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In this paper, a controller order-reduction method for linear parameter varying systems is presented.
The proposed method is based on the frequency weighted balanced truncation technique, which has the
advantage to reduce the order in a specific frequency range. The approach is discussed and is proved to
preserve the closed-loop stability with a guaranteed upper error bound. Effectiveness and performance
of the obtained reduced-order controller, are investigated by applying it to an automotive semi-active
suspension control. The obtained simulation results show that objectives such as the road handling and
the passenger comfort realised with the reduced-order controller are kept in the same performance level
as with the full order controller. Moreover, a comparison with an other order reduction method is shown
and confirms the advantage of the developed method.

Keywords: linear parameter varying system, H∞-control, generalised reachability and observability
Gramians, balanced truncation, semi-active suspension control.

Notations

R : fields of real numbers
≺ (�), � (�) : negative (semi-negative), positive (semi-positive) definite
Sn
�0 : cone of n × n symmetric positive definite matrices

R,O : reachability and observability Gramians
P (ρ), Q(ρ) : generalised reachability and observability Gramians
PΩ(ρ),QΩ(ρ) : frequency limited generalised reachability and observability Gramians
σi : ith generalised Hankel singular value
γi : ith frequency limited generalised Hankel singular value
S∗ : complex conjugate transpose of S
A−T : (A−1)T = (AT)−1

In : n × n identity matrix

1. Introduction

Most of physical systems are inherently non-linear and almost all of them have parameter
dependent representations. Considering those aspects and the advantages of linear control theory,
more and more control strategies use Linear Parameter Varying (LPV) models. In the same way,
and as operating conditions may change, the closed-loop performance designed by an LTI controller
may be degraded. To overcome this problem, the design of parameter dependent controller is
more suitable. Consequently, a major part of the recently developed control strategies is based on
optimal and/or robust control. The H∞-control strategies have the advantage to design controllers
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achieving stabilisation with guaranteed performance. However, these techniques usually produce
high order controllers. The design and the use of such high-order controllers can lead to numerical
difficulties. This is why their use is still limited in the engineering field. Thus, for these practical
reasons, low-order controllers are particularly preferred: their simple dynamics are easier to
manage, they require less computing cost and simpler software can be finally implemented. Then,
an order reduction step appears of great interest. Simultaneously, the reduction process should
always preserve the closed-loop stability and should guarantee a level of performance close to the
one obtained with the full-order controller. In a general way, a low-order controller can be obtained
through the direct method or the indirect ones (see Figure 1). Considering the direct method, the
final low-order controller is obtained directly from the high-order plant and the order is generally
fixed beforehand [AHH11, AG95].
In the indirect ways, the low-order controller is the result of a model or a controller order reduction
step: either a reduced-order plant is found and then a controller is designed or a high-order
controller is first designed and then a controller order reduction step is performed. The last
method is widely used to obtain reduced-order controllers [Kon12, God95]. For LTI systems, a
large investigation has been made on model order reduction procedures. In this domain, methods
based on balanced realisation are extensively used [GA04]. First introduced by [MR76] and later
in the systems and control literature by [Moo81], the balanced truncation has been a significant
contribution to system theory. In [PS82], the stability of the reduced-order model is preserved.
Then, [Glo84] has proposed an H∞-norm upper bound of the approximation error.
Based on this, BT method has been proposed to reduce the order of controllers for LTI systems
[LA89, ZDC95]. The extension of these reduction techniques to LPV-systems is still in progress.
Generally, these methods substitute the use of LTI Gramians by using parameter/time varying
equivalents [SR04, WGG96]. A generalised method with unbounded rate parameter model is given
in [EZJ98]. In the same way, an effective BT method for H∞-LPV-controller order reduction is
proposed in [WRS04].
The balanced truncation produces good approximations in high frequency, whereas for control
propose, an acceptable reduction is often required at intermediate and/or low frequencies. To solve
this problem, the so-called Frequency Weighted Balancing Truncation FWBT has been proposed
firstly for LTI systems in [Enn84]. In this approach, two weighting functions are included in the
procedure to reduce the model in a certain frequency range. However, the stability preservation is
not guaranteed anymore. To tackle this problem, a modified version assuming that the full-order
model does not have any common pole/zero with the weighting functions is proposed in [LC90].
Then, [WSL99, VA01] have developed a new approach based on the Enns method without the
previous assumption to guarantee the stability. It gives also an upper error bound. Others upper
bounds have also been established by [SA95], [KAM95] and [Zho95]. The frequency range is
explicitly defined instead of the two frequency weights in [GJ90]. More recently, in [GA04], the
method is modified and an error upper bound to the relative error is given. Note that the stated
techniques are developed for the stable LTI-systems and no guarantee is given to preserve the
passivity of the systems. Recent work in this direction are given in [LYG14, LYG15] where the
H∞-norm of the error is bounded and the positive realness of the obtained model is guaranteed.
Based on these recent results in the literature, the aim of this paper is to adapt the FWBT method
([GA04]) in order to reduce the order of an H∞-LPV controller. For the development of this
approach, the generalised Gramian framework is used [SW11].
The paper is organised as follows: the LPV-systems, their properties and the the full-order
H∞-LPV-controller design are introduced in section 2. In Section 3. the Generalised Gramian
framework for LPV-systems is given and the main proposed method is detailed and discussed.
To emphasize the effectiveness of the developed method, the obtained reduced-order controller is
evaluated on a practical engineering problem: the control of an automotive semi-active suspension.
The performance of the obtained reduced-order controller are investigated and compared with
another reduced-order method based on BT approach [WRB06] in Section 4. Final conclusion is
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given in Section 5.

