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Deciphering mechanisms underlying 
the genetic variation of general production 
and liver quality traits in the overfed mule duck 
by pQTL analyses
Yoannah François1, Alain Vignal1, Caroline Molette1, Nathalie Marty‑Gasset1, Stéphane Davail2, 
Laurence Liaubet1 and Christel Marie‑Etancelin1* 

Abstract 

Background: The aim of this study was to analyse the mechanisms that underlie phenotypic quantitative trait loci 
(QTL) in overfed mule ducks by identifying co‑localized proteomic QTL (pQTL). The QTL design consisted of three 
families of common ducks that were progeny‑tested by using 294 male mule ducks. This population of common 
ducks was genotyped using a genetic map that included 334 genetic markers located across 28 APL chromosomes 
(APL for Anas platyrhynchos). Mule ducks were phenotyped for 49 traits related to growth, metabolism, overfeeding 
ability and meat and fatty liver quality, and 326 soluble fatty liver proteins were quantified.

Results: One hundred and seventy‑six pQTL and 80 phenotypic QTL were detected at the 5% chromosome‑wide 
significance threshold. The great majority of the identified pQTL were trans‑acting and localized on a chromosome 
other than that carrying the coding gene. The most significant pQTL (1% genome‑wide significance) were found for 
alpha‑enolase on APL18 and fatty acid synthase on APL24. Some proteins were associated with numerous pQTL (for 
example, 17 and 14 pQTL were detected for alpha‑enolase and apolipoprotein A1, respectively) and pQTL hotspots 
were observed on some chromosomes (APL18, 24, 25 and 29). We detected 66 co‑localized phenotypic QTL and pQTL 
for which the significance of the two‑trait QTL (2t‑QTL) analysis was higher than that of the strongest QTL using a 
single‑trait approach. Among these, 16 2t‑QTL were pleiotropic. For example, on APL15, melting rate and abundance 
of two alpha‑enolase spots appeared to be impacted by a single locus that is involved in the glycolytic process. On 
APLZ, we identified a pleiotropic QTL that modified both the blood level of glucose at the beginning of the force‑
feeding period and the concentration of glutamate dehydrogenase, which, in humans, is involved in increased 
glucose absorption by the liver when the glutamate dehydrogenase 1 gene is mutated.

Conclusions: We identified pleiotropic loci that affect metabolic pathways linked to glycolysis or lipogenesis, and in 
the end to fatty liver quality. Further investigation, via transcriptomics and metabolomics approaches, is required to 
confirm the biomarkers that were found to impact the genetic variability of these phenotypic traits.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
To date, approaches based on transcript abundance 
quantitative trait loci (QTL), better known as expression 

QTL (eQTL) have been the primary method used to 
understand the genetic architecture that underlies physi-
ological traits controlled by QTL and the relationships 
between the genome and the phenome. However, the 
measure of transcript abundance used for eQTL analy-
sis does not necessarily reflect the real abundance of 
the proteins coded by the genes. Indeed, mRNA levels 
can be influenced by multiple and complex regulation 
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processes, which, for instance, affect transcription levels 
or mRNA stability, whereas protein abundance depends 
also on other levels of regulation, such as translation, 
maturation, post-translational modification or protein 
degradation. Proteomic analyses can be performed to 
determine whether the protein is an inactive propep-
tide or in a modified active state. A study by Darmeval 
et  al. [1] showed that there is a link between protein 
abundance and genome variability, which suggests that 
quantitative proteomic analyses are a better indicator 
of genetic distances between maize lines than qualita-
tive analyses. These authors later introduced the concept 
of PQL (protein quantitative loci), hereafter designated 
pQTL for consistency with the current nomenclature of 
eQTL, when they successfully mapped loci that influence 
protein abundance [2]. One key benefit of the identifica-
tion of eQTL and pQTL lies in their possible co-location 
with phenotypic QTL, thus highlighting the importance 
of specific proteins or candidate genes, as was shown in 
a study on pea [3]. In the animal kingdom, research on 
pQTL is more recent, but has proven effective in find-
ing genes that cause variation in plasmatic protein abun-
dance in mice, and one of these genes was linked to both 
a pQTL and a QTL for HDL cholesterol levels [4]. To our 
knowledge, no pQTL analyses have been performed on 
animals of agricultural interest. Although various large-
scale studies on eQTL have already been implemented 
owing to the availability of adequate techniques, they 
need to be complemented by pQTL analyses, which 
are effective for a deeper understanding of phenotypes. 
Indeed, since proteins are the actual cellular effectors of 
many physiological processes, identification of the loci 

that control their availability and abundance is an essen-
tial step in understanding the links between the genome 
and the phenome.

In a previous study, we identified QTL that are related 
to force-feeding traits [5] and are of great interest to the 
duck industry. In the current study, we quantified the 
proteins that are present in the fatty liver of the same 
ducks by quantitative 2D-gel electrophoresis [6] in order 
to perform pQTL analyses. The co-localized QTL and 
pQTL were investigated in an attempt to make connec-
tions between the phenotype and the proteome, and 
thus identify the biological mechanisms that underlie the 
genetic variability of these traits. Here, we present the 
results of QTL analyses on fatty liver proteomic data by 
focusing on the proteomic and phenotypic QTL that co-
localized, and identified those that appear to have pleio-
tropic effects.

Methods
Experimental procedures were performed in accordance 
with the French National Guidelines for the care and use 
of animals for research purposes (Certificate of Authori-
zation to Experiment on Living Animals no 7740, Minis-
try of Agriculture and Fish Products).

Experimental design and animal husbandry
Due to the complexity of generating the proteomic data-
set on a large scale, the experimental design used here 
(Fig. 1b) is a subset of the complete design (Fig. 1a) used 
by Kileh-Wais et  al. [5]. Briefly, it consists of a back-
cross (BC) design in which an additional generation (G) 
of overfed male mule ducks (G3) was phenotyped to 
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Fig. 1 Experimental designs. I444: INRA Kaiya line; I37: INRA heavy Pekin line; BC: backcross
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estimate the value of their G2 common duck mothers. 
G0 animals were recruited in two experimental common 
duck lines: I444, a light Kaiya line (the crossbred prod-
uct of a Tsaiya duck and an Asian Pekin duck) and I37, 
a heavy Pekin line (a synthetic strain created from three 
heavy European Pekin lines) [5]. The design was reduced 
by (1) selecting three F1 families from the initial seven, 
in which QTL for fatty liver quality traits segregated and 
(2) reducing the number of mule duck offspring per BC 
female down to three.

Breeding of the G3 mule ducklings is described in [5] 
and [7]. The 294 mule ducks of the subset used here, 
were hatched in two batches, with a 3-week gap between 
hatches. From 0 to 12  weeks of age, they were bred in 
growing batches and then were overfed for 12  days by 
three different handlers. At the end of the overfeeding 
period, animals were slaughtered, and liver tissue was 
sampled 20 min post-mortem via a small slit in the abdo-
men and frozen in liquid nitrogen for proteomics analy-
ses. Carcasses were refrigerated for 24 h at 4 °C, prior to 
evisceration.

