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Introduction

Let (M, S) be a K-manifold of even dimension, oriented, and equipped with
a K-equivariant spin® bundle §. The orientation induces a decomposition
S =S8T @S, and the corresponding spin® Dirac operator is a first order
elliptic operator Dg : I'(M,S81) - I'(M,87) [2, 4, 6].
When M is compact, an important invariant is the equivariant index
Qr(M,S) € R(K) of the operator Dg, that can be understood as the quan-
tization of the data (M,S, K) [3, 7].
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The determinant line bundle of the spin®-bundle S is the line bundle
det(S) — M defined by the relation

det(S) := homcy(S, S)

where S is the Clifford module with opposite complex structure (see [20]).

The choice of an invariant Hermitian connection V on det(S) determines
an equivariant map ®s : M — €* and a 2-form Qg on M by means of the
Kostant relations

(1.1) L(X)—-Vx,, =2i{®s,X) and V?= -2iQs

for every X € t. Here £(X) denotes the infinitesimal action on the sections
of det(S). We say that ®s is the moment map for S (it depends however of
the choice of a connection).

Assume now that M is non-compact but that the moment map ®g is
proper. In this case the formal geometric quantization of (M, S, K) is well-
defined:

0; (M, S) € R(K)

as an index localized on the zeros of the Kirwan vector field [15, 17, 11, 9].
We will explain the construction in section 3.

Consider now a closed connected subgroup H < K. Let p : & — bh* be
the canonical projection. The map p o $s corresponds to the moment map
for S relative to the H-action.

The main result of our note is the following

Theorem 1.1 Suppose that p o s is proper. Then the following holds:
e The K-module Q. (M,S) is H-admissible.
o We have Q7 (M,S)|u = Q57 (M,S).

We obtained a similar result in the symplectic setting in [16]. Here
our method uses the compactifications of reductive groups a la de Concini-
Procesi and the multiplicative property of the functor Q7™ that has been
proved recently by Hochs and Song [9].

Notations

Throughout the paper :

e K denotes a compact connected Lie group with Lie algebra &.



e We denote by R(K) the representation ring of K : an element E €
R(K) can be represented as a finite sum E = Zpef( m,,7,, with m, €

7. The multiplicity of the trivial representation is denoted [E]X.

e We denote by R(K) the space of Z-valued functions on K. An element
E € R(K) can be represented as an infinite sum E = Zuef( m(p)m,,
with m(u) € Z.

e An element § € £* is called regular if the stabilizer subgroup K¢ :=
{ke K,k-&=¢&} is a maximal torus of K.

e When K acts on a manifold M, we denote Xps(m) := 4|,_ge X -m

the vector field generated by —X € £. Sometimes we will also use the
notation Xps(m) = —X - m. The set of zeroes of the vector field X,
is denoted M.

2 The [Q, R] =0 theorem in the spin® setting

In this section we suppose that M is compact and we recall the results of
[20] concerning the multiplicities of Qx (M, S) € R(K).

For any £ € £*, we denote £¢ the Lie algebra of the stabilizer subgroup
K¢. A coadjoint orbit P = K7 is of type (£) if the conjugacy classes (&)
and (E¢) are equal.

Definition 2.1 Let () be the generic infinitesimal stabilizer for the K-
action on M. We says that the K-action on M is nice if there exists £ € £*
such that

(2.2) ([ear, Ear]) = ([Ee, Eel)-
The first result of [20] is the following

Theorem 2.2 If the K-action on M is not nice, then Qi (M,S) = 0 for
any spin® bundle S.

We suppose now that the K-action on M is nice. The conjugacy class
(E¢) satisfying (2.2) is unique and is denoted (hps) (see Lemma 3 in [19]).

Definition 2.3 A coadjoint orbit P c €* is admissible if P carries a spin®-
bundle Sp such that the corresponding moment map is the inclusion P — £*.
We denote simply by Q2™ (P) the element Qi (P, Sp) € R(K).