2. Problem Statement

2.1 LPV-Systems

Linear Parameter Varying LPV models represent systems whose sate-space descriptions are known
functions of varying parameters. This notion of LPV-system has been introduced in context of gain
scheduling [SA90] and has been also widely used in control design for non-linear systems [PK96].
Considering a compact subset Δρ ⊂ Rs, an LPV-system can be described by the following the
state-space realisation

{
ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t)
y(t) = C(ρ(t))x(t) + D(ρ(t))u(t)

∀ t ≥ 0 (1)

where A : Δρ → Rn×n, B : Δρ → Rn×m, C : Δρ → Rp×n, D : Δρ → Rp×m. The state-space
representation (1) can be also written as

G(ρ) =

[
A(ρ) B(ρ)
C(ρ) D(ρ)

]

. (2)

The exogenous parameter vector ρ is varying in a bounded set Pρ defined as

Pρ = {ρ : R+ → Δρ | ρ
i
(t) ≤ ρi(t) ≤ ρi(t), i = 1, 2, . . . , s}

t 7→ ρ(t) (3)

where ρi is the ith component of the ρ vector.
The ρ function is not known in advance but is assumed to be bounded and measurable on-line. This
assumption ensures that all trajectories of the system are contained in those ones of the LPV-model.

It is noted that some LPV-models could be written as function of system states [OPJ13]. Such
models known as quasi-LPV -systems are used for the modelling of non-linear systems.

Definition 1 (Quadratic Stability): System (1) is said to be quadratically stable if the positive
definite quadratic form

Vρ : x 7→ xTP0x, P0 ∈ Sn
�0 (4)

is a Lyapunov function for (1). A such Lyapunov function is often referred to a common Lyapunov
function or a parameter-independent Lyapunov function.

Proposition 1 ([Bri15]): The system (1) is quadratically stable if and only if there exists a matrix
P ∈ Sn

�0 such that the LMI

AT(ρ)P + PA(ρ) ≺ 0 (5)

holds for all ρ ∈ Δρ.

3
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Moreover, the induced L2-gain notion is of a big interest for the proposed approach. Indeed, an
upper bound is given to the L2-norm of error between the full and the reduced order models. It can
be defined as

Definition 2 (Induced L2-gain [God95]): Given a quadratic-stable LPV-system (1) with zero initial
conditions, the induced L2-gain is defined as

‖Gρ‖i,2 = sup
ρ∈Pρ

sup
u∈L2
u 6=0

‖y‖2

‖u‖2
(6)

The induced L2-norm represents the largest induced gain from inputs in L2 to outputs in L2 over
the set of all causal linear operators described by the LPV system.

2.2 LPV-Controller Synthesis

Consider a general LPV-system represented under the following state-space realisation






ẋ(t) = A(ρ(t))x(t) + B1(ρ(t))w(t) + B2(ρ(t))u(t)
z(t) = C1(ρ(t))x(t) + D11(ρ(t))w(t) + D12(ρ(t))u(t)
y(t) = C2(ρ(t))x(t) + D21(ρ(t))w(t) + D22(ρ(t))u(t)

∀t. (7)

where x(t) ∈ Rn, u(t) ∈ Rnu , w(t) ∈ Rnw , z(t) ∈ Rnz , y(t) ∈ Rny are respectively the state, the input,
the disturbance, the controlled output and the measured output. Then, A : Δρ → Rn×n, B1 : Δρ →
Rn×nw , B2 : Δρ → Rn×nu , C1 : Δρ → Rnz×n, C2 : Δρ → Rny×n, D11 : Δρ → Rnz×nw , D12 : Δρ →
Rnz×nu , D21 : Δρ → Rny×nw and D22 : Δρ → Rny×nu .
The H∞-LPV-controller associated to the LPV-system (7) is defined by

K(ρ) :

{
ẋK(t) = AK(ρ(t))xK(t) + BK(ρ(t))y(t)
u(t) = CK(ρ(t))xK(t) + DK(ρ(t))y(t)

(8)

where xK ∈ RnK , y(t) ∈ Rny and u(t) ∈ Rnu are respectively the states, the inputs and
outputs of the controller K(ρ). AK : Δρ → RnK×nK , BK : Δρ → RnK×ny , CK : Δρ →
Rnu×nK and DK : Δρ → Rnu × ny .
The H∞-LPV-controller synthesis concerns the design of an LPV global controller that guarantees
both stability and performance for all parameters variations defined in the set Δρ. To guarantee the
closed-loop system quadratic stability and to satisfy the H∞-performance criteria, the approach
developed in [SGC97] is used to design the H∞-LPV-controller. It is assumed that

• The matrices B2, D12, C2 and D21 are parameter independent and D22 = 0.
• The parameter-dependent matrix pair [A(ρ), B2(ρ)] is stabilisable and detectable ∀ρ ∈ Δρ.
• The matrix [C2(ρ), D21(ρ)] has full row rank ∀ρ ∈ Δρ.

Then, for a given real positive scalar γ and a parameter dependent quadruplet matrices
(ÂK, B̂K, ĈK, D̂K), there exist two parameter independent symmetric matrices X and Y such that
the sufficient condition that solves the H∞-LPV problem is given by the following LMIs ∀ρ ∈ Δρ







A(ρ)X + B2ĈK(ρ) + (∗) ∗ ∗ ∗
ÂK(ρ) + AT(ρ) + CT

2 D̂T
K(ρ)BT

2 Y A(ρ) + B̂K(ρ)C2 + (∗) ∗ ∗
BT

1 (ρ) + DT
21D̂

T
K(ρ)BT

2 BT
1 (ρ)Y + DT

21B̂
T
K(ρ) −γInw ∗

C1(ρ)X + D12ĈK(ρ) C1(ρ) + D12D̂K(ρ)C2 D11(ρ) + D12D̂K(ρ)C2 −γInz





 ≺ 0,

(9)

4
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[
X In

In Y

]

� 0, (10)

where terms denoted (∗) are induced by symmetry, for example

[
M + N + (∗) ∗

K L

]

=

[
M + N + MT + NT KT

K L

]

The LPV-controller of the form (8) is then reconstructed as

DK(ρ) = D̂K(ρ)

CK(ρ) = (ĈK(ρ) − DK(ρ)C2X)M−T

BK(ρ) = N−1(B̂K(ρ) − Y B2DK(ρ))

AK(ρ) = N−1(ÂK(ρ) − Y A(ρ)X − Y B2DK(ρ)C2X)M−T − BK(ρ)C2XM−T − N−1Y B2CK(ρ),
(11)

where M and N are defined such that MNT = In−XY and which can be solved through a singular
value decomposition and a Cholesky factorisation.

