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Abstract – In the transmission systems of vehicles, unforced vibrations can be observed during the sliding
phase of clutch engagement. These vibrations are due to frictional forces and may generate noise. Several
studies have shown that the stability of such friction systems is highly sensitive to parameters (friction law,
damping) which lead to significant dispersions. Therefore, uncertain parameters must be considered in the
stability analysis of a clutch system. This paper investigates the ability of the multi-element generalized
polynomial chaos to take an increasing number of uncertain parameters into account in the stability analysis
of a clutch system: it focuses on accuracy, on the criterion for the choice of the order of truncation, on the
criterion for the choice of the number of elements and on computation time. The objective is to propose a
low-cost model of high accuracy, compared with the Monte Carlo method.

Key words: Clutch / friction system / uncertainties / mode coupling / stability / multi-element generalized
polynomial chaos

1 Introduction

In vehicles with manual transmission systems, un-
forced vibrations can be observed during the sliding phase
of clutch engagement. Several studies have focused on
the mechanisms responsible for these self-excited friction-
induced vibrations [1]. Various mechanisms have been
identified to explain the friction-induced vibration phe-
nomenon. They are classified into two main families which
are related to the tribological aspects of friction systems
and to the geometrical and structural properties. Low fre-
quency phenomena such as judder (10−20 Hz) can often
be attributed to tribological properties [2]. However, high
frequency phenomena cannot be related to stick-slip be-
haviour because of the speed range of the measured vi-
brations. Consequently, mode coupling instabilities due to
the intrinsic structure of the system are more likely to be
responsible for this phenomenon [3]. It is thus necessary to
compute the system eigenvalues which are complex func-
tions because of the friction [4]. The real parts allow the
study of the system stability and the imaginary parts give
the frequency of the corresponding mode.

Numerous studies have also demonstrated that the dy-
namic behaviour of dry friction systems is highly sensitive
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to design parameters, in particular to the friction coeffi-
cient and damping [5–7]. For instance, Chevillot studied
the effects of damping and in particular the destabiliza-
tion paradox in an aircraft braking system [8]. Hervé stud-
ied the effects of friction and damping on the stability
of clutch systems; his study focused on the destabiliza-
tion paradox, but the model was a lumped model with
only two degrees of freedom (DOF) [1, 9]. The friction
and damping effects on the mode coupling phenomenon
in the finite element (FE) model of a vehicle brake squeal
were shown in the studies of Fritz [10, 11]. In these stud-
ies, in order to reduce the calculation time which may be
prohibitive because of the high number of DOF, damping
is taken into account in a modal approach. It is therefore
necessary to study the influence of the dry friction coeffi-
cient and damping and, in particular, the destabilization
paradox of the instability of the clutch system in a modal
approach.

Moreover, the manufacturing process has been shown
to lead to dispersions in the design parameters. That is
why the dispersion of the uncertain parameters must be
taken into account to ensure the robustness of the analysis
of friction systems and thus the robustness of the design
of this class of systems. The Monte-Carlo (MC) approach
which is classically used to reach for this purpose requires
prohibitive calculation times, especially for a system with
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a high number of DOF. As an alternative, the polynomial
chaos formalism has been proposed to take account of the
uncertainties of the friction coefficient in the study of the
dynamic behaviour of friction systems [12, 13]. But these
studies were carried out on the model of a braking sys-
tem with two DOF and there were only one or two uncer-
tain parameters. In addition, the limitation of generalized
polynomial chaos (gPC) requires a large amount of cal-
culations when the number of stochastic modes is large.
To solve this problem, a method based on multi-element
generalized polynomial chaos (ME-gPC) is proposed in
several papers. Nevertheless, these studies again just con-
sider one or two uncertain parameters [4, 12–15] or are
theoretical and only apply to a mathematical system of
differential equations [4, 16, 17].

The main objective of this paper is therefore to investi-
gate the abilities and the limitations, in terms of accuracy
and computational costs, of gPC and ME-gPC to take
account of an increasing number of uncertain parameters
(up to 8) in modelling the eigenvalues of a clutch system
and in analyzing the system stability. The challenge is
to find a compromise between accuracy and computation
time. The aim is now to assess the maximum number of
uncertain parameters which can be considered with the
gPC expansions, in particular in the present study of the
stability of a clutch model. The latter involves a physi-
cal model which has been validated experimentally. The
paper focuses on the criteria for choosing the order of
truncation and the number of elements, independently of
the results of the MC method. The results of the methods
based-on the gPC expansions are compared with those ob-
tained with the classic MC approach for validation. The
final objective is to propose a low-cost method of high
accuracy, in order to avoid the computational difficulties
of the classic MC method.

This paper is organized as follows: Section 2 presents
the methods for the analysis of the system stability and
Section 3 is devoted to gPC and ME-gPC formalisms; the
friction system is described in Section 4; the deterministic
study of the influence of parameters on the mode coupling
of a clutch system in a modal approach is presented in
Section 5, with a focus on the destabilization paradox;
the results of the robust stability analysis are given in
Section 6, followed by a conclusion in Section 7.

2 Analysis of the stability of a dynamic
system

2.1 Stability analysis of the eigenvalues

Consider the motion equation of a nonlinear dynamic
system:

Ẋ = f(X, d) (1)

where X represents the instantaneous state of the system
(its coordinates in the phase space), the upper dot denotes
the time derivation, f is a function of X and d stands
for uncertain parameters. According to the Hartman-
Grobman theorem, the linearization of Equation (1) in

the vicinity of the equilibrium state Xe(d0) preserves its
non-marginal stability nature. Therefore, the determina-
tion of the stability nature of equilibriums only requires
the knowledge of the linearized motion equation in their
vicinity in most cases. Because of the form of the solu-
tions, the stability nature of Xe(d0) is expressed by the
eigenvalues λ(d0) of the Jacobian Df(Xe(d0), d0). So, in
the classic MC procedure, to analyze the stability of a
system which has uncertain parameters , samples are first
generated following the probabilistic support of those pa-
rameters, then the eigenvalues λ(d) corresponding to each
sample are calculated. This sampling-based method is
known to be time-consuming since a large number of sam-
ples are needed to ensure reasonable accuracy with high
confidence. The resulting computing costs are exorbitant
since the eigenvalues of the system must be calculated
for each sample, which is difficult, especially for systems
with numerous DOF. Therefore, the gPC formalism can
be used instead of the classic MC procedure.

