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Abstract: 

Hydrocarbon pyrolysis in low-pressure gas carburizing conditions leads to gas phase reactions, which 

produce polycyclic aromatic hydrocarbons (PAHs), some of which, such as benzo[a]pyrene, are 

carcinogenic. Workers can be exposed to these PAHs during maintenance and cleaning operations of 

carburizing furnaces. The aim of the study is the prediction of the formation of sixteen PAHs 

considered as priority pollutants by the Environmental Protection Agency in the United States (US 

EPA). A model has been implemented in order to describe the reaction pathways leading to their 

formation. It was validated using experimental data from the literature, obtained during pyrolysis of 

different hydrocarbons such as acetylene and ethylene. Flux analyses were realized in order to 

determine main reaction pathways leading to benzene depending on the reactant. Simulations were 

also performed to compare PAH formation between acetylene, ethylene and propane pyrolysis. 
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1. Introduction 1 

 Low-pressure gas carburizing is a heat treatment process used to harden surface of steel by 2 

enriching the metal with carbon atoms coming from pyrolysis of hydrocarbons. This process is used to 3 

avoid wear of pieces subjected to strong constraints [1]. Unfortunately, in the same time, a wide 4 

variety of molecules and radicals are formed in the gas phase, which lead to the formation of 5 

polycyclic aromatic hydrocarbons (PAHs), which are soot precursors [2]. PAHs are toxic and some of 6 

them are known carcinogens [3]. This is the case of benzo[a]pyrene (B[a]P), which is used as a 7 

reference for assessing the carcinogenicity of other PAHs through the Toxic Equivalency Factor (TEF) 8 

[4]. Workers can be exposed to these substances by inhalation and skin contact during maintenance 9 

and cleaning operations of carburizing furnaces [5]. Sixteen PAHs, containing two to six carbon atom 10 

rings, have been classified as priority pollutants by the Environmental Protection Agency in the United 11 

States (EPA-PAHs) [6]. Understanding PAH formation is important to make safer and cleaner low-12 

pressure gas carburizing processes, as other processes which can produce PAHs by hydrocarbon 13 

pyrolysis, such as atmosphere carburizing and carbonitriding, or by combustion. 14 

 There are two main pathways for the formation of the first aromatic rings, i.e. benzene and 15 

phenyl radical, which are the main actors of PAH growth [7,8]. The former, the C2 – C4 pathway, 16 

consists of the addition on an acetylene molecule of a C4H5 radical yielding benzene and of a C4H3 17 

radical yielding a phenyl radical [9]. However, Miller and Melius estimated that this way cannot be the 18 

only responsible for the first ring formation [10]. They proposed the C3 – C3 pathway, which consists 19 

of the reaction between two propargyl radicals. Several studies focused on this reaction [11,12]. 20 

Cyclopentadienyl radicals also play an important role. They account for naphthalene formation by self-21 

combination [13–15] and, in a similar way, in the formation of other PAHs such as phenanthrene [16]. 22 

 Although the reactions which lead to the formation of benzene are well known today, the same 23 

cannot be said of the reactions responsible for the formation of heavier PAHs [8,17]. PAH growth 24 

results from various reaction pathways in competition. The best known is the Hydrogen Abstraction 25 

C2H2 Addition (HACA) mechanism presented by Frenklach et al. [18]. It consists in the elimination of 26 

a hydrogen atom from the initial PAH by an H-atom abstraction reaction, followed by the addition on 27 

the obtained radical site of an acetylene molecule. This mechanism is an important pathway because of 28 



 

its low energy barrier and high exothermicity [19]. Other mechanisms were considered. Among them, 29 

there are the combinative growth mechanism, which consists in the growth of a PAH by adding 30 

aromatic rings, the cyclopentadienyl radical recombination [20] and the Hydrogen Abstraction Vinyl 31 