We can check easily [19] that Qi?in(P) is either 0 or an irreducible rep-
resentation of K, and that the map

O — 7§ = QE"(0)

defines a bijection between the regular admissible orbits and the dual K.
When O is a regular admissible orbit, an admissible coadjoint orbit P is
called an ancestor of O (or a K-ancestor of 7 ) if Q¥ (P) = n§.

Denote by A((har)) the set of admissible orbits of type (has). The fol-
lowing important fact is proved in section 5 of [20].

Proposition 2.4 Let P € A((ha)).

o If P belongs to the set of regular values of ®s, the reduced space
Mp = @' (P)/K

is an oriented orbifold equipped with a spin® bundle. The index of the
corresponding Dirac operator on the orbifold Mp is denoted Q™ (Mp) €
Z [10].

e In general, the spin® index Q™ (Mp) € Z associated to the (possibly
singular) reduced space Mp is defined by a deformation procedure.

The [@, R] = 0 Theorem in the spin® setting takes the following form.

Theorem 2.5 ([20]) Let O be a regular admissible orbit.
The multiplicity of the representation Wg in Qi (M,S) is equal to

2, QP (Mp)
P
where the sum runs over the ancestors of O of type (har). In other words

Qk(M,S)= > QF"(Mp) QE™(P).
PeA((har))

3 Formal geometric quantization in the spin® set-
ting

In this section the manifold M is not necessarily compact, but the moment

map Pg is supposed to be proper.

We choose an invariant scalar product in €* that provides an identifica-
tion € ~ £*.



Definition 3.1 e The Kirwan vector field associated to ®s is defined by
(3.3) ks(m) = —®s(m)-m, me M.

o We denote by Zs the set of zeroes of ks. Thus Zs is a K-invariant
closed subset of M.

The set Zgs, which is not necessarily smooth, admits an easy description.
Choose a Weyl chamber t% < t* in the dual of the Lie algebra of a maximal
torus T" of K. We see that

(3.4) Zs = 1] Zs

where Zg corresponds to the compact set K (M S @gl(ﬁ)), and Bs =
®s(Zs) n ti. The properness of ®s insures that for any compact subset
C c t* the intersection Bg n C' is finite.

The principal symbol of the Dirac operator Dg is the bundle map o (M, S)
['(T*M,hom(S™,87)) defined by the Clifford action

o(M,S)(m,v) = cn,(D): Sm — S,

where v € T*M ~ v € TM is an identification associated to an invariant
Riemannian metric on M.

Definition 3.2 The symbol o(M,S,®s) shifted by the vector field ks is the
symbol on M defined by

o(M,S,®s)(m,v) =o(M,S)(m,v — ks(m))
for any (m,v) € T*M.

For any K-invariant open subset &{ < M such that & n Zs is compact
in M, we see that the restriction o(M,S, ®s)|y is a transversally elliptic
symbol on U, and so its equivariant index is a well defined element in fE(K )
(see [1, 18]).

Thus we can define the following localized equivariant indices.

Definition 3.3 e A closed invariant subset Z — Zg is called a compo-
nent of Zs if it is a union of connected components of Zs.

e If Z is a compact component of Zs, we denote by
QK<M787Z) € R(K)

the equivariant index of o(M,S,®)|y where U is an invariant neigh-
bourhood of Z so thatU N Zg = Z.



By definition, Z = J is a component of Zs and Q (M,S, ) = 0. For
any 3 € Bs, Zg is a compact component of Zs.
When the manifold M is compact, the set Bg is finite and we have the
decomposition
Ok (M,S) = >, Qk(M,S,Zs).
BeBs
See [14, 18].
When the manifold M is not compact, but the moment map ®g is proper,
we can defined
QR (M,S) := > Qx(M,S, Zp)
BeBs
The sum of the right hand side is not necessarily finite but it converges in
R(K) (see [17, 11, 9]). We call Q. (M,S) € R(K) the formal geometric
quantization of the data (M,S, s, K).
Hochs and Song prove the following important property concerning the
functoriality of Q™ relatively to the product of manifolds.

