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Abstract. This article introduces a new model for patch-based texture
synthesis that controls the distribution of patches in the synthesized tex-
ture. The proposed approach relies on an optimal assignment of patches
over decimated pixel grids. This assignment problem formulates the syn-
thesis as the minimization of a discrepancy measure between input’s and
output’s patches through their optimal permutation. The resulting non-
convex optimization problem is addressed with an iterative algorithm al-
ternating between a patch assignment step and a patch aggregation step.
We show that this model statistically constrains the output texture con-
tent, while inheriting the structure-preserving property of patch-based
methods. We also propose a relaxed patch assignment extension that
increases the robustness to non-stationnary textures.

Keywords: Example-based texture synthesis; patch matching; optimal
assignment

1 Introduction

The goal of example-based texture synthesis is to generate a new texture image
that reproduces the same visual characteristics as an input example without
being an exact copy of it. One of the main issues is to simultaneously reproduce
the global statistics of the example and the geometry of its local elements [16,15].
One can classify example-based texture synthesis methods into two categories,
namely statistical matching methods and non-parametric patch-based methods.

Statistical matching methods estimate feature characteristics of the input
texture to generate an output texture having the same characteristics. These
features generally involve the input response to various filters whose distribu-
tion is summarized using either moments (mean value, correlation matrices, . . . )
or empirical distributions. In the literature, a broad range of such characteristics
have been investigated such as color histograms, the Fourier modulus [10], steer-
able filter response histograms [14,6,22,26], and more recently occurrences in an
adapted patch dictionary [27,28] or correlation matrices in convolutional neural
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networks [11]. By essence, these methods are successful in preserving the char-
acteristics of interest. They perform well on stochastic textures, yet they may
fail to faithfully reproduce the local elements found in more structured textures.

Patch-based methods generate a new texture by sequentially copying pieces
from the example [30]. First seminal works synthesize the output texture one
pixel at a time [8,31] constraining the local coherence by choosing pixels with
similar neighborhoods in the input. Subsequent contributions use patches in-
stead of pixels as a unit of synthesis [21,7,18,20]. These methods usually better
succeed at reproducing the input local structures. Their success is however not
guaranteed: when the input image contains constant or blurry regions, these can
be indeed enlarged during the synthesis, creating “garbage regions” [8,1,23]. A
more principled approach consists in synthesizing the output texture through the
minimization of a patch-based dissimilarity texture energy [19,13]. These meth-
ods are able to obtain high quality results for both stochastic and structured
textures. Nevertheless, they still do not offer any guarantee of success, mostly
because the energy does not convey any statistical matching. A first attempt
to control the statistics of such patch-based synthesis is based on an empirical
technique that compares the RGB histograms in order to penalize the overuse of
a certain color in the output [17]. This histogram constraining technique helps
to better employ the full color richness of the input. However, it requires a se-
quential pixel optimization, making it computationally expensive.

Over the last few years, numerical optimal transport has been shown to
be a natural tool to solve efficiently optimization problems involving statistical
constraints (e.g. [25]). Regarding texture synthesis, optimal transport has been
used to solve the texture mixing problem using multi-histogram barycenters of
steerable filter responses [26], and later for Gaussian textures [32].

The main purpose of this work is to show that numerical optimal transport
is relevant for patch-based texture synthesis. Our insight for this claim is that
the goal of patch-based texture synthesis algorithm is arguably to generate a
new texture image whose patch distribution is the same as the input. Our main
contribution is to use optimal assignment between the output and input patches.
This results in a texture synthesis algorithm which enables both the reproduction
of the local patterns of the input texture and the preservation of the global patch
statistics (including color histogram). We also propose a relaxation of our model
by allowing the assignment to vary from a permutation to an unconstrained
nearest-neighbor matching.

The proposed model is first described in Section 2, and then the algorithm
is detailed in Section 3 followed by an experimental validation and comparison
with other methods in Section 4. We discuss a variant of the model in Section 5
in order to address some limitations.