Addition (HAVA) mechanism [21]. Another possible pathway is the Diels-Alder mechanism but it is 32 

not competitive with the HACA mechanism [22]. 33 

 Various models were developed in order to describe reactions, which occur during 34 

hydrocarbon combustion or pyrolysis up to the formation of PAHs. Frenklach et al. developed a model 35 

for acetylene and ethylene flames, which describes PAH growth up to molecules involving four 36 

aromatic rings and soot formation [7,23]. Slavinskaya et al. worked on a model for methane and 37 

ethylene flames and described PAH growth up to five aromatic rings [17,24]. Their model also allows 38 

an estimation of the amount of soot. Saggese et al. studied acetylene pyrolysis thanks to a model which 39 

combines a gas phase mechanism including PAH growth up to four aromatic rings and soot precursors 40 

with a soot formation mechanism [25]. More recently, Wang et al. published a model for propene 41 

pyrolysis [26] based on a model for ethane pyrolysis [27]. They did not describe the formation of 42 

heavy species (containing more than twelve carbon atoms) but emphasized the formation of first rings 43 

(benzene, styrene, naphthalene). In conditions close to low-pressure gas carburizing, Ziegler et al. 44 

proposed a model for Chemical Vapor Deposition (CVD) by propane pyrolysis, which takes into 45 

account PAH formation up to four aromatic rings [28,29]. The model which considers the heaviest 46 

PAHs is the model of Norinaga et al. It details PAH formation up to coronene, involving seven 47 

aromatic rings. It was validated for ethylene, acetylene and propylene pyrolysis in CVD conditions 48 

[30–32], as for propane pyrolysis [33]. Lastly, a model by Matsugi and Miyoshi [34], following 49 

studies of pyrolysis of mono-aromatics such as toluene [35,36], highlighted other reaction pathways to 50 

PAHs, such as the Phenyl Addition and Cyclization (PAC) mechanism. 51 

 This study aims to develop a model of hydrocarbon pyrolysis in gas carburizing conditions, 52 

i.e. at low pressure and at temperature ranging from 1173 to 1323 K [1,37], but without taking into 53 

account the presence of steel pieces. It focuses on the formation of the sixteen EPA-PAHs, which are 54 

not all modeled up to now in available mechanisms. These target PAHs are: naphthalene, 55 

acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, 56 



 

benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, 57 

indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene and benzo[ghi]perylene. They are represented in 58 

Supplementary data (S1). The design of the model is detailed in section 2. Its validation was realized 59 

with experimental data from the literature.  60 

 Few experimental data on the sixteen EPA-PAHs in pyrolysis are available. Sánchez et al. 61 

quantified them at the outlet of a plug-flow reactor in the case of acetylene and ethylene pyrolysis [38–62 

41]. They worked at different temperatures between 873 and 1323 K and at atmospheric pressure with 63 

a diluted reactant. At low pressure (undiluted reactant), Norinaga et al. measured thirteen EPA-PAHs 64 

during acetylene, ethylene and propylene pyrolysis in a plug-flow reactor at 1173 K [42]. Ziegler et al. 65 

pyrolysed propane in a perfectly stirred reactor at 2.7 kPa and at different temperatures between 1173 66 

and 1323 K [28,29]. Only PAHs up to pyrene were experimentally quantified. All these data were used 67 

in the model development. In this study, simulations will be presented for acetylene and ethylene 68 

pyrolysis in the operating conditions of Norinaga et al. and of Sánchez et al. 69 

 70 

2. Modeling 71 

 A detailed kinetic model for the pyrolysis of light hydrocarbons, such as acetylene, ethylene 72 

and propane, and PAH growth has been developed, based on a model for the combustion of aromatic 73 

compounds validated in particular in the case of combustion of ethylbenzene [43] and anisole [44]. 74 

The initial mechanism contained the reactions of pyrolysis and oxidation of many hydrocarbons, the 75 

reactions producing the first aromatic rings from lighter species by C2 – C4 pathway [45], C3 – C3 76 

pathway [46] and cyclopentadienyl radicals [47], and the reactions of formation of PAHs up to four 77 

aromatic rings especially by the HACA mechanism [48]. Pressure dependence of rate constants is 78 

taken into account when available. This model has been simplified by removing all oxidation reactions 79 

and all species containing oxygen atoms. It has been completed with reactions for the production of 80 

heavier PAHs up to seven aromatic rings. Missing reactions have been added and some kinetic 81 

constants have been updated to take into account pathways, which could be negligible in oxidation 82 

conditions. The most important changes are detailed in this section. For all the reactions added, 83 

thermodynamic data of the compounds not present in the initial mechanism have been evaluated by the 84 