2.2 Modal approach

The real parts of complex eigenvalues help to study
the system stability and the imaginary parts give the fre-
quency of the corresponding mode. The modal approach
presented here allows the calculation of the eigenvalues of
the coupling modes. Using the modal approach, the num-
ber of retained modes can be truncated, which reduces
the number of DOF and computation time. It also helps
to better understand the influence of damping with its
management by mode.

Consider the linearized equation of motion of a dy-
namic system:

Mü+ Cu̇+ Ku = 0 (2)

where M, C, K are respectively the mass, damping and
stiffness matrices. u is the displacement vector and the
dot denotes the derivative with respect to time. Because
of the friction, the stiffness matrix has special properties:

K = Ks + μKf (3)

with Ks the structural stiffness matrix, Kf the asymmet-
ric stiffness matrix caused by the friction, and μ the fric-
tion coefficient.

Equation (2) defines an eigenvalue problem in which
the eigenvalues λ and eigenvectors ψ must be determined.
To solve Equation (2), two approaches are possible: the
direct approach or the modal approach. Here, the latter
will be detailed, which involves projecting Equation (2)
on the real modal basis of the system before extracting
the complex eigenvalues. This requires the calculation of
the real eigenvalues considering only the symmetric part
of the stiffness matrix, in order to find the real frequencies
and the modal basis of the frictionless system associated
with Equation (4).

Mü+ Ksu = 0 (4)
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After the extraction of nmode modes of Equation (4), let
Ω = diag(ω1 . . . ωnmode) be the diagonal matrix gathering
the corresponding frequencies, and γ the vector of the dis-
placement coordinates in the undamped and frictionless
modal basis.

The displacement vector in Equation (2) can be ex-
pressed as a linear combination of the undamped and
frictionless modes. Once transformed in the frequency
domain and expanded using the orthogonality relations,
Equation (2) can be rewritten as:

(
s2I + Ds+ Ω2 + μΛf

)
γ = 0 (5)

where D and Λf are the projections of C and Kf on the
undamped and frictionless modal basis. I is the identity
matrix and s the Laplace parameter.

For each value of μ, Equation (5) defines a problem
with complex eigenvalues of dimension (nmode × nmode)
which is much smaller than the first dimension (2nDOF ×
2nDOF) of Equation (2). This size is small enough to allow
the problem to be treated using numerical computation
software. The modal approach is much more effective than
the direct approach in terms of computation time.

3 Polynomial chaos theory

3.1 Generalized polynomial chaos expansion

3.1.1 Base theories of generalized polynomial chaos

Generalized polynomial chaos (gPC) establishes a sep-
aration between the stochastic components of a random
function and its deterministic components. In the dy-
namic system (1), if the uncertain parameters are uni-
form, all the eigenvalues λi(i = 1, ..., n) are also ran-
dom functions. According to the Askey scheme [2], the
Legendre polynomials are best suited to deal with uni-
form uncertainties, so the random eigenvalues are given
by:

λi(ξ) ≈
Np∑
j=0

λ̄i,jφj(ξ) (6)

φj(ξ) are the Legendre polynomials [2].
ξ (ξ1, ..., ξr) is a vector of r independent random vari-

ables, ξi is distributed uniformly within the orthogonality
interval [–1,1].

The truncation order NP is shown to be dependent on
the polynomial chaos order p and stochastic dimension r
denoting the number of uncertain parameters:

Np =
(p+ r)!
p!r!

− 1 (7)

The computation of λi is then turned into the problem
of finding the coefficients λ̄i,j of its truncated expansion.
These coefficients, called stochastic modes, can be com-
puted with the non-intrusive spectral projection (NISP)
or the regression methods. The principal advantage of

these methods lies in the fact that no modification is per-
formed on the system; only the calculation of the eigenval-
ues of the completed clutch system for a limited number
of samples is required.

In the regression method, the stochastic modes λ̄i,j

are computed by minimizing the least square criterion:

ε2reg,i =
Q∑

q=1

⎡
⎣λi

(
ξ(q)

)
−

Np∑
j=1

λ̄i,jφj

(
ξ(q)

)⎤
⎦

2

(8)

where ξ(q) (q = 1, ..., Q) are well known Gauss collocation
points [2]. In practice, the Q points are selected from a set
of roots of the Legendre polynomials [2, 17]. If the same
order is chosen for all random variables, Q is calculated
as follows:

Q = (p+ 1)r (9)

More details on the techniques used to estimate the
stochastic modes can be found in [12].

3.1.2 Statistical characteristics of the gPC

The main advantage of the expansion of gPC is the di-
rect estimation of the statistical characteristics of stochas-
tic processes when stochastic methods are estimated. In-
deed, the moments of the first and second orders are
given by:

⎧⎪⎨
⎪⎩

λ̂i = λ̄i,0

σ2
i =

Np∑
j=1

λ̄2
i,j

〈
φ2

j

〉 , i = 1, ..., n (10)

where λ̂i and σ2
i are the mean value and the variance of

the ith eigenvalue [4].

3.1.3 Criteria for the choice of the optimal truncation order

The higher is the truncation order, the better is the
accuracy of gPC, but also the higher are the amount of
stochastic modes and calculation time. It is therefore nec-
essary to determine the optimal truncation order. This
section presents the criteria for the choice of the optimal
truncation order in terms of accuracy and computation
time.