2 Linear Patch Assignment Model

Notation Let u0 : Ω0 → [0, 1]3 be the input example image and u : Ω → [0, 1]3

be the output synthesized image, both using the normalized RGB color space.
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To simplify the presentation, we first consider that the pixel grids Ω0 ∈ Z2 and
Ω have the same size, i.e. N = |Ω| = |Ω0|. We define P(x) as the set of indexes
of pixels in the neighborhood of x which is a square of side w (w = 8 in our
experiments)

P(x) =
{
x+ t, t ∈ {−w2 , . . . ,

w
2 − 1}2

}
so that p(x) = u◦P(x) is the patch of u in position x. The patches are extracted

on sub-grids Ω↓0 and Ω↓ of Ω0 and Ω having a step size w
4 and size N↓ = |Ω↓0 | =

|Ω↓|. We use a symmetric boundary condition for patches of u0 and periodic
boundary condition for patches of u.

Proposed Model Our texture synthesis approach is driven by the following opti-
mization problem which aims at minimizing the discrepancy between the patches
from the synthesized texture and patches from the example image

min
u

min
σ∈Σ

N↓

∑
x∈Ω↓

‖u ◦ P(x)− u0 ◦ P ◦ σ(x)‖rp (1)

where σ : Ω↓ → Ω↓0 is a mapping between of the indexes of the patches. The
most important aspect of this model is the definition of the set ΣN↓ as the set
of permutations of N↓ elements. The motivation is to synthesize a new texture
that has the same distribution of patches as the example in order to preserve all
its visual characteristics. We also consider r = 1 and the `1,2 norm of patches,
that is the sum of Euclidean norm of color coordinates

‖u ◦ P(x)‖1,2 =
∑

y∈P(x)

‖u(y)‖2

These choices offer several advantages, resulting mainly in a separable convex
optimization problem when minimizing with respect to u.

Connections with previous work Problem (1) is a generic framework for texture
synthesis and it is closely related to several approaches from the literature such
as [13,17] inspired by the seminal work of [19]. For instance, Kwatra et al. [19]
use the power r = 0.8 with an Euclidean norm weighted with a Gaussian falloff,
and the assignment σ is not constrained to be a permutation, which results in a
nearest neighbor matching. We claim that the absence of statistical constraint
on the map σ is mainly responsible for the loss of features in the output tex-
tures, by discarding patches, and for the synthesis of “garbage” [8] and “blurry
regions” [17], by locally repeating the same patches.

3 Algorithm

The motivation for Problem (1) is to find an image u which is pixel-wise differ-
ent from the example image u0 while having the same patch distribution. Yet
Problem (1) has trivial solutions that are not relevant. For instance, using pe-
riodic boundary conditions, any circular shifting of the input image is a global
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minimizer. Still, as usually done for variational texture synthesis [22,19,28], we
minimize the non-convex functional of Problem (1) by alternate minimization
with respect to u and σ separately starting from a random image. This relies
on the assumption that local minimizers of the functional provide the desired
result, which is verified in practice.

More precisely, Problem (1) is convex with respect to the image u for a given
σ, i.e. when the assignment σ between patches has been fixed: this is the patch
aggregation step that is addressed in § 3.1. In addition, the problem of finding an
optimal assignment σ for a given synthesized image u is a solution of a relaxed
convex problem: this is the patch projection step detailed in § 3.2. These two
steps are sequentially used in a multi-scale scheme described in § 3.3.