 

software THERGAS [49] based on Benson’s group additivity method or by analogy with isomers. The 85 

final model contains 358 species and 1245 reactions. It is available in Supplementary data. In the 86 

following, the observations about model predictions are made compared to the experimental data of 87 

Norinaga and Deutschmann for acetylene and ethylene pyrolysis [31]. Species which appear in 88 

reactions (R1) to (R20) are represented in Supplementary data (S2). 89 

 90 

2.1. Reactant consumption and first steps of pyrolysis 91 

 Regarding acetylene pyrolysis, the model [44] overestimated the consumption of acetylene 92 

(C2H2) as the production of vinylacetylene (C4H4), the main primary product of acetylene [50]. 93 

Reaction (R1), which was irreversible and thereby too fast, has been set reversible: 94 

𝐶2𝐻2 + 𝐶2𝐻2 ⇄ 𝐶4𝐻4          (𝑅1) 95 

Other reactions of vinylacetylene have been added: 96 

𝐶4𝐻4 + 𝐶2𝐻2 ⇄ 𝐶6𝐻6          (𝑅2) 97 

𝐶4𝐻4 + 𝐶4𝐻4 ⇄ 𝐶8𝐻8          (𝑅3) 98 

𝐶4𝐻4 + 𝐶4𝐻4 ⇄ 𝑠𝑡𝑦𝑟𝑒𝑛𝑒          (𝑅4) 99 

𝐶4𝐻4 + 𝑛𝐶4𝐻5 ⇄ 𝑠𝑡𝑦𝑟𝑒𝑛𝑒 + 𝐻          (𝑅5) 100 

where C6H6, C8H8 and nC4H5 represent benzene, 1,3,5,7-cyclooctatetraene and 1,3-butadienyl radical, 101 

respectively. Kinetic coefficients used for reactions (R2) and (R3) are those proposed by Norinaga et 102 

al. [32] and those used for reactions (R4) and (R5) are from Slavinskaya and Frank [17]. Reactions of 103 

consumption of 1,3,5,7-cyclooctatetraene have been added with kinetic coefficients proposed by 104 

Dudek et al. [51]. They lead to the formation of benzene and styrene: 105 

𝐶8𝐻8 ⇄ 𝐶6𝐻6 + 𝐶2𝐻2          (𝑅6) 106 

𝐶8𝐻8 ⇄ 1,5 − 𝑑𝑖ℎ𝑦𝑑𝑟𝑜𝑝𝑒𝑛𝑡𝑎𝑙𝑒𝑛𝑒          (𝑅7) 107 

1,5 − 𝑑𝑖ℎ𝑦𝑑𝑟𝑜𝑝𝑒𝑛𝑡𝑎𝑙𝑒𝑛𝑒 ⇄ 𝑠𝑡𝑦𝑟𝑒𝑛𝑒          (𝑅8) 108 



 

 As to ethylene pyrolysis, the model underestimated the experimental consumption of ethylene 109 

(C2H4). A new pathway of consumption has been added with kinetic coefficients from Curran [52]: 110 

𝐶2𝐻4 + 𝐶2𝐻5 ⇄ 𝐶4𝐻9 ⇄ 𝐶4𝐻8 + 𝐻          (𝑅9) 111 

where C2H5, C4H9 and C4H8 represent ethyl radical, butyl radical and 1-butene, respectively. 112 

Moreover, the reaction rate of the H-atom abstraction of ethylene by a hydrogen atom to produce a 113 

vinyl radical has a large influence on ethylene consumption. The rate constant of this reaction has 114 

therefore been updated with data of Wang and Frenklach [7]. 115 

 116 

2.2. Formation of first rings 117 

 The description of the evolution of first cyclic species containing five or six carbon atoms is 118 

essential because these rings are the basis of PAH formation. Some new reaction pathways for benzene 119 

and styrene formation have been presented in section 2.1 (reactions (R2) to (R8)). Reaction (R2) is an 120 

important reaction pathway for benzene formation in acetylene pyrolysis, especially at temperatures 121 

lower than 1200 K [25]. Flux analysis shows that reaction (R3) consumes more vinylacetylene than 122 

reaction (R4), even if this tendency is less pronounced when temperature increases. 1,3,5,7-123 

cyclooctatetraene produced by (R3) is overwhelmingly converted through reaction (R6) to benzene, 124 

which is one of the main source of styrene. So, ultimately, both reactions (R3) and (R4) contribute to 125 

the formation of styrene during acetylene pyrolysis. When temperature increases, the part of reaction 126 