2.3 Full-Order Controller Design

Before introducing the approximation method, the full-order controller should be designed as shown
in Section 2.2. Then, let

Tzw(ρ) =

[
A(ρ) B(ρ)
C(ρ) D(ρ)

]

= LFT

([
A(ρ) B(ρ)
C(ρ) D(ρ)

]

,

[
AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

])

, (12)

be the state-space realisation of the closed-loop system considering the augmented model (7) and
its H∞-controller defined in (8) with:

A(ρ) =

[
A(ρ) + B2DK(ρ)C2 B2CK(ρ)

BK(ρ)C2 AK(ρ)

]

, B(ρ) =

[
B1(ρ) + B2DK(ρ)D21

BK(ρ)D21

]

,

C(ρ) =
[

C1(ρ) + D12DK(ρ)C2 D12CK(ρ)
]
and D(ρ) = D11(ρ) + D12DK(ρ)D21. Note that the

closed-loop system Tzw(ρ) is an LPV-system in its own right which is quadratic stable by construc-
tion. In order to apply the proposed method, the Tzw(ρ) state space representation is assumed to
be minimal.

3. Main Contribution

In this section, the new controller order reduction method for LPV-controllers is proposed. The
method is based on the Frequency Weighted Balanced Truncation FWBT approach used for the
LTI-models order reduction. The FWBT is proposed to reduce the model-order over a known
frequency range [ω1, ω2] in [GJ90]. This approach uses the classical reachability and observability
Gramians.
Inspired by this work, the proposed method is an extension in two directions:

• Extended to the LPV-case.
• Applied to reduce the controller order (rather than the model order).

To this end, the classical reachability and observability Gramians for LTI systems are introduced
first. Then, the equivalent ones of the LPV-case are defined. Based on this, the so-called generalised

5
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Gramians are introduced then used to perform the proposed controller order reduction approach.
The relation between the Gramians and generalised Gramians is given in Lemma 1.

3.1 Frequency Limited Generalised Gramians

The proposed method is based on the FWBT method where the key notions are the so-called
reachability and observability Gramians.

Definition 3 (Gramians): Considering the quadratic stable and minimal realisation of the closed-
loop LPV-system Tzw(ρ) given in (12), Let us define R(ρ) and O(ρ), the related reachability and
observability Gramians respectively, they are defined as the solution of the two parameter dependent
Lyapunov equations

−
s∑

i=1

vi
∂R(ρ)
∂ρi

+ A(ρ)R(ρ) + R(ρ)AT(ρ) + B(ρ)BT(ρ) = 0, (13)

s∑

i=1

vi
∂O(ρ)
∂ρi

+ AT(ρ)O(ρ) + O(ρ)A(ρ) + CT(ρ)C(ρ) = 0. (14)

For a given parameter trajectory ρ, let Φρ(t, 0) be the state-transition matrix. Then, the functional
R(ρ) and O(ρ), respectively the reachability and observability Gramians of the closed-loop LPV-
system (12), are expressed such that

R(ρ) =
∫ 0

−∞
Φρ(0, t)B(ρ(t))BT(ρ(t))ΦT

ρ (0, t) dt, (15)

O(ρ) =
∫ ∞

0
ΦT

ρ (t, 0)CT(ρ(t))C(ρ(t))Φρ(t, 0) dt. (16)

Definition 4 (Generalised Gramians): Let P(ρ) and Q(ρ) be respectively the generalised reach-
ability and observability Gramians of the quadratic stable and minimal closed-loop LPV-system
(12) given as
∀(ρ, v) ∈ Δρ × Δv

−
s∑

i=1

vi
∂P(ρ)
∂ρi

+ A(ρ)P(ρ) + P(ρ)AT(ρ) + B(ρ)BT(ρ) ≺ 0 (17)

s∑

i=1

vi
∂Q(ρ)

∂ρi
+ AT(ρ)Q(ρ) + Q(ρ)A(ρ) + CT(ρ)C(ρ) ≺ 0. (18)

Indeed, Lyapunov inequalities (rather than Lyapunov equations) are solved to compute gener-
alised Gramians. This linear matrix inequality (LMI) approach to the model reduction problem is
particularly useful when some structures need to be preserved in the process of model reduction.
Controller reduction is a typical example of this type of problems[SW11]. Note that the physical
interpretations of generalised Gramians are similar to ordinary Gramians. Considering Tzw(ρ),R(ρ)
and O(ρ), the following lemma introduces useful results about the relation between Gramians and
generalised Gramians.

Lemma 1: Let Tzw(ρ) be a minimal state-space realisation of the quadratic stable and minimal

6
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closed-loop system defined by (12). Then, ∀ρ ∈ Pρ

R(ρ) ≺ P(ρ(0))
O(ρ) ≺ Q(ρ(0)).

(19)

where R(ρ), O(ρ), P(ρ) and Q(ρ) are the solutions of (15), (16), (17) and (18) respectively.

Proof: By multiplying on the left by Φρ(0, t) and on the right by ΦT
ρ (0, t), the relation (17) yields

−Φρ(0, t)
s∑

i=1

vi
∂P
∂ρi

ΦT
ρ (0, t) + Φρ(0, t)A(ρ(t))P(ρ)ΦT

ρ (0, t) + Φρ(0, t)P(ρ)AT(ρ(t))ΦT
ρ (0, t)

+ Φρ(0, t)B(ρ(t))BT(ρ(t))ΦT
ρ (0, t) ≺ 0.

