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Abstract. We propose a model of depth camera based on a four-lens device. This device is used for validating 
alternate approaches for calibrating multi-view cameras and also for computing disparity or depth images. 
Calibration method arises from previous works, where principles of variable homography were extended for 3-D 
measurement. In this paper, calibration is performed between two contiguous views obtained on the same image 
sensor. This approach leads to propose a new approach for simplifying calibration, by using the properties of the 
variable homography. The second part of this paper addresses new principles for obtaining disparity images without 
any matching. A fast algorithm using a contour propagation algorithm is proposed without requiring structured or 
random pattern projection. These principles are proposed in a framework of quality control by vision, for inspection 
in natural illumination. By preserving scene photometry, some other standard controls, as for example calipers, 
shape recognition, or barcode reading, can be done conjointly with 3-D measurements. Approaches presented in this 
paper are evaluated. Firstly, we show that rapid calibration is relevant for devices mounted with multi lenses. 
Secondly, synthetic and real experimentations validate our method for computing depth images.  
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1 Introduction 

Multi-view imaging is a large domain, where numerous approaches can take place for computing 

the depths in a scene. Stereovision1, multi-camera array2, light-field imaging3,4 or coded aperture 

imaging5 are the most well-known technics for capturing several point of views of a scene. Using 

a metric calibration on these systems allows for addressing recently growing applications in a 

research or industrial context. In multi-view imaging, the depth estimation problem is then 

related to the disparity between same pixels projected on the different coordinates in the different 

views. This task usually relies on the identification of the similarity between the different views, 

allowing for computing displacements of identified points and their corresponding 3-D positions. 

The similarities identification is usually a time consuming task and is referenced as matching 
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methods based on local or global methods6. Local methods compare two regions of interest by 

measuring similarity with well-known criteria such as block matching or feature approaches7. 

These approaches are efficient on images containing a large percentage of textured area, but fail 

for uniform regions, because these areas contain too few information for the matching process. 

Occluded regions, due to the difference of point of views, are another cause of occurring errors 

in the matching process. Global approaches can overcome some of these issues, by estimating a 

disparity map that minimizes energy criteria on the whole image. Graph cuts8, belief 

propagation9 or dynamic programming10 methods are the most well-known global approaches. 

Computational complexity of these methods is often high, and they are not able to properly solve 

the cases where images contain large uniform surfaces. For robotics or industrial control, light-

patterns are projected on whole objects and background of the scene, for helping the matching 

process. In this case, patterns modify the aspect of homogeneous objects, which seem to be 

textured. These active techniques are efficient for computing disparity map, but images are then 

unusable for any other controls such as edge detections, intensity measurements, barcode reading 

or OCR. 

In order to deduce a depth from disparity, a metric calibration of the acquisition system is 

needed. Usually, calibration consists in determining intrinsic parameters for the acquisition 

device used for metric measurements, and permits to compute distances between scene objects 

and the camera device. An interesting survey of the reference methods is proposed by Zhang11, 

where approaches are divided in three categories following the reference object used for 

calibration. Highest accuracy can theoretically be obtained by using a 3-D object for calibrating, 

but in practice, calibration with a 2-D apparatus seems to be the best choice in most situations, 

because of its ease of use and good accuracy. In this case, calibration is performed by taking 
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images of the 2-D pattern plane under different orientations by moving either the plane or the 

camera. A dozen of acquisitions is then a recommended minimum. Calibration of multi-camera 

devices has been studied by Vaish2. This work compares a non-metric approach, using plane and 

parallax, with metric calibration for computing synthetic aperture images. If the operating mode 

for calibrating is similar to our approach developed in this paper, the proposed affine model leads 

to generate images focused at different relative or uncalibrated depths. 

We propose in this work a multi-lens device (Fig. 1) and a post-processing algorithm using 

contours in order to avoid computing a disparity map of homogeneous objects by using projected 

light patterns. A fast and flexible calibration step is also proposed. The calibration of this device 

could be qualified as an indirect method, because intrinsic parameters are not determined 

individually as is usually done, but in an overall manner using a reference homography. One of 

the main interests is to simplify the calibration step, which is then easily achievable by an 

operator for industrial applications. This method is an improvement of previous works12,  in 

which we have extended the principles of “variable homography”, defined by Zhang and 

Greenspan13 for measuring the height of emergent fibers on glass and non-wovens fabrics. This 

method has been defined for working with fabric samples progressing on a conveyor belt. 