Let λi,p,λi,p−1 be the eigenvalues vectors which are
successively calculated with the two gPC developments
of orders p, p− 1.

In the literature, the optimal truncation order is often
chosen according to the mean error ε2i,p in the L2-sense
between two developments of successive orders [2,12,14]:

ε2i,p =
1
N ′

N ′∑
k=1

(λi,p (ξk) − λi,p−1 (ξk))2, i = 1, ..., n (11)

with N ′ the number of samples.
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It must be noted that it is necessary to calculate the
eigenvalues obtained with the gPC in order to estimate
the mean error ε2i,p in the L2-sense.

The error of the variance between two developments
of successive orders is:

eσ2,i,p =
∑Np

j=Np−1+1
λ̄2

i,j

〈
φ2

j

〉
, i = 1, ..., n (12)

From the orthogonality of gPC, we have shown (Ap-
pendix 1):

ε2i,p = eσ2,i,p (13)

From Equation (13) it can be seen that the mean er-
ror, which is found equal to the error of variance, can
be directly computed from the stochastic modes instead
of performing simulations with the initial system (Eq. (5))
(MC) or gPC expansion. This characteristic property is
the basis for finding a criterion for the selection of the
optimal truncation order.

The criterion considers the decay rate of the relative
error between two developments of successive orders [4].
This decay rate is defined by:

ηi =
eσ2,i,p

σ2
i,p

(14)

The first criterion for choosing the optimal truncation
order is defined as:

η
1/2
i ≤ θ (15)

where θ is called the threshold related to the choice of the
truncation order.

In addition, as discussed in Section 2.1, the use of gPC
is really effective if the number of direct calculations (DC)
of the complete system for the construction of stochastic
modes is lower than the number of calculated samples
with the MC method.

Therefore, the second criterion for choosing the opti-
mal truncation order concerns the number Q of DC for
the construction of the stochastic modes:

Q = (p+ 1)r ≤ N (16)

whereN is the number of calculated samples with the MC
method to ensure reasonable accuracy with great confi-
dence in the calculation of the stability proportion for a
given random space [18].

The new feature and the advantage of these criteria to
estimate the optimal order is that they are based on the
knowledge of stochastic modes and it is not necessary to
estimate the eigenvalues in a large number of samples with
gPC, contrary to other criteria in the literature [2,12,14].

3.2 Multi-element generalized polynomial chaos

3.2.1 Decomposition of the random space

As mentioned in the previous section, the approxima-
tion error with gPC may be controlled by increasing the

value of the order p. However, the size of the stochas-
tic system, represented by Np, and the number of DC
to construct the stochastic modes, represented by Q, will
increase rapidly. gPC will therefore be difficult to imple-
ment in a complex system with numerous DOF and a
large number of uncertain parameters r.

This has led to the design of the layout of multi-
element generalized polynomial chaos (ME-gPC). This
technique is mainly based on the decomposition of the
random space into m non-intersecting elements [4, 16].

In practice, the local variables in each element ζk are
expressed in terms of independent random uniform vari-
ables ξ̄k in [–1,1]r.

ζk
i =

(
bki + ak

i

)
/2 + ξ̄k

i

(
bki − ak

i

)
/2, i = 1, 2, ..., r;

k = 1, 2, ...,m (17)

where ak
i , b

k
i are the limits of the uniform intervals of the

kth element.
The GPC expansion of the random process corre-

sponding to the kth element and to the ith eigenvalue
of the system is given by:

λi,k

(
ξ̄k

)
=

Np∑
j=0

λ̄i,k,jφj

(
ξ̄k

)
, i = 1, ..., n (18)

3.2.2 Statistical characteristics of the ME-gPC

The approximate local mean value and variance of the
ith eigenvalue in the kth element of gPC for a truncation
order p are:

λ̂i,p,k = λ̄i,k,0; σ2
i,p,k =

Np∑
j=1

λ̄2
i,k,j

〈
φ2

j

〉
, i = 1, ..., n (19)

The approximate global mean value and variance for a
truncation order p can then be written respectively as:

λ̂i,p =
m∑

k=1

λ̄i,k,0Jk; σ̂2
i,p =

m∑
k=1

[
σ2

i,p,k +
(
λ̄i,k,0 − λ̂i,p

)2
]
Jk

(20)
The approximations of the stochastic processes are
given by:

λi (ξ) =
m∑

k=1

Np∑
j=0

λ̄i,k,jφj

(
ξ

k
)
Jk, i = 1, ..., n (21)

where Jk denotes the probability measurement [4, 16].

3.2.3 Criteria for choosing the optimal number of elements

As mentioned in Section 3.1.3, the limitation of gPC
is driven by the need to restrict the number of DC for
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the construction of the stochastic modes, thus the poly-
nomial order cannot be increased significantly in an ar-
bitrary way. However, ME-gPC can overcome this diffi-
culty. In this approach, the error contribution of the kth
element can be decreased by a factor Jk (dictated by the
size of the element), even if the approximated local error
is high. In ME-gPC, a small order of gPC can be used
for each element since the degree of local disturbance has
been reduced.

The selection criterion for the optimal number of ele-
ments also considers the decay rate of the relative error
in each element [4]. This decay rate is defined by:

ηk =
eσ2

k,p

σ2
k,p

(22)

For the decomposition of the random space, two factors
are considered: the decay rate ηk and the factor Jk. A
random element will be divided into two equal parts when
the following condition is satisfied:

η
1/2
k Jk ≥ θ1 (23)

When the random elements become smaller (i.e. Jk be-
comes smaller), the value of ηk satisfying the criterion
will be allowed to be greater. Thus, the criterion relaxes
the restriction on the accuracy of the local variance for
small elements as the error contribution of small random
elements will be dictated by their size.