(R4) increases for short residence times (47% at 1073K and 54% at 1173K for = 0.24 s) but 127 

decreases for longer residence times (47% at 1073K and 28% at 1173K for = 1s). 128 

Two other reaction pathways have been added to the model, leading to benzene and to 129 

cyclopentadiene, respectively. They come from a theoretical study of Cavallotti et al. [53] about 130 

reactions of 1,3-butadiene with vinyl radical (scheme S3). Kinetic coefficients are those proposed by 131 

these authors. The addition of these reactions is especially sensitive in prediction of 1,3-butadiene and 132 

benzene and thereby of most heavier aromatic compounds during ethylene pyrolysis. 133 

 A reaction pathway to indene (C9H8) from cyclopentadienyl radical (C5H5) via benzyl radical 134 

(C7H7) by successive additions of acetylene molecules has also been added. Several studies on this 135 



 

pathway exist in the literature even if the intermediate C7H7 is not necessarily benzyl radical [54–56]. 136 

Two reactions, (R10) and (R11), have been set reversible and updated: 137 

𝐶7𝐻7 ⇄ 𝐶5𝐻5 + 𝐶2𝐻2          (𝑅10) 138 

𝐶9𝐻8 + 𝐻 ⇄ 𝐶7𝐻7 + 𝐶2𝐻2          (𝑅11) 139 

Kinetic coefficients of reaction (R11) have been modified based on the theoretical study of Kislov and 140 

Mebel [57]. This study details the intermediate elementary reactions included in this pathway with 141 

their rate constant. We obtained global rate constants (Equations (E1) and (E2)) by the quasi-steady-142 

state assumption (QSSA): 143 

𝑘𝑅11,𝑑 = 1200 𝑇0.072𝑒𝑥 𝑝 (−
27600

𝑅𝑇
)         (𝐸1) 144 

𝑘𝑅11,𝑟 = 6910 𝑇−1.863𝑒𝑥𝑝 (
4250

𝑅𝑇
)          (𝐸2) 145 

with direct constant kR11,d and reverse constant kR11,r in cm3mol-1s-1, temperature T in K and gas 146 

constant R in cal mol-1K-1. This pathway is sensitive on indene amount, especially reaction (-R10) 147 

producing benzyl: the addition of benzyl radical on acetylene also produces indene via an intermediate 148 

radical (C6H5–CH2–CH=CH). About 70% of benzyl comes from reaction (-R10). Similarly to 149 

cyclopentadiene, indene is an important intermediate in PAH growth. It is a precursor of heavy 150 

compounds as, for example, cyclopentadiene produces naphthalene [16]. 151 

 152 

2.3. Formation of PAHs 153 

 Among the sixteen EPA-PAHs, six which include two to four rings were already present in the 154 

model: naphthalene, acenaphthylene, phenanthrene, anthracene, pyrene and chrysene. Nine have been 155 

added with their formation reactions coming from Norinaga et al.’s model [32]: acenaphthene, 156 

fluorene, fluoranthene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, 157 

benzo[a]pyrene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene. The formation and the consumption 158 

of these species involve a significant number of other species whose inclusion in the model has been 159 

necessary. Among them, there are a lot of radical species and other PAHs like acephenanthrylene, 160 



 

benzo[e]pyrene, perylene, anthanthrene or coronene. Eventually, the sixteenth EPA-PAH is 161 

dibenzo[a,h]anthracene. To our knowledge, there is no model in the literature, which describes 162 

pathways leading to it. Reactions have been written based on those producing benzo[a]anthracene, 163 

with the same kinetic coefficients. Reactions implying dibenzo[a,h]anthracene or radicals, which 164 

derive from it, are reported in Table 1. Figure 1 shows the species involved with their corresponding 165 

notations. Dibenzo[a,h]anthracene can be produced via different pathways: 166 

- from phenanthrene directly, by addition with phenylacetylene or derived radicals (Reactions 1 167 

and 2 in Table 1). 168 

- from benzo[a]anthracene, by the HACA mechanism or by addition of derived radicals with 169 