Triggered acquisition of two successive images was needed to perform 3D measurements. In this 

work, we have retained advantages of variable homography for measurements along the optical 

axis, but we have reduced the acquisitions to a unique one, by developing a device made of four 

lenses placed in front of a single image sensor. We have also adapted the variable homography 

formulation for this device, and we give a new formulation to calculate the depth. This method is 

presented in the first part of the paper and can be applied to any disparity maps calculated from 

various methods. In the second part, we propose also a new framework for computing disparity 
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map adapted to our device, which then becomes a depth camera. The disparity map computation 

is an alternate to matching methods, exploring a contour based solution, where no 

correspondence matching is needed, drastically reducing the computation time. In 3-D industrial 

control by vision, most of stereo-vision systems project structured or random patterns on objects 

for providing texture on uniform surfaces. This method is efficient for measuring disparities 

between the multiple views, but in this case, only the depth images can be used for image 

analysis because the scene photometry is strongly modified by the projected pattern. On the 

contrary, we propose an algorithm preserving gray image levels. The camera could then be used 

to both measure object height and perform any other classic vision control, such as optical 

characters or pattern recognition. However, this method is not fully universal, and we have only 

studied cases for measuring flat objects, in a context of industrial control. 

 

This paper presents firstly the geometry of our device and describes the extension of variable 

homography for 3-D measurements. This approach leads to propose a new calibration scheme, 

for which only a reference homography is needed, instead of the intrinsic parameters, as usually. 

Secondly, we have proposed an alternate manner of computing a depth map. Preliminary and 

promising results on synthetic and real images are presented in the last part. 

 

 



5 

 

Fig. 1 (a) Exploded view of the camera with its 4 mini-lenses (b) Assembled camera (c) Corresponding sub-images 

(North-West, North-East, South-West and outh-East). 

2 Variable homography and depth measurements from disparity 

The concept of variable homography has been defined by Zhang and Greenspan13 for parallax 

compensation in image mosaicking without metric calibration. This concept has then been 

extended by Xu et al.12, for 3-D measurements by using two successive acquisitions, of fabrics 

scrolling on a conveyor belt.  

This part presents how the variable homography can be used for modeling our multi-view 

device, described on the figure 1. Figure 2 gives a schematic representation of our system made 

out of mini-lenses and a single image plane. This figure is a 2D section representing only two 

neighboring projections, given the sub-images noted Ii and Ii+1 (we will use i=1 for next 

expressions). With four projections on the image sensor, each sub-image has three possible 

neighbors. If index i represents the SE view (South-East), index i+1 can be any view of NE 

(North-East), SW (South-West) or NW (North-West). This scheme simplifies our system to a 

parallel stereovision system, where triangulation could be used to determine the depth of point P 

when intrinsic and distortion parameters are known. Ideal situation is encountered when these 
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parameters are identical for each camera, which is however never the case in practice. Precise 

calibration is then needed to determine numerical values of optical centers and focal distances. 

These parameters are necessary for the geometric re-projection, for computing depth by 

intersecting the two rays of each associated left and right image pixel. For example, on fig. 2, f1, 

f2, O1, and O2 must be known for recovering the depth of a point P from the rays (O1 p1B) and (O2 

p2B).  

 

Fig. 2 Geometric cross-section between two adjacent sub-images. O1, O2: optical centers of sub-images 1 and 2; b: 

distance between O1, O2; f1, f2: lenses focal distances; ε difference between f1, f2. ZAi, ZBi: distances between Oi and 

planes A and B. p1A and p2A: PA projections on both sub-images. p1B and p2B : P projections on both sub-images.  

pA: projection on sub-image 1 of the virtual point P’A. 

 

An alternative approach is to take benefit of variable homography for modeling this device.  
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2.1 Variable homography definition for a pair of views 

Variable homography formulation introduces a matrix K giving some interesting properties 

between both homography HA and HB defined for the A and B parallel planes and verifying 

p1A=HA.p2A and p1B=HB.p2B: 

1
1..)( −

+= iAiB KHKkH       where      
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with n=i or i+1 and where u0n and v0n stand for the coordinates of the optical centers On 

projected on the image sensor. The main parameter of K is the distance ratio kn defined by 

kn=ZAn/ZBn, giving the possibilities to compute HB from HA. By sweeping k around realistic 

values and by using a matching comparison method, it would be possible to find reliable 

correspondences where k=argmax(Matching(p1B(k), p2B)). This is the idea presented by Zhang 

and Greenspan13 in their paper to compensate parallax in image mosaicking. We propose to 

extend this method, by developing the expressions of HA and HB, in order to simplify the re-

projection expression to compute depth and easily include in our model all intrinsic parameters 

described on fig. 2. 

