

2xyðbÞ þ xðbÞ � e � D ¼ 0; ð27Þ

where x and y are calculated from Eq. (26). A functional relation for the interval b is obtained by
substituting Eqs. (24) and (26) into Eq. (27). This leads to a non-linear algebraic equation with
unknown y0 and c0; which allows one to calculate the length of the second phase b:

b ¼ bðy0;c0Þ: ð28Þ

When b is found, the initial conditions for the next phase can be calculated from Eq. (26) as

xII ¼ xðbÞ; yII ¼ yðbÞ; zII ¼ xðbÞ � e: ð29Þ

In Fig. 3, trajectories of the mass (solid line) and the slider bottom (dashed line) during the first
two phases for different values of the initial phase, c0 are shown. It can be observed by looking at
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Fig. 3. Time histories of displacement of mass, x (solid line) and displacement of slider bottom, v (dashed line)

calculated for a ¼ 0:5; b ¼ 0:2; x ¼ 0:01; o ¼ 0:1; y0 ¼ 6 and different initial phases c0:
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the small zoom-up window that the system oscillates with the frequency equal to its natural
frequency, on ¼ 1: This situation can occur for a range of c0 prolonging the duration of the
second phase. For example, if c0 is chosen from the region c0Að4:3; 5:4Þ for y0 ¼ 6 as shown in
Fig. 4, the duration b can be up to 10 times longer than one which is needed. This can be clearly
seen from Fig. 4, where the desirable duration of the second phase equal to 2 is against 20, when
the process settles down very slowly. Therefore, for y0 ¼ 6 the region of c0 between 4.3 and 5.4
should be excluded. Practically, it means that only the values of the initial phase, c0; where the
duration b is smaller than p (a half of the period of oscillations when the mass is being in contact
with the slider), should be considered. This can be achieved if the following condition is satisfied:

F1ðy0;c0Þ 	 xð*t; y0;c0Þj*t¼p � Dðy0;c0Þo0: ð30Þ

The first equation of (26) is used to determine function xð*tÞ:

3.3. Phase III: no contact

In the third phase, the mass and the slider top move separately, so integrating Eq. (4) one
obtains

xð*tÞ ¼ �
a

o2
½cosðo*tþ c2Þ � cosðc2Þ� þ

1

2
b*t2 þ yII *t�

a

o
*t sinðc2Þ þ xII ;

yð*tÞ ¼
a

o
½sinðo*tþ c2Þ � sinðc2Þ� þ b*tþ yII ; ð31Þ

where

*t ¼ t� a� b; c2 ¼ c0 þ oðaþ bÞ;

and xII ; yII are defined by Eq. (29).
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Fig. 4. Duration of the second phase b as a function of c0 at a ¼ 0:5; b ¼ 0:2; x ¼ 0:01; o ¼ 0:1 and different values

of y0:
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Duration of the third phase, g can be found from the condition

xðgÞ ¼ zðgÞ þ e; ð32Þ

where zðgÞ ¼ ðzII � DÞ expð�g=ð2xÞÞ þ D is the solution of Eq. (5) at the moment *t ¼ g: As the
expð�g=ð2xÞÞ is very small, xðgÞEDþ e:
The condition (32) allows one to determine the moment when the mass hits the slider again (in

this case, Eq. (31) is used to calculate xðtÞ). Again after substituting the expressions for a; b; D; xI ;
yI ; xII and yII to Eq. (32), a non-linear algebraic equation for g is obtained:

g ¼ gðy0;c0Þ: ð33Þ

As before, when g is found, the initial conditions for the next phase are calculated from Eq. (31):

xIII ¼ xðgÞ; yIII ¼ yðgÞ: ð34Þ

Durations g at chosen values of y0 are depicted in Fig. 5 for different values of c0 for F1o0: As
one is looking for the period equal to 2p=o; the duration g of the third phase needs to be relatively
long. It means that the regions of c0 where the trajectories of the mass and the slider bottom
intersects only briefly, as those shown in Fig. 6, should be excluded. This can be achieved if one
considers only the range of c0; where the following condition is satisfied:

F2ðy0;c0Þ 	 yð*t; y0;c0Þj*t¼*t
*
o0; ð35Þ

the second equation of (31) is used to calculate yð*tÞ: The condition (35) means that in some
moment *t