Theorem 3.4 ([9]) Let (M,S) be a spin® K-manifold with a proper mo-
ment map ®s. Let (P,Sp) be a compact spin® K -manifold (even dimensional
and oriented). Then the spin® manifold (M x P,S [X1Sp) admits a proper
moment map and we have the following equality in ]:Z(K)

O (M x P,SXSp) = Qi (M,S) ® Q (P, Sp).

With Theorem 3.4 in hand we can compute the multiplicities of Q. (M, S)
like in the compact setting by using the shifting trick.

Let O be an admissible regular orbit of K. We denote by [75 : Q3% (M, S)]
the multiplicity of 75§ in Q7 (M, S) € R(K). Let O* be the admissible orbit
—0: we have Q (0*,Spx) = (7§)*. Thanks to Theorem 3.4 we get

(917 (M, S) ® Qk (0%, Sox )|
= [QP(M x 0%, 8 ® So+)]" .

[76 : QK (M, S)]

We consider the product M x O* equipped with the spin®-bundle SRSy .
The corresponding moment map is ®sgs, 4 (m, &) = Ps(m) + . We use the

simplified notation ®¢ for Psgs,,,, ko for the corresponding Kirwan vector
field on M x O*, and Zp := {kp = 0}.



In [20], we introduced a locally constant function dp : Zp — R, and we
denote Z5° = {dp = 0}. Using the localization! done in [20][section 4.5],
we get that

35)  [75: QP (M,S)] = [Q5 (M x O*,8 @ Sox, Z5°)|"
Finally we obtain the same result like in the compact setting:

e If the K action on M is not nice, Zgo = (J and then the multiplicity
[75 . Q7 (M,S)]¥ vanishes for any regular admissible orbit O.

e Ifthe K action on M is nice, we have [75 : Q7 (M, S)]¥ = ¥, QP (Mp)
where the sum runs over the ancestors of O of type (has).

In other words,
e if the K action on M is not nice, then Q" (M,S) =0,

e if the K action on M is nice, we have

QP (M,S) = > QP(Mp) QER(P).
PeA((har))

Remark 3.5 We will use a particular case of identity (3.5) when the generic
infinitesimal stabilizer of the K -action on M is abelian, i.e. ([€xr,€r7]) = 0.
In this case Z5° = {®o = 0} and then

75 QP (M, S = [Q°(M x O%,8® Sox, {90 = 0})]"
QP (Mo).

4 Functoriality relatively to a subgroup

We come back to the setting of K-manifold M, even dimensional and ori-
ented, equipped with an equivariant spin® bundle S. We suppose that for
some choice of connection on det(S) the corresponding moment map ®g is
proper. As explained earlier, the formal geometric quantization of (M, S, K)
is well-defined : Q. (M,S) € R(K).

Consider now a closed connected subgroup H < K. Let p : £ — bh* be
the canonical projection. The map p o &5 correspond to the moment map
for the spin® bundle S relative to the H-action.

This section is dedicated to the proof of our main result.

n [20] we work in the compact setting, but exactly the same proof works in the non
compact setting, as noticed by Hochs and Song [9].



Theorem 4.1 Suppose that po®s is proper. Then the K-module Q. (M, S)
1s H-admissible, and

(4.6) Q" (M, S)lu = Q" (M, S).
We start with the following

Lemma 4.2 ¢ Q. (M,S) is H-admissible when p o ®g is proper.
o It is sufficient to prove (4.6) for manifolds with abelian generic in-
finitesimal stabilizers.

Proof. We have Q77 (M,S) = >, Q" (Mp) "D (D) where the sum
runs over the admissible orbits of type (has).

Thanks to the [Q, R] = 0 Theorem we know that Q2™ (P)| g = QP™(P) =
> QP (Pp) ?}I)in(P'), where Ppr = P n p~1(P')/H is the reduction of
the K-coadjoint orbit P relatively to H-coadjoint orbit P’.