2.2 HA and HB expressions 

Plane A is considered as the reference plane, and is used for calibrating the device. As our device 

uses 4 mini-lenses, it’s interesting to study the case where these lenses don’t have exactly the 

same focal distances. HA is then determined by assuming that homography is a combination of an 

intrinsic parameter and translation matrices, and is given in Ref. 1 as: 
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where bu and bv are horizontal and vertical distances between optical centers, respectively. By 

considering 112 AAA ZZZ ≈+= ε at the working distances, HA has been simplified in eq. 2 by 

introducing the focal distance ratio α=f1/f2. Expressions (1) and (2) lead to give a simplified 

expression for HB, representing the geometric transformation for any point P located in a virtual 

plane B, parallel to the reference plane A: 
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2.3 P point depth computation from a pair of views 

From HA and HB homographies, we propose to compute the depth of any point P, by the 

definition of disparity d given by BABB pHpHd 22 .. −= .  By considering that BBB pHp 21 .= and 

with expressions (2) and (3), d can be written as: 
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Assuming that 111 / BA ZZk = and 22
vu bbb += , relations between depth ZB1 and disparity d are 

finally given by: 
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This definition of disparity is slightly different of the one usually given. In the next part, we 

study the differences and advantages to use this definition for 3-D measurements, especially in a 

3-D industrial vision context. 

2.4 Comparison with triangulation method 

When two cameras are separated by lateral translation with no rotation, triangulation method 

leads to obtain the depth relative to p1B and p2B coordinates. From figure 2, depth ZB1 can be 

expressed as:  
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This relation is usually simplified assuming f1=f2, and O1=O2 in the coordinate systems of each 

sub-image: 

 
d

bfZB
1

1 =       with      BB ppd 12 −=  .  (7) 

By comparing this expression with the one obtained with variable homography, there is an 

evident similarity, and variable homography translates the disparity d by a term of )( 11 AZbf− . 

This is observed on fig. 3, comparing expressions (7) and (5). Curves are plotted according to the 

real dimensions of our device: pixels size of 10 μm, optical centers spaced by 9 mm and f1= f2=8 

mm. Triangulation curve is plotted in red, and the ones obtained from equation (5) are plotted in 

blue for several values of the reference distance ZA1. In function of ZA1, blue curves are thus 

shifted to the left. In fact, this translation offers some interesting properties. When the range of 
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measurement is predicable, it would be then possible to work in the same range of disparity 

whatever the working depth, by choosing correctly ZA1.  

 

Fig. 3 Depths ZB1 as a function of disparity d. Triangulation and variable homography comparison. 

 

It is quite easy to demonstrate that the depth error 1BZ∂ stays identical for both approaches, 

meaning this translation does not influence the accuracy of measurement:  
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There are some advantages to use variable homography for working within the same range of 

disparity. The same device and same algorithm can be used for a wide working distance range, 

from macroscopic applications to higher scales. For example, if ZA1 equal 7 cm, depth ZB1 is 

ranged between 7 and 5.8 cm for an interval of d of [0,20] pixels. For 3-D industrial vision 

inspection, when ZA1 is fixed at 90 cm, the corresponding measured depths are ranged from 90 

cm to 26 cm, while keeping the same d interval. We can note that, for these different scales of 

measurements, we have used the same device. Switching between the different scales only 
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requires adjusting the lenses focal distances. This last point is important, because in this case, 

accurate measurement would need to re-determine all intrinsic parameters using expression (6) 

when triangulation method is used. Next part explains how variable homography leads to an 

easier calibration step. 