vinylacetylene (Reactions 3 to 6). 170 

- by combination of species with a five-membered ring, such as benzo[e]indenyl radical with 171 

indenyl radical (Reactions 7 and 8). 172 

From this point, missing reaction pathways have been added to improve the simulation of the 173 

amount of several PAHs, which were significantly underestimated. 174 

In Norinaga et al [32], phenanthrene formation can occur through combination of two benzyl 175 

radicals. These reactions have been included in the model. By analogy, pathways to chrysene and 176 

benzo[a]anthracene formation have been written from the combination of a benzyl radical with a 1-177 

naphthylmethyl radical for chrysene and a 2-naphthylmethyl radical for benzo[a]anthracene. These 178 

new pathways are presented in Supplementary data (S4) in the case of benzo[a]anthracene formation. 179 

Other reactions from the literature have been integrated in order to complete the possible 180 

reaction pathways of the following PAHs: 181 

- naphthalene [24]: 182 

phenyl + 1,3-butadiene → naphthalene + H2 + H     (R12) 183 

- acenaphthylene [17]: 184 

 185 

- chrysene [32]: 186 

+ diacetylene → acenaphthylene + H     (R13) 



 

indenyl + indenyl → chrysene + 2 H     (R14) 187 

- pyrene [24]: 188 

 189 

 190 

- benzo[ghi]fluoranthene [17]: 191 

indenyl + indenyl → benzo[ghi]fluoranthene + 2 H2     (R17) 192 

- benzo[a]pyrene [24]: 193 

 194 

 195 

 196 

Note that these reactions are not elementary steps but a lumping of successive reactions, and are 197 

therefore irreversible. 198 

 199 

2.4. Influence of acetone 200 

Because of the presence of acetone in acetylene bottles to avoid self-detonation, five reactions 201 

of the decomposition of acetone have been included in the mechanism. They come from the model of 202 

Norinaga and Deutschmann [31]. Despite the low amount of this impurity, acetone is very reactive and 203 

it dominates radical initiation during acetylene pyrolysis in our operating conditions, especially by 204 

methyl radical formation [58]. 205 

 206 

+ phenylacetylene → pyrene + H2 + H     (R15) 

→ pyrene + 2 H     (R16) + 

+ → benzo[a]pyrene + 2 H2     (R18) 

+ → benzo[a]pyrene + 2 H     (R19) 

+ → benzo[a]pyrene + 2 H     (R20) 



 

3. Model validation 207 

 The validation of the model was realized thanks to various experimental data available in the 208 

literature. In this section, the simulations were obtained in the operating conditions of Norinaga and 209 

Deutschmann [31] at low pressure and in those of Sánchez et al. [38,39] at atmospheric pressure for 210 

acetylene and ethylene pyrolysis in a plug-flow reactor. Simulations were performed using the PSR 211 

(Perfectly Stirred Reactor model) module in the Chemkin software suite. The plug-flow reactor was 212 

modeled as a succession of continuous stirred-tank reactors. A series of fifty PSRs were used in order 213 

to obtain solutions independent of the number of elementary reactors. Error factors in section 3.1 have 214 

been calculated for the experimental point available at the longest residence time. 215 

 216 

3.1. Low-pressure pyrolysis - Comparison with Norinaga and Deutschmann results 217 

3.1.1. Acetylene pyrolysis 218 

 The inlet stream of the reactor is composed of 98% acetylene, 0.2% methane and 1.8% 219 

acetone. Figures 2, 3 and 4 compare simulations with experimental points [31]. Simulations in the 220 

same conditions with the model of Norinaga et al. [32] are also represented. Graphs present the 221 

evolution of mole fractions of the different species plotted as a function of the residence time into the 222 

reactor. Figure 2 shows results for light species, i.e. the consumption of acetylene and the formation of 223 

hydrogen, methane, ethylene, vinylacetylene and propyne, at 1173 K and 8 kPa. Figure 3 shows the 224 

profiles of benzene, toluene, styrene, indene, naphthalene and acenaphthylene at 1173 K and 8 kPa. 225 

Eventually, the formation of heavier PAHs at 1173 K and 15 kPa is presented in Figure 4. Some EPA-226 