Hence Q;*(M,S) is H-admissible if for any H-coadjoint orbit P’, the
sum

2, QP (Mp) QP (Ppr)
P

admits only a finite number of non-zero terms. We see that Q%™ (Pp/) #
0 only if P/ < p(P) and Q®™(Mp) # 0 only if ®5'(P) # . Finally
QP (Mp)QPn(Pp:) # 0 only if

PeKds((pods) ' (P)).

Since p o g is proper, we have only a finite number of K-admissible or-
bits contained in the compact set K®s ((p o ®s)~*(P’)). The first point is
proved.

Let us check the second point. Suppose that (4.6) holds for manifolds
with abelian generic infinitesimal stabilizers. Let Kp be the regular admis-
sible orbit such that Q2™ (Kp) is the trivial representation.

To any spin® manifold (M, S, K) with proper moment map ®gs, we asso-
ciate the product M x K p which is a spin® K-manifold with proper moment
map Psxsy,- The multiplicative property (see Theorem 3.4) gives

Qi (M, S) = Q" (M x Kp, SKSkp)-

Now we remark that the K-manifold M x Kp has abelian infinitesimal sta-
bilizers, and that p o ®sgs,, is proper if p o @5 is proper. Then, when the



moment map p o ®g is proper, we have

Q" (M, 8)|u k™
Oy~

Qn”
= Q;IOO

M x Kp,SXSk,)|u

M x Kp.SEISky) 1]
M,S)® Qu(Kp, Sk) [2]
M,S). (3]

~—~ ~ —~

Here we see that [1] is the identity (4.6) applied to M x Kp, [2] is the
multiplicative property relatively to the H-action, and [3] is due to the fact
that Qu (Kp,Sk,) is the trivial H-representation. []

4.1 De Concini-Procesi compactifications

We recall that T is a maximal torus of the compact connected Lie group K,
and W is the corresponding Weyl group. We define a K -adapted polytope in
t* to be a W-invariant Delzant polytope P in t* whose vertices are regular
elements of the weight lattice A. If {A1,..., .} are the dominant weights
lying in the union of all the closed one-dimensional faces of P, then there is
a G x G-equivariant embedding of G = K¢ into

T

P(@(V)\If)* ® V)\If)

i=1

associating to g € G its representation on @;_, fo . The closure Xp of
the image of G in this projective space is smooth and is equipped with a
K x K-action. The restriction of the canonical Kahler structure on Xp
defines a symplectic 2-form Qy,. We recall briefly the different properties
of (Xp,Qx,) : all the details can be found in [16].

(1) Xp is equipped with an Hamiltonian action of K x K. Let ® :=
(P, @) : Xp — £* x £* be the corresponding moment map.

(2) The image of ® is equal to {(k-&,—k -&) | £ € P and k, k' € K}.

(3) The Hamiltonian K x K-manifold (Xp, Qx,) has no multiplicities: the
pull-back by ® of a K x K-orbit in the image is a K x K-orbit in Xp.

(4) The symplectic manifold (Xp,Qy,) is prequantized by the restriction
of the hyperplane line bundle O(1) — P(®X. I(V)f ) ® fo ) to Xp: let
us denoted Lp the corresponding K x K-equivariant line bundle.



Let Up := K - P° where P° is the interior of P. We define
Xp =@, (Up)

which is an invariant, open and dense subset of Ap. We have the following
important property concerning Xp.

(5) There exists an equivariant diffeomorphism Y : K x Up — X such
that Y*(®;)(g,v) = g - v and Y*(®,)(g,v) = —v.

The manifold Xp is equipped with a family of spin® bundles
Sp = N\(TXp) QLY. n>1,

and we consider the corresponding K x K-modules Qg x x(Xp,SE).
Let t§ < t* be a Weyl chamber and let A < t* be the lattice of weights:
we denote by p € t} the half sum of the positive roots.