(20)

Using fact that ∂
∂t0

Φρ(t, t0) = −Φρ(t, t0)A(ρ(t0)), then (20) yields

−
d

dt

(
Φρ(0, t)P(ρ)ΦT

ρ (0, t)
)

+ Φρ(0, t)B(ρ(t))BT(ρ(t))ΦT
ρ (0, t) ≺ 0. (21)

which on integrating over the semi-infinite time axis (−∞, 0] and considering that
limt→−∞ Φρ(0, t) = 0, gives

P(ρ(0)) �
∫ 0

−∞
Φρ(0, t)B(ρ(t))BT(ρ(t))ΦT

ρ (0, t) dt

︸ ︷︷ ︸
R(ρ)

(22)

Similarly, let us multiply on the right by the closed-loop state-transition matrix Φρ(t, 0) and on the
left by ΦT

ρ (t, 0), the relation (18):

ΦT
ρ (t, 0)

s∑

i=1

vi
∂Q
∂ρi

Φρ(t, 0) + ΦT
ρ (t, 0)AT(ρ(t))Q(ρ)Φρ(t, 0) + ΦT

ρ (t, 0)Q(ρ)A(ρ(t))Φρ(t, 0)

+ ΦT
ρ (t, 0)CT(ρ(t))C(ρ(t))Φρ(t, 0) ≺ 0

(23)

Using the fact that ∂
∂tΦρ(t, t0) = A(ρ(t))Φρ(t, t0), then (23) yields

d

dt

(
ΦT

ρ (t, 0)Q(ρ)Φρ(t, 0)
)

+ ΦT
ρ (t, 0)CT(ρ(t))C(ρ(t))Φρ(t, 0) ≺ 0. (24)

Integrating the last expression from 0 to +∞ gives

Q(ρ(0)) �
∫ +∞

0
ΦT

ρ (t, 0)CT(ρ(t))C(ρ(t))Φρ(t, 0) dt

︸ ︷︷ ︸
O(ρ)

(25)

�

7
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3.2 Frequency-Limited Order Reduction

For a given parameter trajectory ρ, let consider Φρ(t, 0) the state-transition matrix of the closed-loop
system (12). Then, let us define

fρ(t) = Φρ(0, t)B(ρ(t))H(−t)
gρ(t) = C(ρ(t))Φρ(t, 0)H(t)

∀t, (26)

where H is the heaviside step function.
By considering Ω = [ω1 ; ω2] the frequency range where order-reduction is desired to be better, the
following definition is given

Definition 5 (Frequency Limited Gramians): Let RΩ(ρ) and OΩ(ρ) two frequency dependent
terms defined as

RΩ(ρ) = Rω2(ρ) −Rω1(ρ) and OΩ(ρ) = Oω2(ρ) −Oω1(ρ)

where

Rω(ρ) =
∫ +ω

−ω
Fρ(w)F ∗

ρ (w)dw (27)

Oω(ρ) =
∫ +ω

−ω
G∗

ρ(w)Gρ(w)dw (28)

with Fρ (resp. Gρ) is the Fourier transform of fρ (resp. gρ). Then, the functional R̂Ω(ρ) and ÔΩ(ρ),
respectively the frequency limited reachability and observability Gramians of the closed-loop LPV-
system (12), are defined as the solutions of
∀(ρ, v) ∈ Δρ × Δv

−
s∑

i=1

vi
∂R̂Ω(ρ)

∂ρi
+ A(ρ)R̂Ω(ρ) + R̂Ω(ρ)AT(ρ) + RΩ(ρ) = 0 (29)

s∑

i=1

vi
∂ÔΩ(ρ)

∂ρi
+ AT(ρ)ÔΩ(ρ) + ÔΩ(ρ)A(ρ) + OΩ(ρ) = 0. (30)

The quantities RΩ(ρ) and OΩ(ρ) have the following eigenvalues decomposition

RΩ(ρ) = UΩ(ρ)diag (λ1(ρ), . . . , λnK(ρ)) UT
Ω (ρ) (31)

OΩ(ρ) = VΩ(ρ)diag (δ1(ρ), . . . , δnK(ρ)) V T
Ω (ρ) (32)

with |λ1| ≥ . . . |λnK | ≥ 0 and |δ1| ≥ . . . |δnK | ≥ 0. Let uρ ≤ nK and vρ ≤ nK be respectively the
ranks of RΩ(ρ) and OΩ(ρ). Based on these definitions, let us define the two quantities:

BΩ(ρ) = UΩ(ρ)diag(|λ1(ρ)|
1
2 , . . . , |λuρ

(ρ)|
1
2 , 0, . . . , 0), and (33)

CΩ(ρ) = diag(|δ1(ρ)|
1
2 , . . . , |δvρ

(ρ)|
1
2 , 0, . . . , 0)V T

Ω (ρ). (34)

Definition 6 (Modified Frequency Limited Generalised Gramians): Consider K(ρ), the

full-order stabilising LPV-controller given in (8). Let P̂Ω(ρ) =

[
P̂1(ρ) 0

0 P̂2(ρ)

]

� 0 and

8
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Q̂Ω(ρ) =

[
Q̂1(ρ) 0

0 Q̂2(ρ)

]

� 0 be the modified frequency limited reachability and observability

Gramians defined as the solutions of the following Lyapunov equations
∀(ρ, v) ∈ Δρ × Δv

−
s∑

i=1

vi
∂P̂Ω(ρ)

∂ρi
+ A(ρ)P̂Ω(ρ) + P̂Ω(ρ)AT(ρ) + BΩ(ρ)BT

Ω(ρ) = 0 (35)

s∑

i=1

vi
∂Q̂Ω(ρ)

∂ρi
+ AT(ρ)Q̂Ω(ρ) + Q̂Ω(ρ)A(ρ) + CT

Ω(ρ)CΩ(ρ) = 0. (36)

For the generalisation, we have the following inequalities:

−
s∑

i=1

vi
∂PΩ(ρ)

∂ρi
+ A(ρ)PΩ(ρ) + PΩ(ρ)AT(ρ) + BΩ(ρ)BT

Ω(ρ) ≺ 0 (37)

s∑

i=1

vi
∂QΩ(ρ)

∂ρi
+ AT(ρ)QΩ(ρ) + QΩ(ρ)A(ρ) + CT

Ω(ρ)CΩ(ρ) ≺ 0. (38)

with PΩ(ρ) =

[
P1(ρ) 0

0 P2(ρ)

]

� 0 and QΩ(ρ) =

[
Q1(ρ) 0

0 Q2(ρ)

]

� 0.