PAHs were not quantified experimentally. They are treated in section 3.2. Regarding experiments, 227 

material balances show that more than 90% carbon is generally analyzed at the outlet [42]. The 228 

estimated uncertainties for concentrations range between ±9% and ±32%, increasing with the 229 

molecular weight of molecules [31]. 230 

 Simulation agrees with experimental points for acetylene, vinylacetylene and propyne. 231 

Hydrogen and methane are underestimated (by a factor 1.8) and ethylene is overestimated (by a factor 232 

3). Regarding first aromatic rings, benzene and styrene, which are the major aromatic species 233 

quantified experimentally, are fairly well represented by the model. The main primary product of 234 



 

acetylene pyrolysis is vinylacetylene, which mostly leads to benzene and styrene formation. For these 235 

compounds, our simulations better represent experimental points than the model of Norinaga et al. 236 

(especially for vinylacetylene). Meanwhile, ethylene is overpredicted. Flux analysis, detailed in 237 

Supplementary data (S5), shows that it is produced from vinylacetylene by decomposition into vinyl 238 

radical, which leads to ethylene, but also by decomposition of phenylethyl radical, which comes from 239 

styrene. Styrene is mainly produced from benzene. In the model, added reactions of vinylacetylene 240 

lead to the formation of benzene and styrene (reactions (R2) to (R8)), and so, to the formation of 241 

ethylene. In this way, the overprediction of ethylene is related to the much better representation of 242 

vinylacetylene compared to Norinaga’s model, but ethylene plays a less important role in aromatic 243 

formation [31]. Therefore, the first steps of the pyrolysis are correctly described by the model. 244 

Tendencies of toluene and indene are not well represented. They reach a maximum for a short 245 

residence time while experimental points present a monotonic growth on the range of studied 246 

residence times. These two species are correlated by reaction (R11), discussed in section 2.2. 247 

 In a general way, simulation reproduces well the order of magnitude of PAH mole fractions. 248 

Compared to the model of Norinaga et al., our model gives results closer to experimental data for most 249 

PAHs. Some compounds like naphthalene, acenaphthylene and benzo[k]fluoranthene are fairly well 250 

represented. However, some other profiles have a convex shape while experimental curves have a 251 

concave shape. Phenanthrene is overestimated (by a factor 2.4) while anthracene is underestimated (by 252 

a factor 3). These two species are linked in the model: higher amounts of anthracene leads to higher 253 

amounts of phenanthrene and vice versa. Flux analysis shows that the main pathway for anthracene 254 

formation is the isomerization of phenanthrene, which is also the most sensitive reaction on anthracene 255 

formation. However, increasing the kinetic constant of this reversible reaction (which comes from 256 

Marinov et al. [59]) by a factor 10 has almost no effect on concentration, whereas the sensitivity 257 

coefficient of the reaction drops off. The equilibrium constant of the reaction of isomerization is then 258 

more sensitive: decreasing the enthalpy of formation of anthracene by 4 kcal mol-1 permits to fit the 259 

mole fraction of this species in acetylene pyrolysis conditions. However, the enthalpy of formation 260 

used in the model for anthracene and phenanthrene are from Kudchadker et al.[60], i.e. 55.0 kcal mol-1 261 

and 49.5 kcal mol-1, respectively. These data are in very good agreement with the review of Roux et al. 262 



 

[61] (54.8±0.7 kcal mol-1 and 48.3±0.6 kcal mol-1 respectively). A larger spread between enthalpies of 263 

formation of both isomers would be far beyond the range of uncertainty. Note that the main pathway 264 

for phenanthrene formation is the addition of a radical derived from phenylacetylene on benzene. This 265 

pathway cannot lead to the formation of anthracene but another important pathway for anthracene 266 

formation can be missing. Benzo[ghi]perylene is significantly underestimated (by a factor 21), even if 267 

its mole fraction is the lowest among quantified PAHs. Some formation pathways should still be 268 

missing. It is produced by the HACA mechanism from benzo[e]pyrene and perylene and consumed to 269 

produce coronene. Another pathway could be the addition of aromatic rings on lighter PAHs such as 270 

phenanthrene. 271 

 272 

3.1.2. Ethylene pyrolysis 273 

 The inlet stream of the reactor is composed of 99.4% ethylene, 0.2% methane and 0.4% 274 