Proteomic 2D electrophoresis and identification of spots
Bi-dimensional gel electrophoreses of protein extracts 
(Fig. 2) were performed for all 294 mule duck livers as 
reported by François et al. [6], according to the method 
described in [8]. Briefly, soluble protein fractions were 
extracted by grounding the frozen liver samples in liq-
uid nitrogen, mixing them with a low ionic strength 

buffer, centrifuging the homogenates and collecting the 
supernatants. Protein concentrations were determined 
using the Bradford assay (Bio-Rad, Hercules, USA). For 
the first-dimensional electrophoresis, samples were 
loaded onto pH gradient strips (pH 5–8; Bio-Rad) and 
isoelectric focusing (IEF) was performed using a Pro-
tean IEF cell system (Bio Rad, Hercules, USA). The 
second dimension consisted of sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis (SDS-PAGE) 
using a Protean II XL system (Bio Rad). IEF were pro-
cessed in 30 series of 12 samples, and for each IEF 
series, SDS-PAGE were done in two series of six sam-
ples. SDS-PAGE gels were stained overnight with 
Coomassie Blue G250 (Fermentas Page Blue), scanned 
and analyzed with the Progenesis SameSpots  software® 
(TotalLab Ltd, Newcastle-upon-Tyne, UK). When spots 
seemed to be affected by the background, their outer 
edges were manually defined. As the general aspect of a 
gel had an impact on image analysis, gels were assigned 
to three categories: broken, blurred or correct. Spot 
matching was performed for all 294 samples and the 
software calculated the intensity that was corrected for 
background, of all of the spots detected for each of the 
294 samples.

Detected spots were manually excised from the gels 
and sent to the proteomics platform in Clermont-Ferrand 
for protein identification (PFEMcp, INRA, Clermont-
Ferrand Theix, France). In short, after protein digestion, 
peptide mixtures were analyzed by online nanoflow liq-
uid chromatography using an Ultimate 3000 RSLC sys-
tem (Dionex, Voisins le Bretonneux, France). Raw data 
were processed with Proteome Discoverer 1.4 (Thermo 
Fisher Scientific Inc., USA) and database searching with 
MASCOT v. 2.3 (Matrix Science Ltd., USA), using the 
UniP_tax_Aves database for protein identification. The 
genes that coded for the identified proteins were mapped 
on the chicken genome with Ensembl (http://www.
ensembl.org). Since considerable synteny has been dem-
onstrated between duck and chicken genomes, except for 
GGA4 (GGA for Gallus gallus chromosome), which is 
separated into two chromosomes in ducks, i.e. APL4 and 
10 (APL for Anas platyrhynchos chromosome) [9], we 
considered that duck chromosomes APL1 to APL9 corre-
spond to chicken chromosomes GGA1 to GGA9, APL10 
corresponds to GGA4p and finally, that the rest of the 
karyotype is offset by one, with GGA10 corresponding to 
APL11 and so on. The list of all identified protein spots 
with pQTL is in Additional file 1: Table S1.

Phenotypic data
Six groups of phenotypes corresponding to 49 traits 
were measured and recorded for the 294 mule ducks 
(Table  1). For growth traits measured before the 
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Fig. 2 Two‑dimensional gel electrophoresis representing a map of 
duck fatty liver soluble proteins
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overfeeding period, animal body weights were recorded 
at 12, 28, 42, and 70 days of age and the combinations of 
six body weight gains between these ages were estimated. 

Corticosterone levels under stress were recorded at 
6 weeks of age: ducks were hung by the legs on a string 
for 10 min in order to measure the animal’s response to 
stress and blood samples were taken before and after 
the test in order to measure corticosterone levels and 
to assess the response of the HPA (hypothalamic–pitui-
tary–adrenal) axis to this stress. Differences in corti-
costerone levels before and after stress were computed. 
During the overfeeding period, plasma metabolic indi-
cators such as glucose, triglyceride and cholesterol lev-
els were measured at the beginning (after the second 
meal), the middle (after the 10th meal) and the end (after 
the 20th meal) of the 12-day overfeeding period. Body 
weight at the beginning and the end of the overfeed-
ing period, the corresponding body weight gain and the 
food consumption during the whole overfeeding period 
were recorded. To appreciate the overfeeding ability of 
the ducks, the carcass and component pieces (fatty liver, 
thigh, breast skin, breast muscle and abdominal fat) were 
dissected and weighed. Measurements related to liver 
quality such as melting rate (percentage of fat loss during 
cooking, obtained by sterilizing 60 g of liver for 50 min 
at 105 °C), lipid, protein and collagen contents, and liver 
color (L*, a*, b* coordinates in the CIELAB system) were 
recorded. Finally, breast muscle quality (pectoralis major 
muscle) was estimated by measuring the pH 20 min and 
24 h (ultimate pH) post-mortem, cooking and drip losses 
under vacuum, the descriptive color L*, a*, b* values and 
by recording the lipid content. Raw meat tenderness was 
measured using the maximal shear force and energy lev-
els using the Warner–Bratzler test. Mean and standard 
error values for all these traits are described in [5] and 
estimated genetic parameters are in [7].

Marker development, genotyping and map construction
The same BC design that was used here was previously 
used to detect phenotypic QTL based on a first set of 91 
microsatellite markers, which led to the construction of 
16 linkage groups that covered 778  cM [5]. In order to 
extend this rudimentary map, we developed additional 
single nucleotide polymorphisms (SNPs) [10]. Briefly, the 
seven G1 sires of the QTL design (Fig. 1a) were sequenced 
with 100 bp paired-end reads at a depth of 35X with the 
Illumina HiSeq. Sequence quality was verified and correct 
paired-end alignments were generated by alignment to the 
duck genome reference [11] using the Burrows-Wheeler 
Aligner (BWA) program [12], then SNPs were detected 
using the GATK software [13]. Over 11 million SNPs were 
detected, of which 90% were heterozygous in only one G1 
sire. To guide our choice of SNPs, while allowing for the 
largest possible duck genome coverage, we took advan-
tage of the known synteny conservation between the duck 
and chicken genomes [9, 14] and chose a final set of 384 

Table 1 Trait descriptions

Abbreviation Unit Meaning

Growth measurements

BW12, BW28, BW42, BW70 kg Body weights at 12, 28, 42, 
70 days of age

BWG12‑28, BWG12‑42, 
BWG12‑70, BWG28‑42, 
BWG28‑70, BWG42‑70

g/d Body weight gains (all combi‑
nations between 12, 28, 42 
and 70 days of age)