If the block diagonal solutions PΩ(ρ) andQΩ(ρ) exist, then let T1(ρ) and T2(ρ) be two nonsingular
matrices given such that

T−1
1 (ρ)P1(ρ)T−T

1 (ρ) = TT
1 (ρ)Q1(ρ)T1(ρ)

= Σ1(ρ)

= diag(ξ1(ρ), . . . , ξn(ρ)),

(39)

with ξ1(ρ) ≥ ξ2(ρ) ≥ ∙ ∙ ∙ ≥ ξn(ρ), and

T−1
2 (ρ)P2(ρ)T−T

2 (ρ) = TT
2 (ρ)Q2(ρ)T2(ρ)

= Σ2(ρ)

= diag(γ1(ρ), . . . , γr(ρ)
︸ ︷︷ ︸

Σ21

, γr+1(ρ), . . . , γnK(ρ)
︸ ︷︷ ︸

Σ22

),
(40)

with γ1(ρ) ≥ γ2(ρ) ≥ ∙ ∙ ∙ ≥ γr(ρ) > γr+1(ρ) ≥ γr+2(ρ) ≥ ∙ ∙ ∙ ≥ γnK(ρ) are the frequency limited
generalised Hankel singular values of K(ρ) and r is the desired order for the reduced-order controller.
The balanced realisation of K(ρ) can be written as

K̃(ρ) =

[
T−1

2 (ρ)AK(ρ)T2(ρ) T−1
2 (ρ)BK(ρ)

CK(ρ)T2(ρ) DK(ρ)

]

=

[
ÃK(ρ) B̃K(ρ)
C̃K(ρ) D̃K(ρ)

]

. (41)

9
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Further, K̃(ρ) is partitioned as conformably with Σ2(ρ) as

K̃(ρ) =






[
ÂK(ρ) ÃK12(ρ)

ÃK21(ρ) ÃK22(ρ)

] [
B̂K(ρ)
B̃K2(ρ)

]

[
ĈK(ρ) C̃K2(ρ)

]
D̂K(ρ)




 . (42)

Finally, a truncation step is performed to obtain a reduced-order controller.

Definition 7: Given the balanced realisation K̃(ρ) defined in (42), let K̂(ρ) be the truncated
realisation to the rth order and denoted as follows

K̂(ρ) =

[
ÂK(ρ) B̂K(ρ)

ĈK(ρ) D̂K(ρ)

]

(43)

Furthermore, the reduced-order parameter dependent closed-loop system is given as

T̂zw(ρ) =

[
Â(ρ) B̂(ρ)

Ĉ(ρ) D̂(ρ)

]

=






A(ρ) + B2D̂K(ρ)C2 B2ĈK(ρ) B1(ρ) + B2D̂K(ρ)D̂K(ρ)D21

B̂K(ρ)C2 ÂK(ρ) B̂K(ρ)D21

C1(ρ) + D12D̂K(ρ)C2 D12ĈK(ρ) D11(ρ) + D12D̂K(ρ)D21




 .

(44)

Theorem 1: Suppose K(ρ) is the stabilising parameter dependent controller defined in (8) such
that the closed-loop transfer Tzw(ρ) defined in (12) is minimal, quadratic stable and there exist
Lyapunov inequality solutions PΩ(ρ) and QΩ(ρ) such that (37) and (38) are satisfied. Let K̂(ρ)
be the reduced-order controller defined in (43) and obtained by truncation. Then, the closed-loop
system with the reduced-order controller T̂zw(ρ) defined in (44) is stable. If in addition

rank[B(ρ),BΩ(ρ)] = rank[BΩ(ρ)], (45)

and

rank[CT(ρ),CT
Ω(ρ)] = rank[CT

Ω(ρ)], (46)

then, T̂zw(ρ) is quadratic stable and satisfies

‖Tzw(ρ) − T̂zw(ρ)‖i,2 ≤ 2‖JB(ρ)‖∞‖JC(ρ)‖∞

nK∑

i=r+1

γi,ρ (47)

where JB(ρ) := diag(|λ1|−
1
2 (ρ), . . . , |λuρ

|−
1
2 (ρ), 0, . . . , 0)UΩ(ρ)B(ρ) and

JC(ρ) := C(ρ)VΩ(ρ)diag(|δ1|−
1
2 (ρ), . . . , |δvρ

|−
1
2 (ρ), 0, . . . , 0),

Proof: The reachability and the observability Gramians given in (15),(16) can be expressed as

10
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R(ρ) =
∫ +∞

−∞
fρ(τ)f∗

ρ (τ) dτ (48)

O(ρ) =
∫ ∞

−∞
g∗ρ(τ)gρ(τ) dτ (49)

where fρ(τ) and gρ(τ) are given in (26).
Then, using Parseval relationship, the reachability and the observability Gramians could be ex-
pressed as follows

R(ρ) =
1
2π

∫ +∞

−∞
Fρ(w)F ∗

ρ (w)dw (50)

O(ρ) =
1
2π

∫ +∞

−∞
G∗

ρ(w)Gρ(w)dw. (51)