The second criterion for the choice of the optimal num-
ber of elements is based on the determination of the most
sensitive parameter. The sensitivity of each parameter is
defined by:

si =
λ̄2

k,i,p

〈
φ2

i,p

〉
∑Np

j=Np−1+1 λ̄
2
k,j

〈
φ2

j

〉 i = 1, 2, ..., r (24)

where the index i, p indicates the mode whose p order as-
sociated polynomial function of gPC only depends on pa-
rameter ξi. All the parameters that satisfy Equation (25)
will be divided into two random elements equally in the
next time step, while all other parameters will remain
unchanged:

si ≥ θ2 max
i=1,...,r

(si), 0 < θ2 < 1, i = 1, 2, ..., r (25)

The third criterion for choosing the optimal number of
elements is the number of DC needed for the construc-
tion of the stochastic modes. Equation (16) shows that
the number of DC in an element is (p + 1)r, so the to-
tal number of DC for the construction of the stochastic
modes in all the m elements is:

m (p+ 1)r ≤ N (26)

This paper proposes a new strategy based on the de-
composition algorithm for each element according to the
above criteria. This strategy is presented in Figure 1.

According to the decomposition algorithm, each ele-
ment which does not satisfy criteria (23) and (25) will be

One non-adaptive element 

Calculate ηk, Jk and construct the stochastic modes in kth element 

1
2/1 θη ≥kk J

Calculate si (i=1 r) 

riand

sss ri

<
≥ ),...,max( 12θ

Split the random dimension k
iξ into 2 equal elements  

Update the non-adaptive elements  

F T 

Save the 
adaptive 
elements F 

T 

min2/ kk JJ ≥

T 
F 

Fig. 1. ME-gPC algorithm used to split the random
dimension.

divided into two equal parts, so the maximum number of
elements after the ith division level is 2ni and the element
size in the ith division level is calculated with:

Jk,i = Jk,i−1/2 = 1/2i−1(i = 1, 2, ...) (27)

where Jk is the probability measurement.
Thus, the maximum number Q′ of DC needed for the

construction of the set of stochastic modes must satisfy:

Q′ = 2n max (p+ 1)r ≤ N (28)

Minimum element size Jk min is therefore defined by:

Jk min = 1/2nmax ≥ (p+ 1)r
/N (29)

A random element will be divided into two equal parts
when conditions (23) and (25) and the following condition
are satisfied:

Jk/2 ≥ Jk min (30)

4 Squeal model of the clutch system

There are not industrial models in the literature for
stability analysis of clutch systems. Wickramarachi has
proposed a squeal model involving six DOF which is suf-
ficient and efficient to study the mode coupling instabil-
ity and which has been validated with experiments [3].
In the model, the contact between the friction disc (1)
and the flywheel (2) is created at points A′, B′, C′, D′
by a progressive spring kp which is split into four springs
kA, kB, kC and kD (Fig. 2). In order to consider the non-
linear characteristic of the progressive spring, the stiff-
nesses kA and kB are respectively divided and multiplied
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K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r2 (kA + kB + 4kf ) μlr (kC + kD) r (kA + 2kf ) −r (kB + 2kf ) μlkC −μlkD

−μlr (kA + kB) r2 (kC + kD + 4kf ) −μlkA μlkB r (kC + 2kf ) −r (kD + 2kf )

r(kA + 2kf ) 0 kA + 2kf 0 −kf −kf

−r(kB + 2kf ) 0 0 kB + 2kf −kf −kf

0 r(kC + 2kf ) −kf −kf kC + 2kf 0

0 −r(kD + 2kf ) −kf −kf 0 kD + 2kf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

C 

A 

B 

D 

ZD

ZA

ZB

ZC

kf

kf

kf

kf

x 

y z 

Fig. 2. Squeal model of the clutch system [3].

by a ratio γ1, while the stiffnesses kC and kD are respec-
tively divided and multiplied by a ratio γ2. γ1 and γ2 can
be considered as the impact coefficient differences around
axes x and y in the manufacturing and assembly processes
between the flywheel and the friction disc. Points A, B, C,
D are the projections of contacts on the average surface
of the flywheel. The flywheel is considered as deformable
and modelled using its bending stiffness (kf ). Points E, F,
G, H are fixed. The DOF of the flywheel are the rotations
θx, θy around the fixed axes x, y and the translations
ZA, ZB, ZC , ZD of points A, B, C, D along the fixed axis
z.

The linear model of the undamped clutch system can
be expressed as follows:

M · Ü +K · U = 0 (31)

with
U =

[
θx θy ZA ZB ZC ZD

]
T (32)

M = diag
([

Ix Iy
Mp

4
Mp

4
Mp

4
Mp

4

])
(33)

see equation (34) above

kA = γ1kp/4; kB = kp/(4γ1); kC = γ2kp/4;
kD = kp/(4γ2); (35)

where r = (r1 + r2)/2 with r1, r2 the minimum and max-
imum sliding radii; μ is the friction coefficient and l is
the thickness of the flywheel. The nominal values of the
parameters are: kp = 16 MN.m−1; kf = 7 MN.m−1; γ1 =
0.9; γ2 = 0.8; r1 = 75mm; r2 = 120mm; l = 12.5 mm [3].

0 0.05 0.1 0.15 0.2
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e

 

 

Mode 1
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Fig. 3. Real and imaginary parts of modes 1 and 2.

5 Study of the influence of parameters
on the mode coupling of a clutch system
in a deterministic approach –
destabilization paradox

The aim of this section is to study the influence of the
most significant parameters on the stability of the clutch
system. The studies are carried out in the modal approach
with a focus on the destabilization paradox of damping.

5.1 Influence of friction coefficient μ

In the clutch system, there are four non-zero eigenval-
ues (with their conjugates) which depend on the values μ,
kp, kf , (modes 1, 2, 3 and 4). Modes 3, 4 are always de-
coupled and stable; the coalescence phenomenon occurs
between modes 1 and 2. The system stability only de-
pends on these two modes.