Corticosterone traits

CortL, CortH ng/ml Corticosterone level before and 
after stress

DeltaC ng/ml Difference in corticosterone 
level before and after stress

Body weights and metabolic traits during overfeeding period

TG 2nd M, TG 10th M, TG 
20th M

g/l Plasma triglyceride level after 
2nd, 10th and 20th meal

CHO 2nd M, CHO 10th M, CHO 
20th M

g/l Plasma cholesterol level after 
2nd, 10th and 20th meal

GLU 2nd M, GLU 10th M, GLU 
20th M

g/l Plasma glucose level after 2nd, 
10th and 20th meal

DFI kg/d Daily feed intake

BWbeg, BWend kg Body weight at beginning and 
end of overfeeding period

OWG kg Weight gain during the over‑
feeding period

Overfeeding ability traits

CW kg Bled‑plucked carcass weight

FLW kg Fatty liver weight

pmMW kg Pectoralis major muscle weight

pmSFW kg Breast skin + subcutaneous fat 
weight

TSW kg Thigh + shank weight

AFW kg Abdominal fat weight

Liver quality traits

MR % Liver melting rate

LLipC, LProtC % Liver lipid and protein content

LColC mg/g Liver collagen content

LL*, La*, Lb* Liver lightness, redness and 
yellowness

Muscle quality traits

MpH20, MpHu Muscle pH 20 min post mortem 
and muscle ultimate pH 24 h 
post mortem

MCookL, MvacL % Muscle cooking losses and 
muscle drip losses

MLipC % Muscle lipid contents

ML*, Ma*, Mb* Muscle lightness, redness and 
yellowness

Menergy mJ Energy needed to cut the 
muscle

MFmax Maximal shear force
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SNPs among the 157,436 that were bi-allelic in at least five 
sires and had known positions on the chicken genome. 
These SNPs were used to genotype the 382 G2 female 
ducks, their G1 parents (seven F1 sires and 64 I444 dams) 
and their 14 G0 paternal grand-parents (Fig.  1a) using 
the  Illumina® Veracode technology. Analysis of genotype 
clusters and selection of high-quality SNPs, based on call 
rates and correct Mendelian inheritance, were performed 
with the Genome Studio™ software (Illumina).

Genetic maps were constructed with CRI-MAP  2.4 
[15] by including the SNP genotypes generated here 
and previous microsatellite data. The new genetic map 
contains 334 markers (278 SNPs and 56 microsatellites) 
aggregated into 28 linkage groups corresponding to 28 
APL chromosomes (Fig. 3).

Statistical methods
Prior to QTL detection, all mule duck traits (proteomic 
or phenotypic) were corrected for environmental fixed 
effects using the GLM procedure in SAS [16]. For all phe-
notypic traits, the “hatching batch” effect (two levels) was 
taken into account (Model 1), and the “handler” effect 
(three levels) was added for traits related to overfeeding 
or product quality (Model 2). For proteomic traits, these 
zootechnical effects were cumulated with the technologi-
cal effects of the bi-dimensional electrophoresis. Then, 
the sum of the spot intensities of each gel was treated as a 
covariate and six fixed effects were defined (Model 3): the 
“handler” effect (three levels), the “hatching batch” effect 
(two levels), the general aspect of the gels (three levels), 
the first electrophoresis dimension effect (30 levels), the 
second electrophoresis dimension effect (two levels per 
first electrophoresis series) and the interaction of both 
dimensions (60 levels). The residual effects of the three 
previous linear models were conserved for each mule 
duck, and the performance of each G2 female was com-
puted as the average of the residual effects of her three 
male mule duck offspring.

QTL detection was carried out using the QTLMap 
software [17–19] in order to implement linkage analy-
sis according to the interval mapping method [20]. For 
each chromosome, first the probabilities of each pos-
sible phase of the G1 male founders were estimated 
using marker information from their progenies (the G2 
dams). The sire phases with the highest probabilities were 
assumed to be the correct ones: for a set of tested posi-
tions (practically at each 1 cM), the probabilities that the 
corresponding chromosomal segments were transmitted 
to the offspring were estimated. Then, QTL detection 
was carried out by within-sire linear regression [21]. The 
model was the following:

Yij = si +
(

2pij − 1
)

ai + eij ,

where the dependent variable Yij is the average perfor-
mance (previously corrected for fixed effects) of the three 
male mule duck offspring of G2 dam j and sire i. For each 
location on the genome, si is the male founder i effect, 
ai is equal to half the substitution effect of the putative 
QTL carried by the sire i, and pij is the probability that 
the daughter (BC) j might inherit one arbitrarily defined 
QTL allele from her sire i, given the marker information. 
The residual variance eij was defined within sire fami-
lies to improve robustness to unlinked QTL segregation 
between families [22]. In our design, phenotypes were 
recorded only at G3, but since the number of mule ducks 
per G2 dam was strictly equal to 3, it was not necessary 
to take the variance of the phenotypes assigned to the G2 
generation into account, in contrast with our previous 
study in which the number of G3 mule ducks per G2 dam 
was variable [5].

For each trait and each linkage group, 1000 within-
family permutations were performed to estimate the 
empirical chromosome-wide significance level of the test 
statistics [23]. The conservative genome-wide thresholds 
were derived from chromosome-wide significance levels, 
using an approximate Bonferroni correction:

where r is the ratio between the length of a specific link-
age group and the length of the genome considered for 
QTL detection (1728 cM). The 95% confidence intervals 
of the QTL locations were estimated by LOD drop-off. In 
practice, the bounds of each interval were the two loca-
tions at which the likelihood was equal to the maximum 
likelihood minus 3.84 (=χ2(1, 0.05)) [24]. The QTL effect 
(α) was expressed in phenotypic standard deviation units 
(SD), and estimated as: α = 1

SD
× 1

n

∑n
i=1 |αi|, where SD 

is the phenotypic standard deviation, n the number of 
sires and αi the effect of the within-sire ith QTL allele 
[25].

QTL detections were first carried out for phenotypic 
traits (QTL) and proteomic traits (pQTL) on a single-
trait basis. For all confidence intervals of single pheno-
typic QTL and pQTL that overlapped, multi-trait QTL 
analyses, usually via a two-trait approach (2t-QTL), were 
performed [26] in order to identify possible pleiotropic 
effects between the phenotypes and liver protein varia-
tions. In addition, when a protein was identified for sev-
eral spots each having a QTL on the same linkage group, 
the two-trait approach was also implemented to check 
whether the overall change in this protein improved the 
QTL.

To distinguish between pleiotropy and close linkage in 
2t-QTL results, we performed the CLIP (Close LInkage 
versus Pleiotropy) test proposed by David et al. [27]. The 

Pgenome-wide = 1− (1− Pchromosome-wide)
1
/r ,
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snp15614,4
snp15520,1
snp15422,9
CAU06429,0
snp14936,5
snp15241,0
snp14849,6
snp15154,1

APL06

CAM1700,0
CAM16715,9
snp23733,0
snp23835,1
snp23636,1
snp23937,0
snp24037,7
CAM17239,4
CAM16642,8
snp23545,0
snp23445,7
snp23354,6
CAM18961,2
CAM17563,6
CAM18565,1
CAM17465,9
CAM19167,8
CAM19369,8
BCMO0171,3
snp24572,8
snp24474,3
snp24376,8
CAM18078,9
snp24683,2
CAM16393,6
CAM162107,6
CAM183148,0
snp248155,6