ethane. Figures 5 and 6 show the evolution of mole fractions of light species and of first aromatic rings 275 

and light PAHs respectively, plotted as a function of the residence time, at 1173 K and 8 kPa. Figure 7 276 

shows profiles of heavy EPA-PAHs for which experimental points [31] exist at 1173 K and 15 kPa. As 277 

in the case of acetylene pyrolysis, simulations with the model of Norinaga et al. [32] are presented for 278 

comparison. 279 

 Ethylene consumption is well represented by the model as well as hydrogen, acetylene and 280 

vinylacetylene profiles overall. Methane production is underestimated (by a factor 1.8) and 1,3-281 

butadiene is overestimated (by a factor 2) although the curve correctly represents its tendency. 282 

Regarding first aromatic rings, the model well describes benzene evolution. Profiles are fairly well 283 

respected so it is possible to consider that the model correctly represents the first steps of ethylene 284 

pyrolysis despite differences observed for toluene and styrene as well as for indene from some 285 

residence time (compounds in much smaller amounts than benzene). The link between toluene and 286 

indene was mentioned in section 3.1.1. The validation of the model for the formation of light species is 287 

confirmed by the good agreement of simulation results with experimental data for light PAHs, namely 288 

naphthalene, acenaphthylene and phenanthrene. Anthracene is underestimated (by a factor 13). 289 



 

 Generally, tendencies and orders of magnitude of heavier PAHs are fairly well represented. 290 

However, the model underestimates pyrene formation (by a factor 8.2) and overestimates chrysene and 291 

benzo[a]anthracene formation (by a factor 1.8 and 2.4 respectively). A flux analysis shows that the 292 

main reaction pathways of formation of these four-ring compounds differ between ethylene pyrolysis 293 

and acetylene pyrolysis. In the case of ethylene, chrysene and benzo[a]anthracene are mainly produced 294 

(at 91% and 87% respectively for a residence time of 1 s) by combination of two indenyl radicals 295 

which come from indene. These pathways may be too fast. It could explain chrysene and 296 

benzo[a]anthracene overestimation along with indene underestimation for large residence times. As to 297 

pyrene, the formation pathway by addition of a styryl radical on phenylacetylene which is important 298 

during acetylene pyrolysis (46% for a residence time of 1 s) is negligible during ethylene pyrolysis 299 

(1.7% for a residence time of 1 s). The underestimation of styrene by the simulation can cause this 300 

change. So, improving styrene profile might allow to enhance pyrene formation. Otherwise, the model 301 

reproduces benzo[a]pyrene evolution very well but it underestimates fluoranthene and 302 

benzo[k]fluoranthene formation (by a factor 12 and 14, respectively). 303 

 Our simulations give much better results than those of Norinaga et al. for benzene, light PAHs 304 

(naphthalene, acenaphthylene and phenanthrene) and benzo[a]pyrene but they are worse for some 305 

heavier PAHs. Nevertheless, naphthalene, which experimental fraction is up to 100 times higher than 306 

that of other PAHs, is very well predicted here, while Norinaga’s model overestimates it by a factor of 307 

4. Since naphthalene is one of the base compounds in PAH enlargement, this explain partly the present 308 

fluoranthene and benzo[k]fluoranthene underestimation. A flux analysis shows that fluoranthene 309 

mainly comes (at 67% for a residence time of 1 s) from the addition of a phenyl radical on naphthalene 310 

or of a naphthyl radical on benzene. As to benzo[k]fluoranthene, it is formed by the addition of a 311 

naphthyl radical on naphthalene. 312 

 313 

3.2. Atmospheric pyrolysis - Comparison with Sánchez et al. results 314 

 Sánchez et al. quantified the sixteen EPA-PAHs during acetylene and ethylene pyrolysis under 315 

various conditions of temperature [38,39,41], residence time [41] and concentration [39]. They worked 316 

at atmospheric pressure, leading to soot formation despite the low fraction of hydrocarbon (3%) 317 



 

diluted in nitrogen. It makes the comparison with the model difficult because the model does not 318 

include soot formation. Moreover, pressure changes kinetics of some reactions. 319 

 Simulations were realized at 1173 K and atmospheric pressure for a residence time of 1.45 s. 320 