By considering Fρ(resp.gρ) the Fourier transform of fρ(resp.gρ), we can define Rω(ρ) and Oω(ρ)
as the limited reachability and observability Gramians given in (28) and (28). Then, by setting
Ω = [ω1 ; ω2] the frequency range where approximation is desired to be better. Then, a new modified
terms RΩ(ρ) and OΩ(ρ) are defined.
Since RΩ(ρ) and OΩ(ρ) are not guaranteed to be positive definite, stability of the reduced-order

controller is not guaranteed. Then, an idea based on eigenvalues decomposition presented in
[GA04] is proposed here to guarantee stability by providing an upper error bound. Indeed, the
solution of (37) and (38) is performed instead of (29) and (30). In addition, the modified frequency
limited Gramians in (35) and (36) are used instead of the ordinary ones defined in (35) and
(36). In fact, Lemma 1 shows that the generalised Gramians could be an approximation of the
ordinary Gramians. The transition to generalised Gramian framework might induce less accurate
approximation but the order-reduction error still bounded. Finally the expression of the upper
error bound given in (47) is found according to this
Let T̃zw(ρ) be the frequency limited balanced realisation of the full-order closed-loop system. Then,
T̃zw(ρ) is defined by

T̃zw(ρ) =

[
T−1(ρ)A(ρ)T (ρ) T−1(ρ)B(ρ)

C(ρ)T (ρ) D(ρ)

]

=






[
Â(ρ) Ã12(ρ)

Ã21(ρ) Ã22(ρ)

] [
B̂(ρ)
B̃2(ρ)

]

[
Ĉ(ρ) C̃2(ρ)

]
D̃(ρ)




 , (52)

where T (ρ) = diag(T1(ρ), T2(ρ)).
By considering the assumptions (45) and (46), there exist JB(ρ) and JC(ρ) such that B(ρ) =
BΩ(ρ)JB(ρ) and C(ρ) = JC(ρ)CΩ(ρ). On the other hand, the reduction error is expressed as

‖Tzw(ρ) − T̂zw(ρ)‖i,2 = ‖C(ρ)(sI − A(ρ))−1B(ρ) − Ĉ(ρ)(sI − Â(ρ))−1B̂(ρ)‖i,2

= ‖JC(ρ)
[
CΩ(ρ)(sI − A(ρ))−1BΩ(ρ) − Ĉ(ρ)(sI − Â(ρ))−1B̂(ρ)

]
.JB(ρ)‖i,2

≤ 2‖JB(ρ)‖∞‖JC(ρ)‖∞

∑nK
i=r+1 γi,ρ

�

Remark 1: The Assumptions (45) and (46) mean that there exist JB(ρ) and JC(ρ) such that
B(ρ) = BΩ(ρ)JB(ρ) and C(ρ) = JC(ρ)CΩ(ρ). In addition, by following the steps in [WSL99, AC81,
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IGS14] it was shown that assumptions (45) and (46) are almost always true. Hence we expect that
our approach will apply in most of the cases. Indeed, during our simulations, the assumptions have
always been satisfied.

Algorithm 1 H∞-LPV-Controller Order Reduction
Considering the LPV-plant described in (7) the reduced-order controller can be computed as follows
Inputs: (A(ρ), B(ρ), C(ρ), D(ρ)).
Outputs: (Â(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ)).
Assumptions: (A(ρ),B(ρ),C(ρ),D(ρ)) minimal.
Algorithm:

(1) Compute K(ρ) the full-order controller according Section 2.2.
(2) Compute the closed-loop system Tzw given in (12).
(3) Compute the generalised Gramians P(ρ) and Q(ρ) solutions of (17) and (18) respectively.
(4) Compute the balanced realisation K̃(ρ) of the full-order controller K(ρ) by:

(a) Find T2, the basis change matrix according to (40).(For instance, Procedure in [MTL88]
can be used).

(b) Compute the balanced realisation K̃(ρ) as defined in (42).
(5) Compute the reduced-order controller K̂(ρ) from K̃(ρ) by truncation.

4. Case Study: Semi-Active Suspension Control

4.1 LPV-Model

In this section, the given method to reduce the LPV-controller is applied on a semi-active automotive
suspension presented in [DSDB11]. Actually, when suspension modelling and control are considered,
the vertical quarter car model is often used. This model allows to study the vertical behaviour of
a vehicle according to the suspension characteristic (passive or controlled). Figure 3 shows the
so-called vertical quarter car. Then, the dynamical equations of the system are given by

{
msz̈s = −kszdef − Fmr

musz̈us = kszdef + Fmr − kt(zus − zr)
(53)

where Fmr is the magneto-rheological force generated by the semi active suspension. According to
the non-linear model of Guo [GYP06], Fmr can be expressed as follows

Fmr = a2

(

żdef +
v0

x0
zdef

)

+ a1 tanh

(

a3

(

żdef +
v0

x0
zdef

))

(54)

with zdef = zs − zus is the damper deflection (must be measured or estimated) and żdef = żs − żus

is the damper velocity. Parameters a2, a3, v0 and x0 are constant, and a1 is the controllable force
such that a1 ∈ [a1min ; a1max].
By defining

ρ1 = tanh
(
a3

(
żdef + v0

x0
zdef

))
,

cmr = a2 : MR damping coefficient,
kmr = a2

v0

x0
: MR stiffness coefficient,

Then, a state-space representation can be given by considering the state vector xs = [zs żs zus żus]
T

12
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and the exogenous input w = zr, as follows






ẋs = Asxs + Bsρ1a1 + Bs1w

z = Cs1xs + Ds1ρ1a1

y = Csxs

(55)

with

As =







0 1 0 0
−ks+kmr

ms
− cmr

ms

ks+kmr
ms

cmr
ms

0 0 0 1
ks+kmr

mus

cmr
mus

−ks+kmr+kt
mus

− cmr
mus





 , Bs =







0
−1
ms

0
−1
mus





 , Bs1 =







0
0
0

−kt
mus





 .

The measurement output is y = zs − zus, and the controlled outputs are chosen as z = [z̈s zs]T,
respectively the acceleration and the displacement of the sprung mass. Then

Cs1 =

(
−ks+kmr

ms
− cmr

ms

ks+kmr
ms

cmr
ms

1 0 0 0

)

, Ds1 =

(
− 1

ms

0

)

, Cs =
(

1 0 −1 0
)
.