APL12

hap1500,0
snp3033,0
snp3044,8
snp3065,5
snp29917,3
snp30018,3
snp30123,1

APL16

snp3520,0
snp3504,0
AMU0266,0
snp3499,6

APL22

snp3530,0
snp3550,8

APL23

snp3570,0
snp3562,3
snp3584,6
snp35917,6

snp36028,6

APL24

snp3650,0

AMU15812,8
snp36416,5

snp36126,9
snp36233,5
snp36338,6

APL25

CAU0040,0
snp3732,7

snp37425,9
snp37034,3

snp37246,0
snp37151,7

APL27

hap1610,0

snp30830,6
snp30935,1

snp31451,5
snp31357,1
snp31262,1
snp31571,5
snp31677,7
snp31782,2
snp31891,0

APL18

snp2540,0
snp2532,7
snp2524,7
hap12014,0
snp25116,6
snp25521,8
snp25625,5
snp25937,8
snp25845,0
snp25747,7
snp26052,7
snp26155,6
snp26257,6
snp26360,9
snp26463,8
snp26574,2

APL13

snp3200,0
snp3193,8
snp3277,6
snp32211,8

snp32130,9
snp32332,7
snp32541,4

APL19

snp2810,0
snp28010,6
snp27913,6
CAU01316,9
snp27820,1
snp27727,0
snp27630,3
snp27531,7
snp27438,9
snp27339,7
snp26744,2
snp26648,2
hap13052,9
CAU13769,1

APL14 CAU0190,0
snp3297,4
snp33015,0

snp33131,2
CAU11534,3
snp33337,8
snp33240,8

snp33454,0

APL20

snp3760,0
snp3751,0

APL28

snp3800,0
snp3847,9
snp38313,7
snp38218,8

APL29

snp1400,0
snp13612,4
snp13715,0
snp13815,4
snp13917,6
hap28020,8
snp14127,5
snp14629,0
CAM11329,7
snp14531,3
snp14432,1
snp14335,3

APLZ
snp3460,0
snp3471,5
snp3414,6
hap1916,8
snp34024,0
snp33727,5
hap19227,8
snp33533,2
snp33937,0
snp33638,2
snp34540,5
snp34244,7
snp34358,6

APL21

hap1420,0
snp2955,5
hap14114,9
snp28417,0
snp28521,7

snp28640,2

snp28757,5

APL15

Fig. 3 Sex‑averaged genetic map in centiMorgan. Linkage groups (APL) were built using the Crimap software
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CLIP test considers that under the assumption of pleiot-
ropy (H0), the pattern of the SNP effects when moving 
along the tested genomic region should be similar for 
both traits, whereas under the close-linked QTL assump-
tion (H1) it should be different.

Graph inference
To aid interpretation, data from the CLIP test show-
ing pleiotropy were transformed into graphs using the 
Gephi 0.9.1 software [28]. Gephi is an open-source and 
free visualization and exploration platform for all kinds 
of graphs. Weight was added to links for which pleiot-
ropy was not rejected, and spatial statistics were used to 
identify nodes of importance in the graph. For example, 
nodes with a strong betweenness related to centrality 
were essential for the stability of the graph, and without 
such nodes the graph is disrupted [29].

Functional annotation
To determine the biological relevance of the results, the 
Ingenuity Pathway Analysis (IPA, QIAGEN, Redwood 
City, www.qiagen.com/ingenuity) software was used to 
perform enrichment analysis (biological functions and 
canonical pathways), to construct bibliographic net-
works and regulation networks based on the identifica-
tion of potential upstream regulators. Since IPA uses 
gene names, protein names were changed for gene names 
when necessary. Briefly, IPA constructed networks based 
on bibliographic data in which the edges were obtained 
from biological links such as receptor-ligand interactions, 
enzyme activity on another protein, or a transcriptional 
factor that activates the expression of targeted genes. IPA 
proposed the most probable network with an associated 
score. The final graph was reconstructed from the pro-
posed IPA network with the best score using the PathDe-
signer function and also included information on some 
of the most significant canonical pathways and biologi-
cal functions, as well as information from an interesting 
pleiotropic QTL.

Results
Single‑trait QTL analysis
A total of 10,500 single-trait QTL analyses (28 chro-
mosomes with 326 protein quantification traits and 49 
phenotypic traits) were performed. We detected 287 sig-
nificant pQTL at the 5% chromosome-wide threshold 
and in 176 cases, the protein was successfully identified 
(see Additional file 2: Table S2). We also detected 80 sig-
nificant QTL at the 5% chromosome-wide threshold for 
the phenotypic traits (see Additional file 3: Table S3). Of 
these QTL and pQTL, 45 and 21 were significant at the 
1% chromosome-wide threshold for the proteomic and 
phenotypic traits, respectively. At the genome-wide level, 

six phenotypic and five proteomic traits reached the 5% 
threshold and one phenotypic and two proteomic traits 
reached the 1% threshold.

The 176 pQTL were located across the 28 linkage 
groups of the genetic map (see Additional file  2: Table 
S2). On average, we detected 6.3 (SD =  3.2) pQTL per 
chromosome. Surprisingly, the number of pQTL tended 
to be smaller on the macro-chromosomes (APL1 to 
APL10 and APLZ) than on the micro-chromosomes, with 
mean numbers of 5.7 ± 2.3 and 6.8 ± 3.7, respectively. In 
general, the allelic substitution effect for these 176 pQTL 
was low (on average 0.42 ± 0.17 of the standard deviation 
for the considered trait and ranged from 0.25 to 1.53) and 
the confidence intervals of the QTL were relatively large, 
with an average of 20 cM. Some chromosomes were con-
sidered particularly noteworthy because they harbored 
very significant pQTL. On APL18 and 24, we observed 
two pQTL significant at the 1% genome-wide signifi-
cance level, respectively for alpha-enolase (ENO1) and 
fatty acid synthase (FASN) (see Additional file  2: Table 
S2). Moreover, the allele substitution effect at the QTL 
for ENO1 reached 1.5 standard deviations, which was 
one of the most important effects among all the pQTL 
detected. At the 5% genome-wide threshold, we observed 
two pQTL on APL10 for 3-hydroxyisobutyryl-CoA 
hydrolase (HIBCH) and persulfite dioxygenase ETHE1 
(ETHE1), and a single pQTL on APL1 for peroxiredoxin 
3 (PRDX3), on APL7 for apolipoprotein A1 (APOA1) 
and on APL21 for carbonic anhydrase 2 (CA2). Other 
chromosomes displayed a large number of pQTL at the 
5% chromosome-wide threshold, i.e. APL24, 25 and 29 
harboured more than 10 pQTL, and APL18 carried 15 
pQTL. In a few cases, single protein spots mapped to 
several pQTL, i.e. spots 116 (proteasome 26S subunit 
ATPase 3—PSMC3), 124 (ENO1), 230 (phosphoglycer-
ate mutase 1—PGAM1) and 301 (guanosine diphosphate 
dissociation inhibitor 2—GDI2) mapped to four pQTL 
each at the 5% chromosome-wide threshold. In addi-
tion, several spots can correspond to different co-existing 
forms of the same protein, due to variations of the elec-
tric charge and/or molecular weight resulting from post-
translational modifications. Each of the spots for a given 
protein may map to one or several pQTL, which may or 
may not co-localize. For example, this was the case for 
ENO1, for which 14 protein spots were identified on the 
gels (Fig. 4), among which 12 mapped to up to 17 pQTL.