2.5 Simplified calibration for multi-view cameras 

In practice, lenses are never perfectly aligned in multi-lenses cameras (lenses are not sorted), and 

lenses focal distances are also never strictly equal14. This is especially true for our prototype and 

this creates some undesirable distortions affecting depth measurements. In practice, 

imperfections are rarely taken into account and literature usually gives expression (7) as 

reference method to compute depth instead of the complete expression given by eq. (6).  By 

considering a multi-view device, the complete determination of these intrinsic parameters could 

be an uncomfortable task, requiring multiple acquisitions15, but nevertheless mandatory for 

providing accurate measurements.  

A great advantage of variable homography is to include in matrix HA all intrinsic parameters 

between the views of 2 sub-images. By projecting measurement points from sub-image 2 to sub-

image 1 with HA, the number of required parameters for 3-D measurement is then reduced, and 

they are easy to determine via a simple calibration process. Sole parameters to recover during the 

calibration step are: ZA1, HA, and the constant bf1. The easy and robust proposed calibration 

method is realized by using a reference chessboard pattern for detecting corners and by 

performing two successive acquisitions. The first acquisition is done at reference depth ZA1, and 

the second one at depth ZB1=ZA1+dz. Corners of first acquisition are used to calculate all 

combinations of existing HA homographies between sub-images. For each acquisition, distances 

in pixels between the first and last corners detected on the chessboard are computed. We note dA 
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the distance for the dataset of first acquisition and dB the distance for dataset of the second one. 

ZA1 is then obtained by triangulation and is formulated as: 

 
AB

Bz
A dd

ddZ
−

= .
1  . (9) 

Finally, ZA1, HA, dz and distances d, computed for corresponding corners p1B and p2B during the 

second acquisition, lead to find best value for bf1. In conclusion, interest of this calibration lies in 

its simplicity when calibrating, because it is easier to calibrate via two acquisitions than to 

determine the intrinsic parameters with several snap images, as usually done with well-known 

standard methods15. 

This calibration process for determining the variable homography parameters has been 

established by considering two views. This principle is easily extensible for a n-view camera, i.e 

our device. Calibration is then performed for each pair of working views, without additional 

acquisition. 

2.6 Improved calibration with lens distortion correction 

Our multi-view camera prototype uses low-cost lenses, presenting a distortion coefficient close 

to 1.5% (value is issued from lens datasheet). To improve measurements accuracy, we propose to 

take into account the distortion in our calibration scheme. By using standard approaches, such as 

corrections by using radial distortion models, the precise positions of the optic centers of each 

sub-image can be determined. As these intrinsic parameters are combined in HA, they are not 

immediately available at this step with our calibration process. We propose therefore an alternate 

approach. We consider that distortion effects are comparable to a non-uniform image 

magnification on image plane. This approach leads to adjust the computation of ZB1 as a function 

of the spatial location of correspondences in sub-images. This can be done by using the 

proportional relationship existing between magnification, focal distance and parameter bf1. The 
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correction is performed by using the Γ operator, which transforms a vector representing a point P 

of coordinates (u,v,1) in the lifted coordinates16 P~ : 

 TvuvuvuPPPvuP T )1,,,.,,(),(~)1,,( 22=Γ=→  . (10) 
 

By using pB1 as reference location, bf1 is then computed by the quadratic functions defined by:  

 ( ) 21
~. Bpfedcbabf =  . (11) 

 

Corners collected previously form a dataset and permit to compute the polynomial coefficients 

by using a least mean square method. 

2.7 Measurement accuracy  

The measurements obtained in this part have been obtained with our device presenting the 

following characteristics: CCD size: 15x15 mm2; CCD resolution: 2048x2048 pixels; mini-

lenses diameters: 8 mm; mini-lenses focal distance: 7.5 mm; distance between mini-lenses: 9 

mm; sub-images resolution: 550x550 pixels. We present experimental measurements for three 

ranges of depth, in order to estimate the accuracy of our device in term of depth measurement. 

Here, only measurements performed on SW and SE sub-images are presented for this 

experimentation. As shown by expression (8), depth error is a function of two factors: geometric 

parameters estimation and disparity measurement.  
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Fig. 4 Depth measurement distributions for three ranges of measurements: 4 cm, 33 cm and 88.5 cm.  

Top: results of simplified calibration method. Bottom: results of improved calibration method. 