However, two constraints must be satisfied

(1) The control signal a1 must be positive (dissipative constraint)
(2) The input matrices Bsρ1 and Ds1ρ1 must be constant to satisfy the LPV-H∞ synthesis

assumption.

The passivity problem is solved by defining a new control signal u = a1 − F0 where F0 is the mean
value of a1 (F0 = (a1max− a1min)/2). Then, the problem of the passivity on a1 is recast to a simple
saturation problem on u (u ∈ [−F0 ; F0]). With these modifications, (56) yields






ẋs = (As + Bs2
ρ1

Cs2xs
Cs2)xs + Bsρ1u + Bs1w

z = Cs1xs + Ds1ρ1u

y = Csxs

(56)

where

Bs2 =
(

0 − F0

ms
0 F0

mus

)T
and Cs2 =

(
−a3v0

x0
a3 −a3v0

x0
−a3

)T
.

To overcome the second problem, [AG95] proposes to add a strictly proper filter F to make the
controlled output matrices independent of the scheduling parameters

F :

(
ẋf

u

)

=

(
Af Bf

Cf 0

)(
xf

uc

)

(57)

Then, by defining ρ2 = ρ1

Cs2xs
and x = (xs xf)

T the system (56) can be represented as






ẋ = A(ρ1, ρ2)x + Buc + B1w

z = C1(ρ1, ρ2)x

y = Cx

(58)

13
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where

A(ρ1, ρ2) =

(
As + ρ2Bs2Cs2 ρ1BsCf

0 Af

)

, B =

(
0

Bf

)

, B1 =

(
Bs1
0

)

,

C1(ρ1, ρ2) =
(

Cs1 ρ1Ds1Cf

)
and C =

(
Cs 0

)
.

4.2 H∞-Controller Synthesis

By considering the LPV-model (58), an H∞ controller is designed to guarantee the internal closed-
loop stability and to satisfy some required performance. In fact, the main objective and challenge of
a controlled suspension system is to improve the comfort for car passengers simultaneously to the
performance on road holding. The passenger comfort can be improved by isolating the vibrations
transmitted from the road surface. Then, the "frequency response" from the road profile zr to the
vehicle chassis acceleration z̈s must be kept small in the low frequency range. Then, a weighting
function is designed as

Wz̈s = wz̈s

s2 + ξ11w11s + w2
11

s2 + 2ξ12w12s + w2
12

Furthermore, the road holding is evaluated from the unsprung mass (wheel) oscillations with respect
to the road profile. This transfer should be kept small at high frequencies. Then, Wzus is designed
as

Wzus = wzus

s2 + ξ21w21s + w2
21

s2 + 2ξ22w22s + w2
22

Wzr = 5× 10−3 is the road profile gain. Finally, the filter introduced in (57) is given as: F = wf

s+wf
.

It is designed with a large bandwidth to decouple the input and the varying parameters, where

wz̈s = 1, ξ11 = 0.1, ξ12 = 1, w11 = 2π × 1 rad.s−1, w12 = 2π × 3 rad.s−1,

wzus = 10, ξ21 = 0.3, ξ22 = 1, w21 = 2π × 9 rad.s−1, w22 = 2π × 9 rad.s−1, wf = 90.34.

Then, an interconnection between the LPV-model and these weighting functions are presented in
Figure 4.
Model parameters are obtained by considering experimental data in [TMFV+13] and given as
Table 3To carry out a controller satisfying these objectives, the H∞-LPV-synthesis is designed by
using solution for polytopic systems: it consists in finding a global LPV-controller K(ρ1, ρ2) which
is a convex combination of local controllers obtained by solving the LMIs set at each vertex (formed
by limits values of the varying parameters). All varying parameters are bounded: ρ1 ∈ [−1 ; 1], ρ2 ∈
[0 ; 1].
For more details and explanation on H∞-LPV-control synthesis, see [AG95, SGC97]. The design
method for LPV-systems is used like in [AGB94].

4.3 Numerical Issue

The proposed method requests the solution of two Lyapunov inequalities with an infinite number
of constraints. These sets of infinite LMIs can be solved by gridding techniques. Then, some ap-
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proximations must be made by gridding the set Δρ with finite number L of points {ρi}L
i=1 [Lee97].

Moreover, the infinite variables PΩ(ρ) and QΩ(ρ) in LMIs (37),(38) are approximated by combina-
tions of scalar basis functions such as

PΩ(ρ) =
NP∑

j=1

φj(ρ)Pj � 0

QΩ(ρ) =
NQ∑

j=1

ϕj(ρ)Qj � 0

where Pj = PT
j , Qj = QT

j . There is a large freedom in the choice of basis functions [Woo95]. For
this example, the following choice is made:

{φj}
13
j=1 = {ϕj}

13
j=1 = {1, ρ1, ρ2, ρ2

1, ρ2
2, ρ1ρ2, ρ1ρ

2
2, ρ2

1ρ2, ρ2
1ρ

2
2, ρ3

1, ρ3
2, ρ1ρ

3
2, ρ3

1ρ2}.

The main consequence of this approximation is that the number of LMIs to be solved is finite and
is 2L(2s+1 + 1) where s is the number of parameters, i.e. s = 2.
The full-order controller is designed using the procedure developed in [SGC97]. Then, an 8-order
controller Kfull is obtained. The proposed method is used to reduce Kfull. Then,KFWBT is produced.
To test its effectiveness, a comparison with the method developed in [WRS04] (LPV balanced
truncation) namely KBT, is performed. The feasibility problems (37)(38) are convex. Using (Matlab
LMI Control Toolbox), controllers are reduced to the 5th order obtained heuristically by trial-and-
error approach. Therefore, a frequency and time analysis are performed.