Likewise, 14 pQTL were detected for APOA1, which 
displayed nine protein spots on the gel (Fig.  5). Five to 
seven pQTL were observed for phosphoglycerate mutase 
1 (PGAM1), the putative Parkinson disease autosomal 
recessive early onset 7 variant 1 (PARK7), triose phos-
phate isomerase (TPI1), peroxiredoxin 4 (PRDX4), malate 
dehydrogenase 1 (MDH1) and 3-hydroxyanthranilate 

http://www.qiagen.com/ingenuity


Page 8 of 19François et al. Genet Sel Evol  (2017) 49:38 

3,4-dioxygenase (HAAO). For 86% of the 176 pQTL, the 
gene corresponding to the identified protein was mapped 
to the chicken genome, which allowed us to assign it to 
a duck chromosome. In 148 cases, the gene was local-
ized on a chromosome other than that carrying the 
pQTL, which allowed us to unambiguously define it as 
a trans-pQTL [30]. In six cases, the gene was localized 
on the same chromosome than that carrying the pQTL, 
i.e. for S-formylglutathione hydrolase (ESD) on APL1, 
MDH1 on APL3, glutamate deshydrogenase (GLUD1) 
and PGAM1 on APL6, annexin A5 (ANXA5) on APL11 
and alpha-aminoadipic semialdehyde dehydrogenase 
(ALDH7A1) on APLZ.

Regarding the 80 phenotypic QTL, the average allele 
substitution effect was equal to 0.42  ±  0.12 standard 
deviations (ranging from 0.26 to 1.04), with a confi-
dence interval of about 17  cM (see Additional file  3: 
Table S3). These QTL are located on 24 of the 28 link-
age groups of the genetic map. Some linkage groups 
seemed to be specific to a type of trait, with QTL for 
similar traits mapping very close to one another. Thus, 
five QTL related to growth mapped to APL3 at posi-
tion 0.44 M, whereas the QTL detected on APL2 and 23 
were more specific to liver composition and its melting 
rate, at 0.64 and 0 M on APL2 and APL23, respectively. 
Moreover, on APL2 we detected a QTL for melting rate 

304 108 106113

144135

117

307

124

105121 119112

204

Fig. 4 Alpha‑enolase spot localization on gel electrophoresis
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that reached the 1% genome-wide threshold. At the 
5% genome-wide threshold, six QTL were noteworthy: 
for liver protein content and liver weight on APL2, for 

bodyweight at ages 28 and 42 days on APL3, for weight 
gain during the overfeeding period on APL9 and for 
liver yellowness on APL18.

0 2 4 6 8 10 12 14 16 18
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GLUD1
PRPS2
PSMB
ACTB
GLUL
TAL1

VCP
EEF2

ACADS
ACP1

AKR1A1
ALDH7A1

ATP5B
CA2

FABP7
FASN

HIBCH
HIST4H4
NDUFS3

PDIA3
RPS12

ESD
SOD2

VDAC1
ETFA
HBA1
MPST

PDHA1
PSMA1

ALB
ANXA2
BPNT1

CCT7
DSTN

C11orf54
ETHE1
HAGH

HBB
HMGCS2

ME1
MYH3

NIT2
PDHB

SUCLG2
MPST
TBCA

TTR

number of pQTL / protein

Number of spot Number of spot 
by protein with pQTL

14 12
9 7
3 3
3 3
2 2
3 2
2 2
3 3
1 1
1 1
3 2
2 2
3 3
1 1
1 1
1 1
1 1
1 1
2 1
2 2
3 2
2 2
5 2
4 3
1 1
1 1
1 1
1 1
4 1
1 1
1 1
1 1
1 1
1 1
1 1
2 1
1 1
1 1
1 1
1 1
2 2
8 2
2 2
2 2
3 2
4 1
2 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
2 1
1 1
2 1
3 1
1 1
1 1
1 1
1 1

Fig. 5 Proteins with pQTL detected in different spots. Protein descriptions are in Additional file 1: Table S1
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Two‑trait QTL analysis
Following single-trait QTL analyses, we conducted 290 
protein-phenotype two-trait analyses (2t-QTL) when the 
confidence intervals for pQTL and phenotypic QTL over-
lapped. Among these, the P values for 66 2t-QTL were 
more significant than the P value of the strongest QTL 
using the single-trait approach (Table  2). The CLIP test 
was performed for all 66 2t-QTL and provided results for 
37 of them, whereas for the 29 other 2t-QTL, the CLIP 
test did not converge mainly due to the lack of variabil-
ity for traits such as plasma level of cholesterol, and to 
a lesser extent plasma level of triglycerides at the begin-
ning of the overfeeding period, and corticosterone levels 
before stress.

Among the 37 CLIP tests that provided results, the 
hypothesis of pleiotropy was not rejected for 16 2t-QTL. 
In particular, this was the case for: liver lightness and 
GLUD1 on APL6; thigh/shank weight and APOA1 on 
APL7; bodyweight at 12 days and fatty acid binding pro-
tein 7 (FABP7) on APL9; blood glucose at the beginning 
of the force-feeding period and HIBCH on APL10; blood 
cholesterol level at the beginning of the force-feeding 
period and 3-mercaptopyruvate sulfurtransferase (MPST) 
on APL15; melting rate and two spots for ENO1 on 
APL15; bodyweight at 28 days and eukaryotic translation 
initiation factor 3 subunit 1 (EIF3I), acid phosphatase 1 
(ACP1), eukaryotic elongation factor 2 (EEF2) and body-
weight gain between 12 and 28 days of age and EIF3I and 
ACP1 on APL19; liver yellowness and PRDX4 on APL22; 
and ultimate muscle pH and ATP synthase subunit beta 
(ATP5B) and TPI1 and blood glucose at the beginning of 
the force-feeding period and GLUD1 on APLZ.

For 21 of the 37 two-trait analyses, we concluded that 
both QTL were in close linkage and rejected the hypoth-
esis of pleiotropy. For example, although the P value of 
the 2t-QTL identified on APL21 for muscle maximal 
shear force and albumin protein (ALB) was clearly higher 
than those obtained in the single-trait QTL analysis, we 
concluded that these two QTL were linked but not pleio-
tropic. The same applied to thigh/shank weight and alco-
hol dehydrogenase (AKR1A1) on APL7, bodyweight gain 
between 12 and 42  days and valosin containing protein 
(VCP) on APL5, breast skin and subcutaneous fat weight 
and histone H4 (HIST4H4) on APL9, and bodyweight at 
28 days and PARK7 on APL19.

Graph inference using data from Table 2 resulted in nine 
graphs (Fig. 6) where pleiotropy is highlighted by weighted 
links (in bold on Fig. 6). This graphical representation of 
the data helps to detect pleiotropic traits and even possible 
epistatic events. It is interesting to observe how genomic 
regions that control many traits are represented as organ-
ized networks. For example, the QTL on APL10 (12 cM) 
and APLZ (7 cM) may both control plasma glucose levels 

(Fig. 6f). The ultimate pH of the pectoralis major muscle 
seems to be regulated by a QTL on APLZ (between 23 
and 32  cM; Fig.  6a), which is associated with the abun-
dance of ATP5B and TPI1, and to a lesser extent, with the 
abundance of ENO1, PSMA1 and ALDH7A1. Moreover, 
expression of ALDH7A1 is also controlled by another 
QTL on APL5 (0  cM). Likewise, even if no pleiotropy 
was detected, a region between 0 and 18  cM on APL18 
seems to control the plasma levels of cortisol before stress, 
together with the abundance of PGAM1, PRDX3, MDH1, 
GLUD1, VCP and GDI2 (Fig. 6e).