Proposition 4.3 We have the following decomposition

Ok xk(Xp,Sp) = Z To ® Tox + Z an,0 TO @ TO*.
On{n P°+p}# On{noP+p}#

Proof. The result is a consequence of the Meinrenken-Sjamaar [Q, ’B] =0
theorem [12, 13, 21, 14]. To explain it, we parametrize the dual K with
the highest weights. For any dominant weight o € A N t%, let VX be the

irreducible representation of K with highest weight a. In other terms, VX =

K
Totp:

The symplectic [@Q,R] = 0 theorem tells us that the multiplicity of
VE® V,YK in Qrxi(Xp,SP) is equal to the Riemann-Roch number of the
symplectic reduced space @1 (K2 x K2)/K x K.

Points (2) above tell us that ® !(Ka x Kb)/K x K is non empty only
if Kb =—Ka and Kan P # J. With point (4) , we see that the reduced
space ®1(Ka x —Ka)/K x K is a (smooth) point if a € P°. The proof is
completed.

4.2 Cutting

Let M be a K-manifold of even dimension, oriented, equipped with a K-
equivariant spin® bundle §. Let ®s be the moment map associated to a
hermitian connection on det(S). We assume that ®gs is proper.
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We consider the manifold Xp equipped with the spin® bundle S} :=
A(TXp)0® LE". The determinant line bundle det(Sp) is equal to

det((Txp)"0) ® LS.

Let ¢, ¢, : Xp — £* be the moment maps associated to the action of
K x K on the line bundle det((TXp)"?). So the moment map relative to
the action of K x K on det(Sp) is the map ®" = (O, ®) : Xp — € x ¢*
defined by @} = n®; + ¢; and @7 = n®, + ;.

On the dense open subset X% ~ K x Up the line bundle det((TXp)"0)
admits a trivialization. Let ¢ > 0 such that the closed ball {||{] < ¢} is
contained in Up. By partition of unity, we can choose a connection on
det((TXp)"Y) such that the corresponding moment maps satisfy

(4.7) ei(r) = ¢r(r) =0

if z € Xp satisfies |, (z)|| < c.
We consider now the product M x X'p equipped with the spin® bundle
S X]SP and with the following K x K action:

(ki ky) - (myz) = (ky - m, (ki k) - ).
The moment map relative to the action of K x K on the line bundle det(S
Sp) is
(m, z) — (] (), Ps(m) + ) (z)).
We restrict the action of K x K on M x Xp to the subgroup H x K.
We see that the corresponding moment map (p o @7, ®s + ®7') is proper,

so we can consider the formal geometric quantization of the spin® manifold
(M x Xp, SKIS}) relative to the action of H x K: Q% (M x Xp, SKSE) €

R(K x H).

We are interested in the following H-module
E(n) = [Q52 (M x Xp,S®SH)]" .

The proof of Theorem 4.1 will follows from the computation of the
asymptotic behaviour of F(n) by two means.

4.3 First computation

Let us write Q" (M,S) = Y, mo 5.

11



Proposition 4.4 We have
: _ O~ ® o K »
Jim E(n) = O (M.8)|u = ) mo sl € R(H)
AeK

Proof. We start by using the multiplicative property (Theorem 3.4):
Q% (M x Xp,SKISp) = Q™ (M, Sm) ® Qux i (Xp,Sp).
Thanks to Proposition 4.3, we know that Qg x (Xp,Sp) is equal to

Y, mlr® (@)t + R(n)
On{nP°+p}+J
with R(n) = Y0 ano 78 | ® (78)* where a,,,0 # 0 only if O " {ndP + p} #
f. So we see that
E(n) = Z mo 8| + r(n)
On{nP°+p}+#

with r(n) = [Qg"(M,S) ® R(n)]K It remains to check that lim, o, r(n) =
0in R(H).

If O is a K-coadjoint orbit we denote |O| the norm of any of its element.
Note that there exists d > 0 such that if On{ndP+p} # &, then |O| = nd.

Let O be a regular admissible H-orbit. By definition the multiplicity of
78, in r(n) decomposes as follows

[wg, cr(n)] = Zan,o mo [ng : 7T(I9(|H]-
o

Suppose that 7(n) does not tends to 0 in R(H): there exists a regular
admissible H-orbit O’ such that the set {n > 1,[r4 : r(n)] # 0} is infi-
nite. Hence there exists a sequence (ny, Of) such that limy_,o, n; = o and
ny, 0, MOy [T ﬂgk|H] # 0.