 

At this point, we are interested in measuring the quality of the parameters estimated during 

calibration. For minimizing the role of disparity measurement in our estimation, we have used a 

pattern chessboard as depth target and corners detection is performed with the corresponding 

function of the OpenCV library. For each depth level, numerous acquisitions are performed, 

leading to about one thousand measurements. We have set the camera-chessboards distances at  

4 cm, 33 cm and 88.5 cm, and the measured depth corresponds to ZB1 (distance separating the 

chessboard and the optical center). Figure 4 gives distributions of depth measured for each 

corners. By working at a short distance, captured images present important optical distortions. In 

this case, the second method offers a significant improvement, providing a standard deviation 

lower than 1%. For evaluating depth error, percentage is not significant here, because the 
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uncertainty of measurements is directly linked to the depth range (see eq. 8), meaning depth error 

increases systematically with depth. 

This is the reason why our evaluation is presented by comparing theoretically predicted error 

with the measured standard deviation. In this case, the main difficulty concerns evaluation of the 

disparity variation d∂ , which is a difficult to assess parameter. Even if we use a subpixel corner 

detector, d∂  heavily depends on the pattern chessboard scale in sub-images and thus of the 

working distance. To provide best estimations, we have bounded its values between two realistic 

limit values, fixed here at 0.1 and 0.5 pixel. These values are then used for the result 

comparisons presented in table 1. This table shows that standard deviations observed during our 

measurements are comprised within the range of estimated depth error. This confirms that the 

proposed calibration is well-adapted to our measurement approach by variable homography. 

These values of depth error allow for keeping a good uncertainty of measurements for 

applications in the field of metrology by vision. 

Table 1 Comparison between theoretical and experimental depth measurement error. (bf1=7.2 pixels is obtained 
during the calibration stage). SC: simplified calibration; IC: Improved calibration 

Depth ZB1 
(cm) 

Predicted depth error  
dbfzZ ∂=∂ )./( 1

2  
Range of estimated theoretical depth error  Observed experimental 

standard deviation 
SC      /      IC  1.0min =∂d pixel 5.0max =∂d pixel 

4 (0.22 10-3). d∂ =0.05 mm 0.022 mm 0.111 mm 0.12 mm / 0.04 mm 
33 (15.1 10-3). d∂ =3.78 mm 1.51 mm 7.56 mm 2.47 mm / 2.29 mm 

88.5 (107  10-3). d∂ =2.69 cm 10.7 mm 53.8 mm 49.6 mm / 50.1 mm 
 

2.8 Sub-images rectifications 

Previous measurements were performed on coordinates of detected corners. To transform our 

device into a depth camera, disparity has to be computed on all pixels of the sub-image. As we 

have defined disparity as d=p1B-HA.p2B, a simple pre-processing steps can be performed, for 



16 

rectifying each sub-image with homographies HA. In this case a reference sub-image must be 

chosen. Next examples consider SE as reference sub-image, as illustrated on fig. 5, but any other 

sub-image could be selected instead. By rectifying sub-images, we ensure that correspondences 

between images are well aligned along the epipolar line, as well-known in stereovision. By 

organizing lens positions in a square, epipolar lines are then horizontal, vertical or diagonal 

following positions of sub-images used for computing disparity. Multi-views approach is then 

interesting because in the reference sub-image, epipolar lines calculated from other views could 

be combined to improve the matching for establishing correspondences and thus enhanced the 

final disparity map.  

 

Fig. 5 Sub-images rectification: pre-processing before computing disparity maps. By choosing SE as reference sub-

image, disparity maps between (SE, SWR), (SE, NER) and (SE, SER) can be computed. 

 

3 Computation of disparity with the four mini-lenses device 

With the set of rectified images, we propose to compute the corresponding disparity image (or 

disparity map), in order to use our device as a depth camera. The main idea is to subtract 

distances map between sub-images in order to highlight disparity values. This approach is to be 
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used in a normal lightning environment with uniform objects. The next section shows that the 

proposed method doesn’t need complex calculations, which is an advantage for real-time 

applications. However, this method is not universal, and can, up to now, be used for flat objects 

only. 

3.1 Principle 

The four sub-images delivered by our device can be combined for computing up to three 

disparity images. We have validated the principle by using only two associations with three sub-

images: disparity (SE, SWR) and disparity (SE, NER). The reference sub-image is then SE, as 

illustrated on fig. 5. Our goal is to fill the content of any objects by the disparity existing between 

comparable contours of two sub-images. To do so, we propose an algorithm composed of four 

main steps and operating between two sub-images: 

• computation of Distance Images DIxx;  

• computation of pseudo-Subtraction Images pSIxx; 

• application of a fusion process;  

• computation of a disparity map by decoding the image given by the previous step. 