Figure 3 shows the real parts and imaginary parts of
mode 1 (red) and mode 2 (blue). The curves show the
well-known phenomenon of mode coupling or coalescence
between mode 1 and mode 2. From μ = 0, the imaginary
parts (frequencies) of the two modes are separated and
they tend to come closer when the friction coefficient in-
creases. When the real parts of the modes are negative,
the system is stable. Then, the two modes reach the same
imaginary part at a point called the point of coalescence.
Beyond this point, the imaginary parts of the two modes
are equal, but their real parts become non-zero and op-
posite. One mode becomes unstable because its real part
becomes positive from the Hopf bifurcation point and the
other mode remains stable because its real part remains
negative. So, the system becomes increasingly unstable if
μ increases.
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Table 1. Damping and Hopf bifurcation point.

Situation Case d1 (N s.m−1) d2 (N s.m−1) d1/d2(N s.m−1) μ0

Undamped 1 0 0 – 0.1050

Equally damped

2 1 1 1.0 0.1053

3 4 4 1.0 0.1077

4 10 10 1.0 0.1191

Slight difference in damping
5 4 4.8 1.2 0.1078

6 10 12 1.2 0.1213

Large difference

Small damping

7 2 5 2.5 0.0993

8 2 10 5 0.0872

9 4 10 2.5 0.1030

10 4 20 5 0.0957

in damping

High damping

11 6 15 2.5 0.1099

12 6 30 5 0.1099

13 8 20 2.5 0.1189

14 8 40 5 0.1274

15 10 25 2.5 0.1297

16 10 50 5 0.1468
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Fig. 4. Real and imaginary parts of modes 1 and 2 (equally
damped: cases 1, 2, 3, 4).

5.2 Influence of damping on the stability of a clutch
system

The aim of this section is to calculate the eigenvalues
with the modal approach in order to study the influence
of modal damping on the stability of a clutch system.
The modal damping matrix, of size nmodes × nmodes, is of
the form D = diag(0, . . . 0, d1, d2, 0,. . . , 0). D represents
the damping projection on the modal basis of the fric-
tionless system. d1 and d2 are respectively the damping
coefficients for modes 1 and 2. Table 1 shows 16 cases of
study divided in four major groups: undamped, equally
damped, with slight and large differences in damping.

5.2.1 Equally damped coalescence

Figure 4 shows the results corresponding to three low
values of equally distributed damping coefficients d1 = d2.
It can be seen that if di increases, the real parts of the
eigenvalues decrease, while the imaginary parts are not
influenced. The real parts cross the axis 0 for a higher
value of the friction coefficient. Therefore, the higher the
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Fig. 5. Real parts of modes 1 and 2 (slight differences in
damping: cases 2, 5, 6).

damping of the clutch is, the more stable it becomes. This
conclusion is confirmed in Table 1 with an increase in the
Hopf bifurcation point μ0 (cases 2 to 4).

5.2.2 Non-equally damped coalescence

Non-equally damped coalescence has been studied in
the following cases: slight differences in damping val-
ues, large differences in high and small damping values
(Table 1). The results are compared to the case of equally
damped coalescence with small damping. First, we con-
sider the cases with slight differences (cases 5 to 6) and
the cases with large differences in high damping values
(cases 11 to 16). Such damping distributions deeply alter
the coalescence patterns, as displayed in Figures 5 and 6.
As expected, an increased damping mainly tends to shift
the curves towards the negative values of the real parts.
The clutch behaviour is thus improved in terms of stabil-
ity, as illustrated in Table 1 by an increase in the Hopf
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Fig. 6. Real parts of modes 1 and 2 (large differences in high
damping: cases 2, 15, 16).

bifurcation point μ0. Nevertheless, the coupling patterns
are far more complicated than before.

First of all, this damping distribution induces a gap
between the real parts of the two modes at μ = 0. Then,
the main change occurs in the vicinity of the coalescence
point, where the transition is less sharp than previously.
As explained by Hoffmann [19], a “smoothing effect” of
the curves with respect to the friction coefficient is ob-
served, both for real parts and imaginary parts. As a
consequence, the real parts seem to start to split at a
lower friction coefficient value than in the undamped sit-
uation. Moreover, the higher the damping difference is,
the larger the gap between the imaginary parts of the
two modes is. Even if the coalescence patterns are more
complicated than previously, they feature a noteworthy
advantage. Indeed, since the imaginary and real parts are
different, for each friction value, the unstable mode can
now be clearly identified and tracked with respect to the
friction coefficient value. So far, an increase in damping
seemed to stabilize the system. It shifted the curves to-
wards the negative real part values and so, induced an
increase in the Hopf bifurcation point μ0. However, this
is not always the case. Indeed, a difference in damping
has two main effects on the coalescence curves: a “low-
ering effect” for the real part values, and a “smoothing
effect” in the vicinity of the coalescence point. The first
effect was predominant in the curves shown previously.
But with a large difference in damping values between
the two modes (cases 7 to 10, Table 1), the second effect
may prevail, as illustrated in Figure 7. The two damped
curves plotted in Figure 7 respectively present a ratio of
2.5 and 5 between the damping values of the two modes.
In these cases, the smoothing effect induces a significant
drop in μ0, which leads to a drop in stability, as shown
in Table 1. Thus, the addition of a certain amount of
damping to the system, unevenly distributed on the two
modes, leads to instability. This phenomenon is called the
destabilization paradox of damping.

5.2.3 Stability maps

This section aims at synthetizing the effects of damp-
ing on the clutch stability. It can be inferred from the

0 0.05 0.1 0.15 0.2
-60

-40

-20

0

20

40

μ

R
e

 

 

Mode 1
Mode 2

Case 2 

Case 9 

Case 10 

Fig. 7. Real parts of modes 1 and 2 (large differences in small
damping: cases 2, 9, 10).

Fig. 8. Stability maps with d1 = 4 (a); d1 = 10 (b).

previous section in which it has been shown that the ra-
tio between the damping values of the two modes highly
influences the clutch stability.