*
of the third phase, the mass should still move in the opposite direction to the direction

of progression. The value of *t
*
should be appropriately chosen to avoid the region of c0 where a

jump of g occurs (see Fig. 5). Examining Fig. 5 one may deduce that the exclusion zone could start
from the left dashed line, however, experience in solving the non-linear algebraic equation (32)

region to be excluded (y0=6)
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Fig. 5. Duration of the third phase g as function of c0 for a ¼ 0:5; b ¼ 0:2; x ¼ 0:01; o ¼ 0:1 and different

values of y0:
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suggests, that it is more efficient to move this line to the left, in order to increase the numerical
stability. A shaded area representing the exclusion zone from the second phase has been added to
Fig. 5 to illustrate its location and extent. The final exclusion zone is a logical sum of these two
exclusion zones.

3.4. Phase IV: contact without progression

In the last phase, d; the mass and the slider are moving together again up to the point, when the
force acting on the slider is large enough to commence progression. Solution of Eq. (8) is given by
Eq. (26) after introducing the following change of variables:

*t ¼ t� a-*t ¼ t� a� b� g;

c1 ¼ c0 þ oa-c3 ¼ c0 þ oðaþ bþ gÞ;

xI-xIII ;

yI-yIII : ð36Þ

d can be found from the following equation:

2xyðdÞ þ xðdÞ � e � D ¼ 1; ð37Þ

where the functions x and y are calculated from Eqs. (26) and (27) using the substitution (36). The
values of these functions for *t ¼ d (xIV and yIV ) correspond to the displacement and velocity of
the mass at the end of the period, t ¼ aþ bþ gþ d; and they should be substituted to the
periodicity conditions (16). The periodic solutions with the period T ¼ 2p=o can only exist, if
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Fig. 6. Time histories of the mass (solid line) and slider bottom (dashed line) for a ¼ 0:5; b ¼ 0:2; x ¼ 0:01; o ¼
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total duration of all four phases is equal to this period, so

T ¼ aðy0;c0Þ þ bðy0;c0Þ þ gðy0;c0Þ þ dðy0;c0Þ: ð38Þ

Thus, by using this condition the initial phase, c0 can be represented as a function of the initial
velocity, y0:

c0 ¼ c0ðy0Þ: ð39Þ

In order to determine the initial velocity, y0 for a chosen initial phase, c0 one needs to find a
minimum of the function F ðy0Þ:

F ðy0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxIV ðy0Þ � Dðy0Þ þ 2xy0 � 1� eÞ2 þ ðyIV ðy0Þ � y0Þ

2

q
: ð40Þ

From @F=@y0 ¼ 0 first y0 is calculated and then all unknown phases a; b; g and d are determined.
If the minimum of the function F ðy0Þ is equal to 0, a periodic solution is found.
By employing the semi-analytical algorithm outlined in this section not only a period one

solution can be determined but all periodic solutions, providing that the sequences of individual
phases comprising different periods are defined a priori. The algorithm has proven to be robust in
finding optimal parameters of the best progression for a given set of the system parameters and
initial conditions. The latter are crucial as they can influence the progression rates significantly. In
Fig. 7, a comparison between periodic and non-periodic solutions with respect to their time
histories and progression per period is made. As can be seen a deviation from the optimal initial
conditions has produced a significant decrease in progression per period.

D
is

pl
ac

em
en

t, 
x,

 �

Time, τ

75

50

25

0

0

-25

-50
20 40 60 80

Fig. 7. Motion of the system during one period for a ¼ 0:5; b ¼ 0:2; x ¼ 0:01; and o ¼ 0:1: Displacement of mass, x;
and the displacement of slider bottom, v are marked by solid and dashed lines, respectively. An optimal periodic
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4. Comparison with a direct numerical simulation

The basic aim of the investigated system is to overcome the frictional force and move
downwards. Despite of the fact that the considered model has only two degrees of freedom when
the mass and the slider move separately, the dynamics of this system is very complex ranging from
periodic to chaotic motion. In order to determine those various responses and assess the
robustness of the devised semi-analytical solution, a direct numerical integration was used. Thus,
the equations of motion were transformed to the following set of first order differential equations:

x0 ¼ y;

y0 ¼ a cosðotþ jÞ þ b � P1P2ð1� P3Þð2xy þ z � vÞ � P1P3;

z0 ¼ P1y � ð1� P1Þðz � vÞ=2x;

v0 ¼ P1P3P4ðy þ ðz � v � 1Þ=2xÞ; ð41Þ

where a set of auxiliary functions, P1; P2; P3 and P4 of Heaviside type, is introduced. This allows
one to describe more effectively the piecewise linear nature of the considered system