As up to three disparity maps can be computed from the reference sub-image, a second and final 

step merges these maps in order to eliminate some artifacts. The depth image is then directly 

obtained, thanks to the previous calibration, and using expression (5). 

 

• Distance images: DIxx 

The first step generates distance images (DI) following predetermined directions. When the 

working sub-images are horizontals, then DILR (Distance Image Left to Right) and DIRL 

(Distance Image Right to Left) are generated. Similarly, Top/Bottom distance images are 
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generated when vertical sub-images. Diagonal extension is also possible. Distance Images are 

constituted of values indicating the distances between pixels to the previous contour encountered 

following the scanning direction. A flag ×  is used when no contour has been yet encountered by 

scanning. Figure 6 illustrates examples to compute DILR and DIRL images from SE and SWR 

views. On this example, a rectangular object is represented by its contour pixels, highlighted in 

red. A disparity d (or parallax du) of 4 pixels is simulated and the green points P1 and P2 

represent a point having same coordinates on both original sub-images. The main property used 

for our method is based on the fact that the difference )()( R
LRLR SWDISEDI − or 

)()( R
RLRL SWDISEDI −  for any pixel inside the object is a function of the disparity value d. 

 

Fig. 6 Example of computation of distance image DILR and DIRL 

 

• Pseudo-Subtraction Image: pSIxx  

We have defined two distinct operators for exploiting the property that subtraction between DI 

images can give the disparity. Furthermore, this property is not true on the whole image, 

especially when the flag ×  is encountered. We have established that the best result, where object 

is filled by the disparity value, is obtained by using two kinds of subtraction called here pseudo-
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subtraction, where the result value can be the flag × , the first operand or the true difference. 

These operators are defined with arguments a  and b , where a  and b are pixel values of the 

reference image and the second input image, respectively. Definitions of these operators are for 

DILR images: 

 
( )



×

Ν∈−
→

otherwise 
ba if  ba

bapSI LR ,
),( , (12) 

and for DIRL images: 
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Fig. 7 Examples of pseudo-subtractions pSILR, pSIRL and FI for an object measuring l=8 width and for a d=4 

disparity.  
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• Fusion image 

The fusion uses pSILR and pSIRL images for replacing on pSILR image, the values appearing 

outside object by flag × . This operation is simply defined by: 

 



×

Ν∈
→

otherwise    
ba if  a

baFI
,

),( . (15) 

 

• Decoded fusion image 

The goal of this final step is to decode the content of fusion image in order to identify each 

object by its disparity, position and dimension. Thanks to the previous steps, especially the 

distance propagation and pseudo-subtraction ones, a complete description of objects contained in 

original sub-images, can be extracted from the pixel values of the fusion image. These values are 

constituted of combinations of objects positions, sizes and disparities. For N separated objects in 

each view, we have established by simulations, that each pixel value in fusion image, can be 

decoded. We note and define:  

- di, li and pi, respectively, the disparity, length and first position of object i; 

- ;+-l-p-d=pC         ;--d=lB         ;=-dA i-i-iiiiiiii 11 11  

- ;......... 1111111 AABBAASeq =  

- ............. iiiiiiiii AABBAACCSeq =  

Each line of the fusion image is then constituted of the following typical sequences arrangement:

[ ]×××× ...;;...;...;;... 21 Ni SeqSeqSeqSeq . The number of occurrences of terms Ai, Bi and Ci inside 

each sequence depends on the disparity, length and position of objects in the sub-images. This 

information is not used for the decoding.  For the example of figure 7, with d1=4 and l1=8, where 
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image fusion is constituted of the arrangement [ ]××−−−−×× ... 4;3; 3; 3; 3; 4; 4; 4;... ; , one can 

recognize Seq1. 

Finally, the role of the decoding stage is to use this property for producing the disparity map. 

Depth images are then established with expression (5), linking depth and disparity. 

3.2 Merging disparity maps 

The algorithm presented above computes disparity map from two sub-images. A complete 

overview, resuming step connections, is shown on fig. 8. This scheme is designed work with any 

couple of sub-images. As this approach is only based on the contours detected in each sub-

images, the quality of initial contours is a primary initial pre-preprocessing step. For the moment, 

no matching process is performed between sub-images and this is an advantage of this approach. 