In this analysis, the damping of mode 1 is set to a non-
zero constant value, while the damping of mode 2 is cho-
sen so that the ratio d2/d1 ranges from 0 to 5. Figures 8a
and 8b display the stability maps (μ, d2/d1) respectively
with d1 = 4 and d1 = 10. For each couple of values, the
clutch stability is assessed through the sign of the real
parts of the eigenvalues. The red area is unstable while
the blue area is stable. The abscissas of the border be-
tween the two areas are by definition the Hopf bifurcation
points μ0. When the two damping values are different and
of low level (d1 = 4), the stability becomes significantly
worse (Fig. 8a). The optimal case in terms of stability ap-
pears to be the equally damped case (d2/d1 = 1). When
the two damping values are different and of high level
(d1 = 10), the stability area increases when damping d2

grows for d2/d1 < 1 and also d2/d1 > 1 (Fig. 8b).

Thus, the destabilization paradox of damping can be
generalized to a number of values of μ when damping is
unevenly distributed with either small or high damping
values. This section therefore shows that the dynamic be-
haviour of the clutch system is highly nonlinear and sen-
sitive to design parameters. Moreover, it highlights and
confirms the destabilization paradox in a modal approach
for a clutch system with 6 DOF. This paradox has been
studied by Hervé et al. on clutch model with only two
DOF [1].
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6 gPC and ME-gPC approach to the stability
analysis of a clutch system with six DOF

The objective of this section is to investigate the ca-
pabilities of the polynomial chaos approach, in terms of
accuracy and computational costs, to model the eigenval-
ues of the system and to analyze the system stability with
a high number of uncertain parameters. The results of the
gPC method are compared with those obtained with the
classic MC approach in order to validate the gPC method.

6.1 Uncertain parameters

In the clutch system with six DOF shown in Section 4,
there are generally eight uncertain parameters: μ, kp, kf ,
γ1, γ2, r1, r2 and l. In this section, the uncertain param-
eters kp, kf , γ1, γ2, r1, r2 and l are considered as random
and uniform in the intervals [0.95Vn, 1.05Vn] with Vn the
corresponding nominal values; μ is random and uniform
in the interval [0, 0.5]. The nominal values of the param-
eters have been given in Section 4.

In order to analyze the stability of the clutch system
with the gPC approach, the advantages of the modal ap-
proach (shown in Sect. 5) are used to calculate the eigen-
values. Here, the study focuses on modes 1 and 2 (and
their conjugates). The modal damping values are equal
(d1 = d2 = 6).

In this section, new studies aiming at highlighting the
efficiencies of the gPC and the ME-gPC for large numbers
of uncertain parameters will be presented. The selection
criteria of the optimal truncation order and of the optimal
number of elements will be illustrated.

6.2 gPC approach

The stochastic modes are calculated with gPC in eight
cases which correspond to the number of uncertain pa-
rameters r = 1 → 8. First, the eigenvalues are modelled
with gPC to determine the stochastic modes with the re-
gression method using the Q Gauss collocation points and
the modal approach. Then, the optimal truncation order
is chosen with the validation of the relevance of the first
criterion (Eq. (15)). All the results are compared to those
obtained with the MC method with the complete system.

Figure 9 shows the evolutions of the real and imagi-
nary parts of mode 1 (circle line) and mode 2 (cross line)
with DC and gPC with r = 1 and order p = 19. The
evolutions are nearly similar.

Figure 10 shows the evolutions of the mean errors (in
the L2-sense) of the real parts of the eigenvalues, be-
tween DC and gPC (red line), between two successive or-
ders using directly the real parts of gPC (Eq. (11)) (blue
line) and between two successive orders gPC using the
stochastic modes of gPC (Eq. (12)) (black line). The blue
and black lines are very close, which confirms that Equa-
tion (13) is verified, that is to say, the mean error (in
the L2-sense) is equal to the variance error between two
developments in successive orders of gPC.
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Fig. 9. Real and imaginary parts of modes 1 and 2 (r = 1,
p = 19).
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Figure 11 shows the evolution of the decay rate ηi

(Eq. (14)) (blue line) and the evolution of the relative
variance error of the real parts of mode 1 between DC
and gPC (red line). Figure 12 shows the evolutions of
the relative errors of the stability proportion respectively
between DC and gPC (red line), and between two suc-
cessive orders using gPC (blue line). The curves show the
same evolution as the “decay rate” curve and the errors
are reduced in the same way if p increases; therefore, the
choice of the “decay rate” criterion is also found relevant
for the evaluation of the quality of gPC expansion in the
estimation of the system stability. The optimal order p
is selected by increasing the value of p until the percent-
ages of the relative errors are lower than the thresholds
(Eq. (15)), the second criterion (Eq. (16)) being verified.

In this study, the threshold value has been set to
θ = 0.02 which corresponds to the relative variance error
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Table 2. Comparison of results between DC and gPC.

DC
gPC with r uncertain parameters

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

Order p – 6 6 6 6 5 3 2 2

Relative variance error (100η1) between
two successive orders of gPC (%)

– 5.2e-4 5.7e-4 5.8e-4 0.008 0.04 0.80 0.45 0.45

Relative variance error in comparison
with DC (%)

– 0.35 0.35 0.35 0.78 0.61 4.13 1.08 1.10

Hopf bifurcation point μ0 with p optimal 0.1106 0.1036 0.1036 0.1036 0.1024 0.1016 0.0806 0.0849 0.0848

Error of μ0 in comparison with DC (%) – 6.29 6.29 6.29 7.36 8.13 27.16 23.25 23.29

Error of the stability proportion between
DC and gPC with p optimal (%)

– 6.45 6.45 6.45 7.54 8.04 26.85 43.84 43.88

Number of calculations of the complete
system with p optimal

10 000 7 49 343 2401 7776 4096 2187 6561
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Fig. 12. Relative error of stability proportion.

of 0.04%. The models based on gPC were constructed
with r uncertain parameters (r = 1 → 8) and the pro-
portion of stability was calculated with these models and
one variation of μ. The stability of the equilibrium point
is analyzed for each of the N samples generated according
to the probabilistic law considered for uncertain param-
eters (N = 10 000 in this study). N was set to ensure a
confidence level of 99% with an accuracy margin of 1.25%
for the stability proportion [18]. The values of the optimal
orders obtained for the studies are shown in Table 2.