Sixteen two-trait analyses were conducted for pro-
teins that displayed several spots on 2D electrophore-
sis gels and for which QTL were detected on the same 
chromosome: eight for ENO1, four for APOA1, and one 
each for hemoglobin alpha (HBA1), PGAM1, glutamine 
synthetase (GLUL) and PRDX4. Among these analyses, 
the P values for six of the 2t-QTL were more significant 
than those for the strongest underlying single-trait QTL 
(Table  3), of which four involved ENO1. The CLIP test 
was performed for these six 2t-QTL and the pleiotropic 
hypothesis was not rejected in two cases: for ENO1, with 
spot numbers 124 and 307 on APL29 and spot numbers 
112 and 124 on APL15. The phenotypic correlations 
between these ENO1 spots were quite low, about +0.24 
for both spot pairs 112 and 124, and 124 and 307. Con-
versely, for APOA1 on APL24, we concluded that the 
QTL for spot numbers 174 and 262 were closely linked.

Biological analysis
Among the 326 quantified spots, 190 were identified as 
corresponding to 97 unique proteins. Sixty-six proteins 
were regulated by at least one QTL (Fig. 5), i.e. two-thirds 
of the proteome were detected as being genetically regu-
lated. We used the Ingenuity Pathway Analysis software 
to detect differences between the full proteome (all iden-
tified proteins) and the genetically-regulated proteome. 
Since not all proteins are recognized by IPA, 91 of the 
97 unique proteins and 63 of the 66 regulated proteins 
were analysed. However, as expected, the processes were 
globally the same for the two proteome groups because 
proteins with pQTL form a subgroup of the complete 
proteome. For example, glycolysis and gluconeogenesis 
pathways were clearly enriched since all the proteins 
involved (ENO1, MDH1, ME1, PGAM1 and TPI1) were 
genetically regulated (Table  4 and Fig.  7). Likewise, the 
most significant pathway enriched in the genetically-reg-
ulated proteome is mitochondrial dysfunction for which 
seven of the nine identified proteins (PDHA1, PRDX3, 
SOD2, ATP5B, PARK7, VDAC1 and NDUFS3) had pQTL 
(Table 4 and Fig. 7). 

The most significant biological function is the synthe-
sis of purine nucleotides with nine of the 11 identified 
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proteins regulated by a pQTL (Table  5). An interesting 
change between the full proteome versus the pQTL regu-
lated proteome was observed for the function related to 
cell viability, which was found at the 26th and 41th posi-
tions for the complete proteome and at the 6th and 8th 
positions for the pQTL-regulated proteome. Finally, we 
implemented an integrative approach to reconstruct 
a biological network (Fig.  7) with PathDesigner (from 
Ingenuity) to highlight key results for the proteins with 
pQTL, for relevant pathways that are a priori regulated 

in our study, and for the liver melting rate trait, which is 
most important for producers since it is related to foie 
gras production.

Discussion
Sixty‑eight percent of the proteins analyzed are partially 
controlled by QTL
Our group recently published the complete results of 
proteomic analyses carried out on 294 mule ducks [6] 
and showed that the abundance of 23 proteins was 

Fig. 6 Graphs inferred from two‑trait QTL detection with pleiotropy. These graphs are a representation of the data from Table 2. The chromosome 
locations are illustrated in green with the APL chromosome number and the location in cM. The phenotypic traits are in  blue and the proteins are 
in  red associated with the spot number. A weight is given for links (in bold) when a pleiotropic QTL was detected. The size of the nodes (proteins 
or phenotypes) is related to the betweenness (calculated by Gephi), i.e. an indicator of centrality that identifies the most important nodes within a 
graph
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associated to three quality traits: liver weight, melting 
rate, and dry protein content. In the current study, our 
objective was to highlight the proteins for which abun-
dance is partly genetically regulated. QTL detection was 
performed for all identified proteins and the issue of false 
positive results was raised. After Benjamini–Hochberg 
correction, even the most significant pQTL (for FASN 
on APL24) did not reach the 5% significance level since 
the adjusted P value was approximately 18%. However, 
regarding the power of our design and given the large 
number of QTL detections performed, we considered 

that the Benjamini–Hochberg correction was too drastic 
and decided to focus only on the more significant pQTL 
reaching the genome-wide significance threshold before 
correction. In this context, 66 out of the 97 unique pro-
teins identified (68%) were regulated by at least one QTL.

Most of the detected pQTL are trans‑QTL
Amongst the 176 pQTL identified, the most significant 
were for APOA1 on APL7, ENO1 on APL18 and FASN 
on APL24. These three pQTL, together with more than 
96% of the pQTL identified in this study, are located on 

Table 3 Two-trait QTL detections of different spots of the same protein traits reveal two pleiotropic QTL

a Duck (Anas platyrhynchos) APL chromosome or linkage group
b Protein descriptions: see supplementary data
c Spot number on the 2D gels
d Position on the genetic map in centiMorgans
e Confidence interval in centiMorgans
f CLIP test: CL, close linkage; PL, pleiotropy;–, nontested
g number of markers

APLa Proteinb Spot   
numberc

Location 
(cM)d

LRTx Confidence 
 intervale

biQTL  
threshold (%)

UniQTL  
threshold (%)

CLIPTestf

15 ENO1 112–124 51 26.220 41–57 0.41 0.73 1.20 6g PL

18 PGAM1 232–325 0 31.645 0–11 0.12 1.01 2.27 10 –

24 APOA1 174–262 22 29.271 10–29 0.05 0.78 1.95 5 CL

25 ENO1 108–124 37 24.025 27–39 0.35 2.29 3.32 6 –

25 ENO1 108–304 38 28.653 34–39 0.14 2.29 0.40 6 –

29 ENO1 124–307 14 16.435 4–19 3.69 3.94 5.02 4 PL

Table 4 Functional enrichment analysis of canonical pathways between proteins with pQTL and the complete list of pro-
teins

Only the top 14 canonical pathways are in this table

Proteins regulated by a pQTL are in italics; pQTL may concern only a sub-list of the complete list of proteins identified by proteomic analysis
a Score corresponds to −log(P value)

Ingenuity canonical pathways Complete pQTL Proteins with pQTL in italic

Regulated Scorea Regulated Scorea

Mitochondrial dysfunction 9/171 (5%) 7.22 7/171 (4%) 6.18 PDHA1, PRDX3, NDUFS1, SOD2, ATP5B, PARK7, GPX4, VDAC1, 
NDUFS3

Gluconeogenesis I 4/25 (16%) 5.40 4/25 (16%) 6.10 ENO1, PGAM1, ME1, MDH1

NRF2‑mediated oxidative stress response 7/180 (4%) 4.85 6/180 (3%) 4.84 AKR1A1, SOD2, PRDX1, ACTB, VCP, CCT7, ACTG1