Thanks to the [@, R] = 0 property, we have

L Okl = dn,
(4.8) 2. Oy € Ds(M),
3. 0" < p(Oy),

where p : ¥ — bh* is the projection. Points 2. and 3. give that
O € K®s ((po ®s5)~'(0)) .

Since p o ®s is proper, we have only a finite number of K-admissible orbits
contained in the compact set K®s ((p o ®s)~!(0’)). This is in contradiction
with the first point. []

12



4.4 Reduction in stage

In this section, we explain the case of reduction in stages. Suppose that
we have an action of the compact Lie group G x K on the spin® manifold
(N,Sn). Let s, = @gN(—D@gN : N — g*@®t* be the corresponding moment
map associated to the choice of an invariant connection V on det(Sy). We
suppose that

e 0 is a regular value of <I>KN,
e K acts freely on Z := (<I>§N)_1(0),

e the set @g}i (0) is compact.
We denote by 7 : Z — Ny := Z/K the corresponding G-equivariant
principal fibration.

On Z, we obtain an exact sequence 0 — TZ — TM|z o [£*] —
0, where [¢*] is the trivial bundle Z x ¢*. We have also an orthogonal
decomposition TZ = TxZ @ [¢] where [£] is the sub-bundle identified to
Z x t through the map (p, X) — X - p. So TM|z admits the orthogonal
decomposition TN|z ~ T Z @ [¢] ® [¢*]. We rewrite this as

(4.9) TN|; ~ T Z & [tc]

with the convention [¢] = Z x (¢ ®R) and [¢*] = Z x (£®iR). Note that
the bundle Tk Z is naturally identified with 7*(TNy).

We can divide the spin®-bundle Sy|z by the spin®-bundle A €c for the
vector space £c (see Section 2.2 in [18]).

Definition 4.5 Let Sy, be the spin®-bundle on Ny such that
Snlz =7 (Sny) ®[/\ el
is an isomorphism of graded Clifford bundles on TN|z.

We see then that the line bundle det(Sy,) is equal to det(Sy)|z/K.
Hence the connection V on det(Sy) induces a G-invariant connection Vg on
det(Sn,). The corresponding moment map <I>3N0 : Ny — g* is the equivari-
ant map induced by q)gN : N — g*.

Proposition 4.6 We have the following relation
[QGXK(N’ SN, {(I)SN = 0})]K = QG(NO’SNO’ {q)SNO = 0}) in R(G)
Proof. The proof is done in Section 3.4.2 of [18] in the Hamiltonian

setting. The same proof works here.

13



4.5 Second computation

We consider Q,*(M,S) € R(H).

Proposition 4.7 Suppose that the generic infinitesimal stabilizer of the K-
action on M is abelian. Let O be a reqular admissible H-orbit. There exists
nor = 1 such that

(75 E(n)] = [7& : Q5 (M, S)]
when n = ner.

Proof. First of all, since the K-action on M has generic abelian in-
finitesimal stabilizers, we see that the H x K-action on M x Xp has also
generic abelian infinitesimal stabilizers.

Let us denote O the H x K regular admissible orbit O’ x K p. We work
with the H x K manifold

N:=M x Xp x OF

which is equipped with the spin® bundles S 1= SKSEXS34. The moment
map associated to the action of H x K on det(Sy) is sy = (P, ®%) where

Py (m, z,m,8) = p (n®i(x) + pi(z)) + 1,
and
(I)?((m7x7777§) = CI)S(m) + TL(I)T(.%') + ‘107"('%') + §

for (m,z,n,&) € M x Xp x (O")* x (Kp)*.
Thanks to the multiplicative property we have

(78 - B(n)] = [Qi2 (N, Sf)] "

Using the fact that the H x K-action on M x Xp has generic abelian in-
finitesimal stabilizers, we know that

(4.10) (78 : E(n)] = [Quxk (N, SN, {®sy, = 0})]F.