3.1 Patch Aggregation

When the assignment σ between patches on the subgrids is fixed, optimizing the
synthesized image u boils down to find

argmin
u

∑
x∈Ω↓

‖u ◦ P(x)− u0 ◦ P ◦ σ(x)‖1,2 (2)

This is a separable convex optimization problem: each color u(x) is given by

argmin
u(x)

∑
y∈P↓(x)

‖u(x)− u0 (σ(y) + x− y)‖2 (3)

For each pixel x ∈ Ω, this simply corresponds to compute the color median of
the 16 pixel values of patches overlapping x, located at

P↓(x) =
{
x+ t, t ∈ {−w2 ,−

w
4 , 0,

w
4 }

2
}

Our implementation solved the N problems (3) in parallel using a Douglas-
Rachford splitting algorithm. Due to the lack of space, technical details are
omitted and we refer to [5] for more information. We discuss in the experimental
Section 4 the interest of this approach in comparison with other patch aggrega-
tion methods from the literature.

3.2 Optimal Patch Assignment

The output image u being fixed, an optimal assignment σ is solution of

argmin
σ∈Σ

N↓

∑
x∈Ω↓

‖u ◦ P(x)− u0 ◦ P ◦ σ(x)‖1,2 (4)

This problem can be recast as a linear sum assignment problem and solved in
many different ways [4]. In practice, we use the Hungarian algorithm which is
very fast for small assignment problems [3] (in our setting up to images with
N = 2562 pixels). For synthesizing larger images or to reduce the computation
time, alternative methods should be considered such as parallel implementation
of the auction algorithm [29] or the approximate assignment approach using the
Sliced-Wasserstein distance [26].
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Algorithm 1: Optimal patch assignment texture synthesis

Input: Example texture u0

Parameters: Number of scales: S = 3, patch width: w = 8 px,
Parameters: Iterations per scale: {Is}S−1

s=0 = {10, 50, 50}
Initialization: {us}S−1

s=0 ← Gaussian pyramid of u0 (§3.3)
Initialization: u← Random image with same size as uS−1

for s = S − 1 to 0 do
for i = 1 to Is do

σ ← Optimal assignment of patches of u to patches of us (§3.2)
u← Patch aggregation using σ (§3.1)
if s 6= 0 then

u← Bilinear interpolation of u at scale s− 1 (§3.3)

Output: Synthesized image u

3.3 Multiscale Scheme and Initialization

A common way to capture large scale correlations between characteristics in the
input is to use a coarse-to-fine synthesis [31,18,28]. We apply this strategy by
computing the Gaussian pyramid {us}S−1s=0 of the input image, which is composed
of S images us computed by filtering u0 with a Gaussian kernel with standard
deviation 0.8s and sub-sampled with a stepsize of 2s.

The output coarser scale s = S − 1 can be initialized by any image. In
practice, we use a random white noise image, as done in several varational texture
synthesis previous works [14,22,27]. For subsequent scales, u is first upsampled
by a factor 2 using bilinear interpolation. The resulting algorithm is described in
Algorithm 1. In all experiments, the patch width is fixed to w = 8, the number
of scales is S = 3, and the number of iterations Is at scale s is {Is}S−1s=0 =
{10, 50, 50}.

3.4 Discussion about Output Size

For simplicity, we have assumed up to this point that the output pixel grid Ω
has the same size as the input grid Ω0, which results in defining σ as a permu-
tation of the indexes of patches. However, in practice it is useful to synthesize
output textures larger than the input. If N↓ = nN↓0 for some integer n ≥ 2, a
simple solution used in the experiments consists in duplicating n times the input
patches. If N↓ is completely arbitrary, a usual solution is to simply crop a larger
synthesized output. More relevant solutions might be obtained from bootstrap-
ping, i.e. a random sampling of N↓ patches from the input distribution, or by
considering multiple assignment. However, such a discussion is beyond the scope
of this paper.
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Input u0

colormap c
Output u
c ◦ σ

Output u′ with double size Assignment map c ◦ σ′

Fig. 1. Texture synthesis with single and double size outputs u and u′. A colormap c,
shown bottom-left, is used to show the corresponding assignment mappings σ and σ′.
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Fig. 2. RGB and patch histograms of the output u in Fig. 1. The absolute differences
with the histograms from the input image u0 are displayed in black.