Figure 13 shows the evolution of the real parts of
mode 1 and mode 2 using gPC (blue) and the DC (red)
with r = 3. The Hopf bifurcation points obtained with the
two methods are close. The errors are acceptable in these
cases (see Table 1). Figure 14 shows the results using gPC
with r = 7. In this case, the errors are quite significant,
showing that the optimal order with the fixed threshold
cannot be found for the first criterion (here θ = 0.02).
Indeed, the second criterion (Eq. (16)) avoids increasing
the order (here N = 10 000).

Table 2 shows the comparison of the results of the
stability analysis between the use of gPC and the initial
system respectively. The strategy for finding the optimal
order consists in stopping the calculations when one of
the two criteria is met – either the decay rate ηi < 4e− 4
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Fig. 13. Real parts of modes 1 and 2 (r = 3, poptimal = 6).
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Fig. 14. Real parts of modes 1 and 2 (r = 7, p = 2).

or the number of calculations ≥ 10 000. The optimal or-
der can be found up to r = 4. For a greater value of
r (r > 5), no order p can be found to satisfy the first
criterion (Eq. (17)), p is therefore selected according to
the second criterion (Eq. (16)). In Table 2, the relative
errors of the results of the stability analysis are lower
than 9% up to r = 5, and higher than 20% from r = 6.
Thus, the use of these two criteria gives a good estimate
of the stability proportion up to r = 5, but is not suffi-
cient for r > 5. In conclusion, these results show that the
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application of gPC in the stability analysis of the clutch
system with five uncertain parameters is effective. The
choice of the optimal truncation order with the “decay
rate” criterion which is independent of the results ob-
tained with the MC method is appropriate. Furthermore,
in the case of a small r (r < 4), the number of DC of the
complete system (for the construction of the stochastic
modes) is markedly lower than the number of calcula-
tions with the MC method. Therefore, the computational
costs are greatly reduced.

6.3 ME-gPC approach

Section 6.2 shows the effectiveness of gPC for the anal-
ysis of the stability of a clutch system with six DOF in
cases with a small number of uncertain parameters r (up
to r = 5). With a high r value, the number of DC of the
complete system is too high and gPC is no more effective.
That is why a ME-gPC approach is proposed to overcome
such issues.

An optimal number of elements m is usually selected
by increasing the value of m while the relative errors
(Eq. (22)) in all the elements verify Equation (23). How-
ever, this method is not effective if ME-gPC is used with
regular intervals. Indeed, when the criteria are not ver-
ified, all the elements are divided; the stochastic modes
must then be reconstructed for all the elements, while
this is not necessary for the elements for which the chaos
expansion is already efficient. Indeed, the quality of the
results obtained with ME-gPC may be highly variable
according to the intervals. For example, in Figure 13 (in
the case of gPG with r = 3), the results calculated with
gPC are very different from the results calculated with
DC for the interval μ ∈ [0.075, 0.125] and very close in
some intervals (e.g. μ ∈ [0, 0.075] or μ ∈ [0.125, 0.5]).
gPC is already effective in these intervals. That is why a
better algorithm is necessary for finding the optimal m.
This algorithm consists in the decomposition method of
the random space, which is described with the criteria
(Eqs. (23), (25) and (30)) in Section 3.2.3 (Fig. 1).

In the next study, we choose θ1 equal to 0.02 and 0.01
successively which corresponds to a relative variance er-
ror of 0.04% and 0.01% respectively, θ2 = 0.99 which
corresponds to the decomposition of the random space
for the most sensitive parameter and N = 10 000 as the
maximum number of DC of the complete system for the
criterion in Equation (30). The resulting optimal values
of the numbers of elements are shown in Table 3.

Figures 15–17 show the evolutions of the real parts
of modes 1 and 2 using DC (red), with gPC (blue) and
using ME-gPC with the optimal number of elements m
(r = 1, 3, 5 with the corresponding pfix) (green). The
results calculated with ME-gPC are closer to the results
obtained via DC than the results calculated with gPC.
The Hopf bifurcation points with ME-gPC and DC are
also close. Therefore, ME-gPC has improved the accuracy
of the results.

Table 3 presents the comparison of the results suc-
cessively obtained with DC, with gPC and the optimal
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Fig. 15. Real parts of modes 1 and 2 (r = 3, pfix = 2,
mopt = 14).
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Fig. 16. Real parts of modes 1 and 2 (r = 5, pfix = 2,
mopt = 14).
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Fig. 17. Real parts of modes 1 and 2 (r = 7, pfix = 2,
mopt = 4).

order p, and with ME-gPC and the optimal number of
elements m. For each value of r and p, the calculated
results correspond to a given value of θ1. The results nat-
urally show that if θ1 is smaller, the number of elements
is higher and the error of the stability proportion is lower.
The optimal value for this threshold θ1 is 0.02.

With ME-gPC, the accuracy of the results has im-
proved significantly. The relative errors of the results of
the stability analysis are lower than 3% up to r = 7. More-
over, with a small value of r (up to 3), the number of DC
of the complete system (for the construction of stochastic
modes) using ME-gPC is higher than the number of cal-
culations using gPC. With r = 4 and 5, the number of DC
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Table 3. Comparison of the results respectively obtained using DC, gPC with the optimal order p, ME-gPC with the optimal
number of elements m.