Even if matching could be useful for ensuring that each contour point in sub-image i would have 

a corresponding point in sub-image i+1, we have decided to skip it, for increasing the speed of 

our method. But, with no matching process, some contours in sub-image i may have no 

correspondence in sub-image i+1. DI images are then affected and some artifacts in disparity 

images can appear. Following scanning direction, they are characterized by horizontal, diagonal 

or vertical trails. A solution for attenuating these artifacts has been found by exploiting the multi-

view capability of our device. As from a reference image (see fig. 5) three disparity maps can be 

computed, we propose to merge them for smoothing artifacts and retaining the most plausible 

disparity value for each pixel. 
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Fig. 8 Steps used for computing disparity map from SE and SWR sub-images. 1: sub-image acquisition; 2: binary 

contour extraction; 3: Distance images computation according scanning direction; 4: pseudo-subtraction images 

computation: 5; fusion step; 6: image fusion decoding; 7: final disparity map 

3.3 Results  

Figure 9 presents some results on synthetic scenes, showing objects located at several depths. 

The first case shows a basic configuration, where objects are located far away from each other. A 

second case shows superimposed objects. For these two cases, no final merging is necessary and 

only one disparity map is sufficient to generate the final depth image. For the last example, we 

consider a situation where all contours pixels have not correspondences in sub-images, as can 

happen in experimental conditions. The map image is then computed with the merging process 

using here disparity images (SE, SWR) and (SE, NER) as inputs. Final depth image still contains 

residual errors, but stays very close to the expect result and is suitable for most of 3-D inspection 

processes in industrial vision.  
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Fig. 9 Synthetic images (only sub-image SE is shown) containing objects at different depths and corresponding 

depth maps. (a): 4 objects without superposition are placed in the scene; (b): some superposed objects are placed; 

(c): contours in sub-image are randomly degraded. 

Instead of presenting experimental results in the form of depth images, we prefer defining the 

height images, which facilitates comparison with reference objects: height image = ZA1-depth 

image. Differences are just a translation of measurement values by the reference distance ZA1. 

Figure 10 shows some typical height images computed on real scenes. We explore situations 

with objects having large uniform areas in natural lightning, for which standard matching 

methods often fail when no structured illumination is used. To do so, we have adapted the 

calibration distance ZA1 to the objects scale, as explained in paragraph 2.4. Heights measured for 

the four reference objects are then well recovered. One can however see some artifacts, which 

are still visible on the final depth map. The main characteristic of the proposed method is its 

ability to compute disparity map without requiring any matching. With a single image sensor 

snapping simultaneously four views, the captured images present similar brightness and contrast. 
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It could be expected that edge detection provides same contours for the four views. In practice, 

due to the image sensor sampling, it is not always the case and some no-exact correspondences 

between detected contours are sometime encountered. Figure 11 presents an example of this 

situation, when no-exact correspondences between detected contours corrupt the depth map. 

Other artifacts could also be caused by the difference of point of views, resulting in occultations 

or hidden edges between the sub-images. With our method, this kind of artifact is significantly 

smoothed by the merging process and is not the most frequently seen during our experiments. 

Our approach for computing depth map is therefore validated by these synthetic and 

experimental results. This work should provide some new perspectives for establishing disparity 

maps without matching procedure, which is the main interest of the approach. The existing 

artifacts encountered in some cases should disappear or be attenuated by improving and adapting 

an edge detection method for multi lenses device.  

 

Fig. 10 Experimental results images (only sub-image SE is shown) with four objects. Measured heights are:  

A: 15.6 cm; B: 19.4 cm; C: 8.7 cm and D: 3.9 cm. 
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Fig. 11 Zooms on no-similar contours detection and corresponding artifacts on disparity maps.  

(a) 4 contours sub-images; (b) artifact areas where the contours are not identical. 

 

4 Conclusions and perspectives 

We have described a multi-view device considered as a multi-view camera and used as a depth 

camera. This device can work for detecting objects to a depth of up to two meters and could find 

interests for industrial vision. Main contributions consist firstly in an alternate approach for 

modeling and calibrating this device with variable homography, and secondly in an original and 

new approach for computing disparity map or depth images.  