Glycolysis I 3/25 (12%) 3.76 3/25 (12%) 4.28 ENO1, TPI1, PGAM1

Acetyl‑CoA biosynthesis I 3/7 (43%) 5.56 2/7 (29%) 3.76 PDHA1, DLAT, PDHB

LXR/RXR activation 5/121 (4%) 3.72 4/121 (3%) 3.36 TTR, ALB, APOA1, TF, FASN

FXR/RXR activation 5/126 (4%) 3.64 4/126 (3%) 3.29

Caveolar‑mediated endocytosis signaling 3/71 (4%) 2.43 3/71 (4%) 2.93 ALB, ACTB, ACTG1

Acute phase response signaling 5/169 (3%) 3.06 4/169 (2%) 2.82 TTR, ALB, SOD2, APOA1, TF

TR/RXR activation 3/85 (4%) 2.21 3/85 (4%) 2.70 ENO1, FASN, ME1

Tryptophan degradation X 4/23 (17%) 5.55 2/23 (9%) 2.69 ALDH2, AKR1A1, ALDH9A1, ALDH7A1

Ethanol degradation II 4/35 (11%) 4.79 2/35 (6%) 2.33

Noradrenaline and adrenaline degradation 4/38 (11%) 4.65 2/38 (5%) 2.26

Clathrin‑mediated Endocytosis signaling 5/185 (3%) 2.88 4/185 (2%) 2.67 ALB, APOA1, TF, ACTB, ACTG1
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Fig. 7 Biological network. This biological network was constructed with the proteins that are regulated by a QTL and associated with a significant 
enrichment score using Ingenuity Pathway Analysis software. Other information was added, such as some significant biological functions and 
canonical pathways (links in orange), proteins involved in cell viability are indicated with an asterisk. One trait related to liver function, i.e. melting 
rate, which is controlled by a pleiotropic QTL on APL15 (links in blue) was added

Table 5 Functional enrichment analysis of biological functions between proteins with pQTL and the complete list of pro-
teins

Only the top 15 biological functions are shown according to Ingenuity analysis

Diseases or function annotation (Ingenuity) Complete pQTL

P value Number of molecules Rank P value Number of molecules Rank

Synthesis of purine nucleotide 9.97E−10 11 6 5.69E−09 9 1

Metabolism of nucleic acid component or derivative 7.89E−12 20 1 6.02E−09 14 2

Metabolism of dicarboxylic acid 2.21E−07 5 16 2.91E−08 5 3

Metabolism of nucleotide 2.07E−09 16 7 5.88E−08 12 4

Metabolism of hydrogen peroxide 2.63E−10 10 2 1.03E−07 7 5

Cell viability 6.29E−07 24 26 1.13E−07 20 6

Metabolism of nucleoside triphosphate 2.3E−08 9 11 3.14E−07 7 7

Cell viability of tumor cell lines 1.57E−05 16 41 3.45E−07 15 8

Catabolism of hydrogen peroxide 3.02E−10 6 4 3.83E−07 4 9

Biosynthesis of purine ribonucleotide 3.85E−07 7 21 6.28E−07 6 10

Synthesis of nucleotide 6.13E−07 12 25 6.86E−07 10 11

Biosynthesis of nucleoside triphosphate 5.98E−07 7 24 9.19E−07 6 12

Polymerization of protein 6.77E−06 11 35 1.06E−06 10 13

Fatty acid metabolism 1.46E−06 15 28 2.39E−06 12 14

Synthesis of acetyl‑coenzyme A 1.64E−07 4 13 5.15E−06 3 15
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a chromosome other than that carrying the gene coding 
for the protein analysed. This very high proportion of 
trans-acting pQTL suggests that the detected variations 
in protein quantity are generally not due to variations 
within their coding genes and the associated regulatory 
regions, such as promoters or enhancers. Such a high 
proportion of trans-acting eQTL was previously reported 
in humans, pigs [31] and rats, but cis-QTL usually have 
stronger effects [32]. Only six of the detected pQTL were 
putatively found on the same chromosome as that car-
rying the gene encoding the protein. However, at this 
point given the wide confidence intervals of these six 
pQTL, it is difficult to determine whether they are actu-
ally true cis-acting QTL. Until now, only three of the six 
genes coding for the six putative cis-pQTL are located 
on the duck genome assembly (MDH1 on APL3, ANXA5 
on APL4 and ALDH7A1 on APLZ). Only the pQTL for 
ALDH7A1 on APLZ is close to the gene coding for this 
protein, near the microsatellite marker CAM113 (Faraut 
T, personal communication). To explore this question 
further, a higher density genetic map and probably also 
addition of more families in the proteomics study are 
required to be able to observe a larger number of meiotic 
recombination events. The very high proportion of trans-
acting QTL found in the current study could be due to 
the fact that protein levels are regulated by many more 
factors in addition to gene transcription. This is sup-
ported by the results of analysing separately spots cor-
responding to different forms of the same protein, which 
are very likely due to post-translational modifications.

The most significant pQTL are related to fatty acid 
and amino acid metabolism, and glycolysis
Chromosome APL7, which harbours a pQTL for APOA1 
that is significant at the 5% genome-wide level, seems to 
play an important role in regulating liver metabolism. 
APL7 also harbours phenotypic QTL for plasma glucose 
and cholesterol levels (Table 3) and for some weight traits 
(bodyweight before the overfeeding period, thigh and 
shank weight at slaughter). Indeed, APOA1 is involved in 
the transport of triglycerides from liver cells to adipose 
tissues by taking part in the formation of HDL (high den-
sity lipoprotein). Lagarrigue et  al. [33] reported that the 
amounts of APOA1 mRNA were significantly larger in 
chickens from fat lines than from lean lines, which sup-
ported the hypothesis that it has a role in lipid transport 
and storage in birds. Szapacs et al. [34] showed that when 
APOA1 was exposed to oxidative changes, the formation 
of HDL and its exportation to the liver were altered. In 
chicken, GGA7, which is homoeologous to APL7, carries 
numerous QTL related to abdominal fat [35, 36]. Taken 
together, these results strengthen the hypothesis that 
chromosome APL7 is important in “fat” metabolism and 

further studies will be required to identify the genes that 
underlie the QTL and pQTL mapped to this chromosome. 
However, the only protein that we detected by 2D gel elec-
trophoresis with a gene located on APL7 is HIBCH, which 
is involved in amino acid metabolism, but for which no 
QTL were mapped to APL7. The pleiotropic analysis with 
graphs (Fig. 6f) proposed interesting possible interactions 
between HIBCH, which is controlled by QTL on APL10 
and APL14, and other QTL controlled by APL7.

Another strong pQTL was detected for ENO1 and 
mapped to APL18. Chromosome GGA17 is homoeolo-
gous to APL18 and harbours a QTL related to insulin 
levels in chickens [37]. This is interesting because both 
ENO1 levels and insulin levels are linked. Indeed, ENO1 
is an enzyme of the glycolysis pathway where an increase 
in blood glucose level results in increased insulin synthe-
sis and secretion by the pancreas leading to absorption of 
the glucose by the liver. Thus, glucose enters the glycoly-
sis pathway to be transformed into pyruvate prior to fatty 
acid synthesis [38].