4 Experimental Results and Comparison

Fig. 1 shows two synthesis results, the first having the same size as the input
and the second having a double size, along with their respective assignment
maps, that correspond to the last optimal assignment σ computed during the
optimization process. One can observe with the double size output that the
strict assignment forces to reproduce four times the structures and colors from
the input. The assignment maps demonstrate that our approach, as all patch-
based methods, tends to synthesize textures that are local verbatim copies of
the example.

Statistics compliancy The patch assignment step generates a patch distribution
that is identical to the one of the input. However the patch aggregation step
produces new patches and therefore the input and output patch distributions
are not strictly identical. Still, to assert experimentally that these two patch
distributions are really close, we propose to compare the distributions of first-
order statistics between the input and the output textures. In Fig. 2 are shown
RGB per-channel color distributions and 1st and 2nd principal components dis-
tributions of patches using a PCA analysis on the input patch distribution. It
illustrates, as one can observe by visual inspection of Fig. 1, that the features
from the two images are mostly similar.
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Input Our method Kwatra et al. Portilla et al. Tartavel et al. Barnes et al.

Fig. 3. Comparison of our approach with the patch-based method of Kwatra et al. [19],
the two statistical matching methods of Portilla et al. [22] and Tartavel et al. [28],
and the PatchMatch method of Barnes et al. [2] (with the implementation of David
Tschumperlé for texture synthesis [12]). These approaches are used with the default
parameters described in the respective papers.
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Comparison with the state of the art Fig. 3 shows a comparison of the results
obtained using our method with the patch-based approach of Kwatra et al. [19],
and the statistical matching methods of Portilla et al. [22] and Tartavel et al. [28].
The two statistical matching methods successfully preserve the color distribu-
tions. However they often fail to faithfully reproduce local structured elements.
Several issues can be noticed with Kwatra et al. results. Without any statistical
constraints, this method sometimes tends to simplify the output content. First,
copy of large areas from the input may be used (first and second rows). Second,
low-cost patch combination tends to be favored: constant regions therefore tend
to appear (fourth row), as well as simplified characteristics (loss of whites strokes
in the third example, and black spots in the fifth row). Last, when a small set
of patches allows a periodic compositing, this set tends to be reused over and
over (rows 6 and 7). The same issues are also raised with the non-variational
state-of-the-art patch-based approach called PatchMatch [2] (see last column of
Fig. 3). While our method is rather successful at both reproducing local elements
and at preserving the global colors of the input, it has difficulty retaining long
distance correlations on highly structured textures like in the last example of
Fig. 3. The trade off between the number of scales used, the patches’ width, and
the size of the input, limits the scale of the structures that can be captured.
Thus, compared to using patches of multiple widths for each scale (as in Kwa-
tra et al. [19]), our single-width approach loses long-distance correlations at a
specific scale. However, this also means that smaller regions are copied from the
input in comparison with [19], thereby avoiding repetitive artifacts (such as the
shadows in the first example) and copy of large regions (second example).

Fig. 4. Comparison of results for different values of r from left to right: r = 2, r = 0.8,
r = 0.8 with Gaussian falloff weighting and r = 1 using the same random initialization.
Results are quite similar, except for r = 2 which is noticeably less sharp.

Discussion on patch aggregation As described in Section 3.1, once each patch of
u is assigned to a patch u0, the image u is updated by minimizing the `1,2-norm,
which results in computing the color median among the overlapping pixels. As
a comparison, Kwatra et al. [19] use an `2-norm (with Gaussian weights) to
the power r = 0.8, and use an iteratively reweighted least squares scheme to
minimize this functional (note that this kind of methods encounter numerical
issues). Fig. 4 illustrates that our algorithm gives similar results when using this
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variant, and that simply averaging by minimizing the squared `2-norm leads
naturally to blurry textures. We favored minimizing the `1,2-norm since it is a
well-posed convex problem.