Variable homography is an alternate approach for modeling multi-view systems. Main interest is 

to propose a rapid calibration procedure requiring only two acquisitions, without having first to 

determine intrinsic parameters. A comparison with the well-known triangulation method is 

performed, and we have demonstrated that the measurement uncertainties are then comparable, 

but calibration is easier in our case, especially if intrinsic parameters are not considered as 

identical for each sub-device. When optical distortions are significant, as for measurements 

performed at macroscopic scale, we have also proposed an improved calibration method, 

significantly reducing the measurement uncertainty. Calibration stays identical for normal and 
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improved method and always requires only two acquisitions. The principles developed with the 

variable homography method lead to use a reference homography called HA, and measurement 

are based on a disparity d defined as BABB pHpHd 22 .. −= . 

 In the second part of this paper, a new approach has been presented for computing disparity 

map, according to the definitions given previously. The major interest of this approach is to 

propose a new framework requiring no matching process defeated by uniform or poorly textured 

areas. This approach is well adapted for measuring height of objects placed under a camera for 

industrial vision control. By using contours, this method is efficient on flat and uniform objects 

in natural lightning. Our solution can be considered as an interpolating method of the disparity or 

depth information in uniform areas, giving a realistic rendering of simple objects. As the scene 

photometry is preserved, unlike measurements performed with active illumination, some other 

standard controls as for example calipers, shape recognition or barcode reading, can be done 

conjointly with 3-D measurement. 

This work has validated the interest of our approach, and some interesting perspectives are 

envisaged. First, we project to extend the calibration for other models of multi-views cameras, 

such as the focused plenoptic17 ones. A study of the best compromise between resolution, depth 

accuracy measurement, working distance, pixel size and number of mini or micro lenses should 

be performed.  Secondly, we would like to improve the original method proposed for computing 

disparity map. In the future, we will focus on edge detection, in order to reduce artifacts and also 

extend our approach for natural and complex scenes.  
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Caption List 
 
Fig. 1 (a) Exploded view of the camera with its 4 mini-lenses (b) Assembled camera (c) 

Corresponding sub-images (North-West, North-East, South-West and outh-East).  

Fig. 2 Geometric cross-section between two adjacent sub-images. O1, O2: optical centers of sub-

images 1 and 2; b: distance between O1, O2; f1, f2: lenses focal distances; ε difference between f1, 

f2. ZAi, ZBi: distances between Oi and planes A and B. p1A and p2A: PA projections on both sub-

images. p1B and p2B : P projections on both sub-images.  

pA: projection on sub-image 1 of the virtual point P’A. 

Fig. 3 Depths ZB1 function of disparity d. Triangulation and variable homography comparison. 

Fig. 4 Depth measurement distributions for three ranges of measurements: 4 cm, 33 cm and 88.5 

cm. Top: results of simplified calibration method. Bottom: results of improved calibration 

method. 

Table 1 Comparison between theoretical and experimental depth measurement error. (bf1=7.2 

pixels is obtained during the calibration stage). SC: normal calibration; IC: Improved calibration 

Fig. 5 Sub-images rectification: pre-processing before computing disparity maps. By choosing 

SE as reference sub-image, disparity maps between (SE, SWR), (SE, NER) and (SE, SER) can be 

computed. 
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Fig. 6 Example of computation of distance image DILR and DIRL 

Fig. 7 Examples of pseudo-subtractions pSILR, pSIRL and FI for an object measuring l=8 width 

and for a d=4 disparity.  

Fig. 8 Steps used for computing disparity map from SE and SWR sub-images. 1: sub-image 

acquisition; 2: binary contour extraction; 3: Distance images computation according scanning 

direction; 4: pseudo Subtraction images computation: 5; fusion step; 6: image fusion decoding; 

7: final disparity map 

Fig. 9 Synthetic images (only sub-image SE is shown) containing objects at different depths and 

corresponding depth maps. (a): 4 objects without superposition are placed in the scene; (b): some 

superposed objects are placed; (c): contours in sub-image are randomly degraded. 

Fig. 10 Experimental results images (only sub-image SE is shown) with four objects. Heights 

measured are: A: 15.6 cm; B: 19.4 cm; C: 8.7 cm and D: 3.9 cm. 

Fig. 11 Zooms on no-similar contours detection and corresponding artifacts on disparity maps.  

(a) 4 contours sub-images; (b) artifact areas where the contours are not identical. 