The strongest pQTL identified in this study was for 
FASN. In the liver, this enzyme plays a major role in 
lipid metabolism and lipid synthesis. Functional enrich-
ment analysis identified FASN as playing a significant 
role in a pathway related to RXR activation (Table  4). 
RXR is a member of the nuclear receptor family of 
transcription factors and is closely related to nuclear 
receptors such as PPAR and FXR. The liver X receptors 
(LXR) are known to be important regulators of choles-
terol, fatty acid, and glucose homeostasis. The pQTL 
related to FASN on APL24 co-localized with a QTL that 
affects plasma cholesterol levels but the significance of 
the 2t-QTL was lower, even if it is difficult to exceed the 
1% genome-wide threshold in our design. It is interest-
ing to note that other proteins for which the P value of 
the related QTL is between 1 and 5% on APL24, such 
as APOA1, PGAM1 or pyruvate dehydrogenase, are 
involved in lipid metabolism, which suggests that the 
locus on APL24 plays an important role in this meta-
bolic pathway.

Exploring the pleiotropic QTL
Previously, Gilbert and Leroy [26] demonstrated that, in the 
case of linked or pleiotropic QTL, combining phenotypic 
information from different traits could increase the preci-
sion of QTL mapping and possibly the power of single-trait 
analysis to detect QTL. Among the 66 CLIP tests that we 
performed (22% of the 2t-QTL), the pleiotropy hypoth-
esis was not rejected for 16 of them, i.e. 5% of the initially 
performed two-trait analyses. This approach proved very 
effective for identifying likely pleiotropic QTL, and some of 
the 2t-QTL identified in this study are particularly interest-
ing. Owing to the complexity of the data output, graphical 
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representations were constructed (Fig. 6) to better illustrate 
the results and aid interpretation.

On chromosome APL15 (Fig.  6b), we were able to 
map several QTL and pQTL that were significant at 
the 1% chromosome-wide threshold around SNP266 
among which one QTL was related to melting rate and 
two pQTL were related to CCT7 and ENO1 (spot 124), 
respectively. Two-trait analysis of CCT7 and liver melt-
ing rate revealed the presence of two closely-linked 
QTL, whereas two-trait analysis of ENO1 and melt-
ing rate revealed the presence of a QTL with a pleio-
tropic effect. Moreover, a second spot for ENO1 (spot 
112) also appeared to act pleiotropically with melting 
rate, which means that a single locus affects both liver 
melting quality and ENO1 levels in spots 112 and 124, 
suggesting that the locus is involved in regulating glyco-
lytic processes. Mapping duck SNP266 on the chicken 
genome showed that it is located in an intron of the 
LMF1 (lipoprotein maturation factor 1) gene, which 
codes for a protein that is involved in the maturation of 
the lipoproteins before they leave liver cells [39]. These 
findings argue in favour of future studies on this region 
of APL15, to test this candidate gene and other nearby 
genes and identify the polymorphism that underlies the 
pleiotropic QTL.

On APLZ, a 2t-QTL was detected for GLUD1 and 
plasma glucose levels at the beginning of the force-feed-
ing period, for which the pleiotropy hypothesis was not 
rejected. GLUD1 is a mitochondrial glutamate dehy-
drogenase 1 which plays a role in glutamine metabo-
lism by converting l-glutamate into α-ketoglutarate. 
Although this enzyme is not directly involved in the lipid 
metabolism pathway, α-ketoglutarate is involved in the 
mitochondrial Krebs cycle by taking part in citrate syn-
thesis, which is necessary for lipid synthesis in the liver. 
In humans, a syndrome called hyperinsulinism/hyper-
ammonemia (HI/HA) could be due in part to mutations 
in the GLUD1 gene [40] that increase the synthesis of 
α-ketoglutarate leading to an increase of insulin exo-
cytosis in the pancreatic β-cells and consequently to an 
increase of glucose absorption by the liver. Since this 
mechanism occurs naturally after each meal, a pleio-
tropic QTL that, in ducks, affects both the abundance of 
GLUD1 and plasma glucose levels after feeding appears 
quite plausible. Since GLUD1 is located on APL6, we can 
only speculate on the gene that is involved in this trans-
acting two-trait QTL on APLZ.

A pleiotropic 2t-QTL for APOA1 and thigh weight 
mapped to APL7. Such an association of traits is unu-
sual since the main peripheral tissue studied and linked 
with APOA1 is abdominal fat as explained previously. 
Although no association between abdominal fat and 
APOA1 could be tested since there is no known QTL 

for abdominal fat on APL7, our results are consistent 
with the fact that APOA1 has an important role in lipid 
exportation.

On APL19, the pleiotropic hypothesis was not rejected 
for the strong 2t-QTL between BW28 and EIF3I, ACP1 
and EEF2, and between BWG12-28 and EIF3I and ACP1. 
EIF3I and EEF2 are proteins that act simultaneously on 
the ribosome to translate mRNA into protein. ACP1 is an 
enzyme that hydrolyses protein tyrosine phosphate. The 
association of such proteins with growth traits is interest-
ing because growing cells and tissues require increased 
protein synthesis and it can be assumed that the genes 
underlying these QTL are involved in protein synthesis.

Of the 16 QTL for which a pleiotropic effect was 
detected, none mapped to the chromosomal position of 
the gene that encoded the protein tested. Therefore, we 
cannot directly identify the candidate protein or gene as 
suggested by Consoli et al. [41]. Interpretation of the 16 
pleiotropic QTL detected in the current study is clearly 
more complex, since a variation in genotype probably 
affects a gene that modifies the metabolic pathway of the 
protein identified in the pQTL. Moreover, because of the 
low density of the duck genetic map and its incompletely 
annotated genome, it is impossible to formulate strong 
hypotheses on the genes or the gene functions that are 
highlighted by the different QTL. Nevertheless, the trait-
protein associations that result in strong pleiotropic QTL 
are consistent and are the basis for preliminary explana-
tions regarding the involved metabolic pathways.

Conclusions
Through the identification of polymorphic genomic 
regions that are related to product quality and liver pro-
tein levels in overfed ducks, our aim was to better under-
stand the metabolic mechanisms that are involved in the 
genetic variation of duck traits of economic value, such 
as fatty liver and breast (magret) quality. By analyzing co-
localized phenotypic and proteomic QTL, we identified 
pleiotropic loci that affect metabolic pathways linked to 
glycolysis or lipogenesis. However, further investigation 
is required to confirm the protein biomarkers that were 
found to impact the genetic variability of phenotypic 
traits. Thus, the livers of these mule ducks are currently 
being phenotyped, both via transcriptomics and metabo-
lomics approaches, in order to perform new QTL anal-
yses based on “-omics” data and confirm or invalidate 
the metabolic pathways described in this paper. To fur-
ther our understanding of the proteome, the proteomics 
approach presented here could be combined with mass 
spectrometry. Finally, once all “omics” QTL analyses are 
completed, it will be interesting to analyze QTL “hot 
spot” regions, which potentially harbor strong candidate 
genes with important regulatory functions in the liver.
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