Limitations A limitation of our approach, due to the strict assignment con-
straint, is the guarantee to synthesize the same distribution of patches as in the
input. Although this can be considered as an advantage in most situations, it may
lead to undesired effects when inputs do not satisfy sufficiently the stationarity
hypothesis.

5 Softening Statistical Constraints via Relaxed Patch
Assignment

As demonstrated in the previous section, the synthesis of an image using the
very same patch distribution as the one of the example image may lead to some
limitations, typically when the stationarity hypothesis is false and the example
contains some irrelevant features (e.g. due to illumination, scale change, or arti-
facts). We propose to address this problem by using soft statistical constraint in
such a way that the input and output image may now have a close but different
patch distribution.

5.1 Relaxed Assignment Model

We aim at defining a new synthesis model relying on a relaxed assignment of
patches, that is, for which the one-to-one assignment constraint of Problem (1)
is relaxed to enable multiple matching of some example patches. Such an idea
was first proposed in [9] and refined by [24] to overcome the problem of color
inconsistency in color transfer.

First, let us recall that an optimal assignment problem such as the one of
Problem (4) can be recast as a Linear Sum Assignment Problem [4] of the form

min
σ∈Σ

N↓

∑
i∈Ω↓

Ci,σ(i) = min
A∈A

∑
(i,j)∈Ω↓×Ω↓

0

Ai,jCi,j (5)

where C is a fixed cost matrix that corresponds to the distance between patches,
that is, Ci,j = ‖u ◦ P(i)− u0 ◦ P(j)‖1,2 and where

A =
{
A ∈ [0, 1]N

↓×N↓
, ∀ i

∑
j Ai,j = 1, ∀ j

∑
iAi,j = 1

}
is the set of bistochastic matrices (which is the convex hull of the set of permu-
tation matrices).

Now, following [24], we consider the relaxed assignment problem

min
P∈Ak, k≥0

∑
i,j Pi,jCi,j + ρ

∑
j |kj − qj | (6)
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where the set of relaxed assignment matrix is defined as

Ak = {P ∈ [0, 1]N
↓×N↓

, ∀ i
∑
j Pi,j = 1, ∀ j

∑
i Pi,j = kj}. (7)

In this model, qj is the desired number of matches for the example patch indexed
by j and kj is the number of times this patch is actually matched. Experiments
show that the solution of this problem is a relaxed assignment, and we leave
the formal proof for future work. The relaxation parameter ρ controls the soft
constraint on assignment: if ρ = 0, the problem boils down to a nearest-neighbor
matching (as done in Kwatra et al. [19]), and for large enough values of ρ, the
problem is the optimal assignment problem. To sum up, this model provides
relaxed assignments that range from nearest neighbor matching to optimal as-
signment.

5.2 Results and Discussion

Fig. 5 illustrates the effect of relaxing the assignment at each iteration of Algo-
rithm 1 using the above model. These experiments use the same random initial-
ization and the vector q constant to 1. As expected, we observe that for large
values of ρ the relaxed matching is an optimal assignment, while small values of
ρ yields relaxed assignment so that some patches of the input example may not
be used.

The main practical interest of this model is that it allows for discarding some
patches that may represent a rare pattern in the texture (e.g. the red dots in
the first example of Fig. 5 and the green leaf of the second example). Contrarily,
some other features may now be replicated (the yellow dots in the first example,
some radishes in the second). However, the parameter ρ does not offer an explicit
control over the structures of the input image that may disappear. A solution
to achieve this goal might be to let the user define q more precisely.

6 Conclusion

A new optimal assignment model has been proposed combining the advantages of
statistically constrained methods and non-parametric patch-based texture syn-
thesis algorithms. This model can be relaxed in order to be more controllable over
the output distribution of patches. The visual quality of the results encourages
future work regarding computation time acceleration as well as content-oriented
control for the relaxation model.
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