P1 ¼ P1ðx; zÞ ¼ Hðx � z � eÞ;

P2 ¼ P2ðz; z0; vÞ ¼ Hð2xz0 þ z � vÞ;

P3 ¼ P3ðz; z0; vÞ ¼ Hð2xz0 þ z � v � 1Þ;

P4 ¼ P4ðv0Þ ¼ Hðv0Þ: ð42Þ

The numerical results shown in this section were computed using Dynamics software [21].
Eq. (41) was integrated using the fourth order Runge–Kutta algorithm with 1000 steps per one
period of external excitation.
Non-linear dynamic analysis has been conducted in order to gain a fundamental insight and

determine the optimal operational parameters. This paper restricts itself to only bifurcation
diagrams, which have been constructed as follows. The initial value of the static force (b) is set to
the leftmost value in the figures. For this set of parameters, in order to exclude the transient
behaviour, 100 cycles are calculated without plotting anything. The next 300 cycles brings 300
values of the velocity, y; which are plotted in the figure. Then a small increment is added to the
branching parameter (in these figures it is equal to ðbmax � bminÞ=480Þ and the procedure is
repeated until the branching parameter reaches the rightmost value. A repetition of this
procedure, by decreasing the branching parameter from rightmost to leftmost value, showed no
hysteresis.
Typical bifurcation diagrams shown in Fig. 8 use the mass velocity to monitor the system

dynamics due to the fact that the system moves forward. The other set of bifurcation diagrams
depicted in Fig. 9 answers a practically important question ‘How far will the system progress in a
fixed time?’ and use the bottom slider displacement. In the experiments, the time was set up to 50
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periods of external loading. As can be clearly seen from Fig. 9, the maximum penetration rate
coincides with the end of periodic regime. It is also worth noting few local maxima for higher
values of b:
The semi-analytical solution constructed in Section 3 allows one to study progression per period

as a function of the system parameters. Fig. 10 shows the influence of the static force on the
progression per period for different values of dynamic force under fixed damping coefficient and
frequency of external loading. As it can be seen from the graphs, the progression curves have their
maxima close to non-periodic solutions (dash lines). Although the dash lines show increases of the
progression rates, the solutions obtained for these values of the static force are not periodic, so
these predictions are false. It is worth noting that the existence of such maxima of progression is in
good agreement with the experimental results [4] and the previous analytical models [7].
Fig. 11 shows a comparison between the semi-analytical and numerical predictions calculated

for a ¼ 0:36; x ¼ 0:1; o ¼ 0:1; where the right vertical axis corresponds to the progression
calculated numerically for the first 50 periods of external excitation. As can be seen from the
figure, the results obtained from the developed semi-analytical method and the direct numerical
integration are in a very good agreement.
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The devised method has also been used to determine how the frequency and dynamic force
influence the progression rates per period. Fig. 12a concludes that smaller external frequencies
produce better progression rates. The monotonically decreasing curves indicate higher penetration
rates for larger dynamic forces. The influence of the dynamic force on the progression per period
is shown in Fig. 12b for different values of static force. The larger the dynamic and static force
are, the larger the progressions per period are obtained.

5. Closing remarks

The paper gives a detailed account of an efficient semi-analytical method developed to calculate
periodic responses for a new model of an impact system with a drift [5]. The method constructs a
periodic solution assuming that each period is comprised of a sequence of distinct phases for
which analytical solutions are known explicitly. For example, a period may consist of the
following sequential phases: (I) contact with progression, (II) contact without progression, (III)
no contact and (IV) contact without progression. Using this information, the system of four
piecewise linear first order differential equations is transformed into a system of non-linear
algebraic equations, which in turn are solved using a secant method due to its accuracy and speed.
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The algorithm is enhanced by two additional conditions (Eqs. (30) and (35)), which allow one to
narrow down the search region. A comparison with direct numerical integration shows an
excellent accuracy of the method. This algorithm can be used to predict a range of control
parameters for which the best progression rates are achieved. Engineering applications of this
method are foreseen in processes utilizing vibro-impact dynamics include percussive downhole
drilling, ultrasonic drilling and ground moling.
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