See Remark 3.5. Now we are going to compute the right hand side of (4.10)
by using the reduction in stage (see Section 4.4).
We start with the

Lemma 4.8 There exists R,R' > 0, independent of n, such that if
(m,x,n,§) € {®sn = 0} then |[Ps(m)| < R and |, (x)| < R'/n.

14



Proof. Let (m,z,n,€) € {®sy, = 0}. We have p (n®;(z) + ¢i(z)) + 1 =0
and ®s(m) +n®,(x)+ ¢y (x) +& = 0. Let k € K such that k@, (z) = <I> ()
(see Point (2) in Section 4.1). We get then p(®s(km)) + p(ker () + ¢ (z) +
&) +mn = 0. The term p(kp,(x) + ¢;(x) + &) +n is bounded, and since po ®g
is proper, the variable m belongs to a compact of M (independent of n).
Finally the identity ®s(m) + n®,(x) + ¢, (x) + £ = 0 shows that n®,(x) is
bounded by a quantity independent of n. []

So, if n is large enough, the set {q)sfb = (0} is contained in the open
subset M x Xp x O* c N that we can identify with

N=Mx K xUp x OF

through the diffeomorphism T : K xUp — AP (see Point (4) in Section 4.1).
Moreover, thanks to (4.7), for n large enough an element (m,g,v,n,&) € N
belongs to {®sy = 0} if and only if

(411) np(gv) +1n =0,
. bs(m) —nv+£=0.

We use now the reduction in stage for n large enough. The map

(133(m) + f

m )

(m,n,§,9) — (m,g,

defines a diffeomorphism between M x O* x K and the sub-manifold
= {®% = 0} c N and induces a diffeomorphism

U:Mx O =5 Ny = Z/K.

Through the diffeomorphism W, the H-action on Ny = Z/K corresponds
to the induced action of the subgroup H ~ {(h,h),h € H} < H x K on
M x O*. Through the diffeomorphism ¥, the moment map @3%0 : Ng — b*
becomes

D5 (m,&,n) = p(Ps(m) +&) +n,
for (m,&,m) € M x O*.

Lemma 4.9 Through the diffeomorphism V¥, the induced spin® bundle Sy,
corresponds to Spy X1 Sax -
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Proof. We consider the restriction of the spin® bundle S% to the open
subset Ap. Let 8" := T71(Sp|xz) be the corresponding K x K-equivariant
spin® bundle on K x Up. It must be of the form S™ ~ F x A tc x K x Up
where I is a character of K x K. If we look at the value of S} at the point
T(1,0) € Xp, we see that F' is trivial. The Lemma follows. []

Finally, for n large enough, we get

[ Bm)] = [Quxx(N.Sk. {®sy = 0)]"" [1]
= [2n(No, 3, 12y, =01 2]

_ iQH(M x 0%, S® Sps, {Pp = 0})]H [3]

r - H
= @y (M x 0", SES)| [4]
H

— Q5 (M,8)® Qu (0%, S50

= [nfh Q*(M.S)]. (6]

First we see that [1] corresponds to (4.10). Equality [2] is the reduction
in stage (see Proposition 4.6) and Equality [3] is a consequence of the dif-
feomorphism ¥ (see Lemma 4.9). Equality [4] follows from the fact that M
has abelian generic infinitesimal stabilizers (see Remark 3.5). Equality [5]
is a consequence of the multiplicative property. Equality [6] follows from
the identity QH(@*,S@*) = (nl)*.

The proof of Proposition 4.7 is completed. []

We can now conclude our exposition. Proposition 4.4 tell us that
lim,, o E(n) = Q™ (M, S)|n while Proposition 4.7 says that lim,_,., F(n)
= Q,°(M,S) when the manifold M has abelian generic infinitesimal sta-
bilizers. So we have proved Theorem 4.1 for manifolds with abelian generic
infinitesimal stabilizers. But we have checked in Lemma 4.2 that it is suffi-
cient to get the proof of Theorem 4.1 in the general case.
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