Number Title Order Threshold Number Number Relative variance Relative mean Relative error

of uncertain (p) (θ1) of elements of DC of error between error between of the proportion

parameters (r) complete system gPC/ME-gPC gPC/ME-gPC stability between

and DC (%) and DC (%) gPC/ME-gPC

and DC (%)

– Calcul direct (DC) – – – 10 000 – – –

1 gPC with optimal p 6 0.02 1 7 5.2e-4 0.074 6.45

2

gPC with optimal p 6 0.02 1 49 5.7e-4 0.074 6.45

ME-gPC with optimal m 2
0.02 14 126 0.21 0.05 0.18

0.01 26 234 0.020 0.047 0.18

3

gPC with optimal p 6 0.02 1 343 5.80e-4 0.74 6.45

ME-gPC with optimal m 2
0.02 14 378 0.02 0.05 0.227

0.01 28 756 0.198 0.047 0.227

4

gPC with optimal p 6 0.02 1 2401 0.0086 0.25 7.54

ME-gPC with optimal m 2
0.02 8 648 0.19 0.027 1.22

0.01 12 972 0.003 1.5e-4 0.59

5

gPC with optimal p 5 0.02 1 7776 0.389 0.049 2.99

ME-gPC with optimal m 2
0.02 14 3402 0.31 0.008 1.68

0.01 24 5832 0.28 4.7e-4 0.59

6

gPC with optimal p 3 0.02 1 4096 0.80 0.72 26.85

ME-gPC with optimal m 2
0.02 6 4374 0.33 0.01 1.04

0.01 7 5103 0.35 0.018 1.04

7

gPC with optimal p 2 0.02 1 2187 0.45 0.71 43.84

ME-gPC with optimal m 2
0.02 4 8748 0.23 0.01 2.45

0.01 4 8748 0.23 0.01 2.45

8 gPC with optimal p 2 0.02 1 6561 0.45 0.70 43.88

using ME-gPC is lower than the number of calculations
with gPC. With r = 6 and 7, gPC is not effective for the
stability analysis (the relative error is higher than 20%)
because of the limited number of DC, but ME-gPC is ef-
fective in these cases (the relative error is lower than 3%).
ME-gPC will therefore be more effective with a medium
value of r (r = 4 to 7). With r = 8, because of the limited
number of DC, the gPC and ME-gPC methods are not
effective for the stability analysis of a clutch system.

It is worth noticing that the results in this paper were
obtained using a conventional PC equipped with an Intel-
core I7-3520M cpu 2.9 GHz. The orders of magnitude of
the computational times ranges from 1s up to 10 s for the
calculation of the stochastic modes, and are respectively
lower than 1s for the calculation of the eigenvalues with
the gPC developments and lower than 1s for the calcula-
tion of the eigenvalues with the 6 DOF clutch model.

7 Conclusion

The dynamic behaviour of the studied clutch system
is highly nonlinear and highly sensitive to design parame-
ters. This paper confirms the destabilization paradox in a
modal approach for a clutch system. In order to avoid the

drawbacks of the classic MC method whose cost is pro-
hibitive for industrial systems, gPC and ME-gPC have
been proposed. The ability of gPC and ME-gPC to take
an increasing number of uncertain parameters into ac-
count in the stability analysis of a clutch system has been
investigated. Two criteria for the choice of the truncation
order have been used; they consist in the relative error
of the variance of the eigenvalues between two develop-
ments of successive orders and the maximum number of
DC. Similarly, three criteria for the choice of the number
of elements have also been used; the first one is the rela-
tive variance error of the eigenvalues between two devel-
opments of successive orders for each element, the second
one is a criterion which helps to choose the most sensitive
parameters for which the intervals must be divided; the
third one is the minimal size of each element, which de-
pends on the maximum number of DC. Polynomial chaos
can be efficient for up to seven uncertain parameters and
computation time is significantly reduced. A higher num-
ber of uncertain parameters – using the necessary trun-
cation orders and numbers of elements to obtain a high
accuracy of polynomial chaos – requires a greater number
of DC of the complete system than the number needed in
the classic MC approach. The results show that the ap-
plication of polynomial chaos in the stability analysis of
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dynamic systems with numerous DOF and for up to seven
uncertain parameters can be effective.

Appendix A

The random eigenvalues calculated with two gPC de-
velopments of successive orders p− 1, p are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λi,p(ξ) ≈
Np∑
j=0

λ̄i,jφj(ξ)

λi,p−1(ξ) ≈
Np−1∑
j=0

λ̄i,jφj(ξ)
, i = 1, ..., n (A.1)

According to the statistical characteristics of gPC:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ̂i,p = λ̂i,p−1 = λ̄i,0

σ2
i,p =

Np∑
j=1

λ̄2
i,j

〈
φ2

j

〉

σ2
i,p−1 =

Np−1∑
j=1

λ̄2
i,j

〈
φ2

j

〉
, i = 1, ..., n (A.2)

The error of the variance between two developments of
successive orders is:

eσ2,i,p = σ2
i,p − σ2

i,p−1 =
∑Np

j=Np−1+1
λ̄2

i,j

〈
φ2

j

〉
, i = 1, ..., n

(A.3)
The mean error in the L2-sense between two developments
of successive orders is calculated by:

ε2i,p =
1
N ′

N ′∑
k=1

(λi,p (ξk) − λi,p−1 (ξk))2

=
1
N ′

N ′∑
k=1

(∑Np

j=Np−1+1
λ̄i,jφj (ξk)

)2

, i = 1, ..., n

(A.4)

with N ′ the number of samples.
From the orthogonality of gPC,

〈φi, φj〉 =
∫
φi (ξ)φj (ξ)W (ξ) dξ

=
{

0 if i 	= j〈
φ2

j

〉
if i = j

(A.5)

where W (ξ) denotes the weighting function.

1
N ′

N ′∑
k=1

(∑Np

j=Np−1+1
λ̄i,jφj (ξk)

)2

=
∑Np

j=Np−1+1
λ̄2

i,j

〈
φ2

j

〉

(A.6)

Thus
ε2i,p = eσ2,i,p (A.7)
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