4.4 Results and Discussion

The first evaluation is represented in Table 1 where first the assumption (45) and (46) are checked.
Note that for 25 frozen values of (ρ1, ρ2), the rank assumption is satisfied for all these points. This
fact confirms Remark 1 and allows us compute an upper bound. Precisely, Table 2 express the
upper bounds and H∞-norm of the error values. These results evince that the upper bound is
correctly positioned (the gap is positive). However, we note that this upper bound is not tight to
error H∞-norm.
Frequency analysis:

The Bode diagrams at several frozen values of ρ1 and ρ2 (25 points) of the three transfer function
Tzs , Tz̈s and Tzus are shown respectively in Figure 5, 6 and 7. In fact, the frequency behaviours of
the chassis position zs and acceleration z̈r are chosen to be analysed in order to observe the comfort
performance regarding the road profile input zr. The wheel position signal zus is also analysed to
test the road holding. Then, the weighting functions Wz̈s and Wzs designed in Section 4.2, limit the
amplification of the previously cited transfers in low frequency range (around [1 ; 10] Hz). In fact,
the human sensitivity to vertical vibrations is important in this frequency range [DSS+10]. For this
reason, the frequency interval of the proposed frequency limited FWBT method is chosen as [1 ; 8]
Hz.
In Figure 5, note the reduced-order closed-loop system produced by FWBT approximate well the
full-order closed-loop system in the chosen frequency range [1 ; 10] Hz. In this interval, the reduced-
order closed-loop system produced by the unweighted BT fails. In fact, an important gap appears a 2
Hz and 3 Hz which is exacted as th BT is known to guarantee good approximation at high frequency.
The same comment is given in Figure 6 where FWBT fits the full order closed-loop system in all the
shown range unlike BT method that miss the peak around 2 (a resonance frequency). These results
are more explicit when observing Figure 7. Indeed, FWBT gives a good approximation when BT
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fails (2 Hz and 8 Hz). The other important fact stated by these results, is the sensitivity against
the parameters variation. Actually, a dispersion of ρ1 and ρ2 values is induced by the reduction
step. This degradation is expected since the given application is a qLPV system where ρ1 and ρ2

are depending on the state vector. Then, every decrease in the order (states) affects the ρ1 and ρ2

values. However, this loss when reducing is under control for two reasons: the first one, the stability
of reduced-order closed-loop is preserved and the error is guaranteed limited. The second one is
that this dispersion is weak in the required frequency range. Thus, performance are not affected.

Remark 2: As Bode diagram for non-linear systems is not possible, a pseudo-Bode plot is then
proposed in [PV08]

Time analysis:
In the time domain, the several controlled suspensions are travelling a bump of 0.01 m x 2 m for a
vehicle speed 8.3 m/s (i.e. 30 km/h). It is observed that the time response confirms the contribution
of the FWBT reduction method. In fact, in Figure 8, the chassis is stabilised rapidly (1 sec. after the
perturbation) without overtake on the suspension unlike the suspension with KBT. This observation,
preserves the required ‘comfort’ performance. Moreover, for zus, the wheel equipped with a KFWBT-
suspension, keeps almost the same profile of the road although its variations which which respects
the ‘road handling’ performance. The KBT-suspension generate an infinite perturbation just after
the bump (after 1 sec.). Note also, that temporal test draw two output signals (chassis and wheel
positions) regarding the input (the road profile) and by the way there will be just one plot of each
transfer besides the several plots in the frequency responses.

5. Conclusion

In this paper, the problem of LPV-Controller order reduction is investigated, and the approximation
in a limited frequency range is considered. based on a similar work on the LTI-case, a new frequency
limited method for LPV-controller order reduction is derived. The obtained reduced-order controller
is proven stable and the degradation in the closed-loop performance is guaranteed bounded. An
application of the proposed method to reduce the order of a semi-active suspension-controller is
performed. The obtained results show its effectiveness to preserve the closed-loop stability and
to respect the required performance specifications. The comparison with another existent LPV
order-reduction technique based on the the classical BT, confirms the contribution of the proposed
method.
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Figure 1.: Controller order reduction scheme [AL89]
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Table 1.: values of
(
rank[B(ρ),BΩ(ρ)]/rank[BΩ(ρ)] ; rank[CT(ρ),CT

Ω(ρ)]/rank[CT
Ω(ρ)]

)
for the sev-

eral frozen values of (ρ1, ρ2)
HHHHHHρ1

ρ2 −1.0 −0.5 0.0 0.5 1.0

0 (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14)
0.25 (14/14 ; 14/14) (13/13 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14)
0.5 (11/11 ; 14/14) (13/13 ; 14/14) (11/11 ; 14/14) (12/12 ; 14/14) (11/11 ; 14/14)
0.75 (12/12 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14)
1.0 (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14)

Table 2.: values of the ‖Tzw(ρ)− T̂zw(ρ)‖i,2 and the upper bound for several frozen values of (ρ1, ρ2)
HHHHHHρ1

ρ2 −1.0 −0.5 0.0 0.5 1.0

0.0 1.36 ≤ 5.07 1.35 ≤ 3.32 1.33 ≤ 4.08 1.31 ≤ 3.37 1.30 ≤ 3.72
0.25 0.32 ≤ 9.88 0.32 ≤ 9.93 0.32 ≤ 10.38 0.31 ≤10.39 0.31 ≤ 9.80
0.5 0.00 ≤ 1.79 0.00 ≤ 0.13 0.00 ≤ 2.22 0.00 ≤11.81 0.00 ≤ 2.03
0.75 0.31 ≤ 9.97 0.31 ≤ 9.92 0.30 ≤10.58 0.30 ≤9.86 0.29 ≤ 9.89
1.5 1.22 ≤ 3.77 1.20 ≤ 3.04 1.19 ≤ 4.46 1.18 ≤ 2.88 1.17 ≤ 2.90

Table 3.: Parameter values
Parameter Value
Sprung mass (ms) 470 [kg]
Unsprung mass (mus) 110 [kg]
Tyre stiffness coefficient (kt) 86378 [N/m]
Spring stiffness coefficient (ks) 270000 [N/m]
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