The inlet stream of the reactor is composed of 3% reactant (acetylene or ethylene) and 97% inert 321 

(nitrogen), which corresponds to a partial pressure of 3 kPa for the reactant. Temperature of 1173 K 322 

has been chosen to make easier the comparison with experimental data: at a lower temperature, too 323 

few PAHs are formed and at a higher temperature, soot formation becomes important. 324 

 Absolute simulated amounts of each PAH are much lower than experimental results except for 325 

naphthalene during ethylene pyrolysis. The authors give a carbon yield of light compounds (from H2 to 326 

C8) [38,39] and it seems that the model overestimates these light compounds while it underestimates 327 

PAHs. In particular, available data on benzene during acetylene pyrolysis [39] show that this 328 

compound is overestimated in simulations. All of this suggests that PAH formation from light species 329 

and first aromatic rings is too slow in these conditions and that the influence of the pressure is not well 330 

taken into account in the model. Nevertheless, without more detailed experimental data on light 331 

compounds, it is not possible to make conclusive hypotheses. A quantitative comparison between 332 

experiments and simulations results cannot be performed. Following observations are qualitative. 333 

 In both experiments and simulations, acetylene pyrolysis produces larger amounts of all PAHs 334 

than ethylene pyrolysis, except for acenaphthene. In a general way, predicted relative amounts of 335 

PAHs, compared one to another, agree with experiments. Experimentally, the predominant PAHs are 336 

the lightest up to pyrene except for acenaphthene, which is formed in small amount. This result is 337 

found by simulation but with some differences. On one hand, anthracene is predicted in too small 338 

amount. On the other hand, in ethylene pyrolysis, benzo[a]anthracene and chrysene are predicted in 339 

larger amounts than pyrene. These elements are consistent with the observations made at low pressure 340 

and discussed in section 3.1. 341 

 About PAHs which were not quantified by Norinaga et al., simulations seem to lead to correct 342 

orders of magnitude for fluorene, benzo[b]fluoranthene and dibenzo[a,h]anthracene compared to other 343 

PAHs. Acenaphthene is predicted in too small amount during acetylene pyrolysis but is well 344 

represented during ethylene pyrolysis. It can be explain by the fact that acenaphthene is 345 



 

overwhelmingly produced in the model by the addition of an 1-naphthyl radical on ethylene. 346 

Alternative pathways may take place during acetylene pyrolysis. This makes consistent the 347 

predominance of acenaphthene during ethylene pyrolysis at 1173 K, i.e. at lower temperature than 348 

what is experimentally observed. Indeno[1,2,3-cd]pyrene seems underestimated compared to other 349 

PAHs. Some formation pathways for this compound must be missing in the model. For now, it is only 350 

produced from pyrene by addition of benzene or phenyl and from benzo[b]fluoranthene by the HACA 351 

mechanism. Benzo[ghi]perylene seems also underestimated during ethylene pyrolysis as during 352 

acetylene pyrolysis. Its formation pathways were already discussed in section 3.1.1. 353 

 354 

4. Discussion 355 

4.1. Reaction pathways of benzene production 356 

It is essential to predict accurately benzene evolution because it is one of the main precursors 357 

of PAHs. Moreover, it plays a major role in their growth thanks to the combinative growth 358 

mechanism. In section 1, the main pathways of formation of benzene described in the literature were 359 

recalled, but the model takes into account many other pathways. A flux analysis was realized in order 360 

to determine the origin of benzene in the case of pyrolysis of different hydrocarbons. Simulations were 361 

performed at 1173 K, 8 kPa and a reactant conversion of approximately 40%. This conversion 362 

corresponds to a residence time of 1 s for acetylene and ethylene, a residence time of 0.22 s for 363 

propylene and a residence time of 0.003 s for propane. In each case, reactant is considered pure. Figure 364 

8 details the main pathways of the formation of benzene during acetylene and ethylene pyrolysis. 365 

Regarding acetylene pyrolysis, benzene mainly comes from the addition reaction of 366 

vinylacetylene with acetylene molecules (R2) or with vinyl radicals (R21): 367 

𝐶4𝐻4 + 𝐶2𝐻3 ⇄ 𝐶6𝐻6 + 𝐻          (𝑅21) 368 

Vinylacetylene is largely formed by addition of two acetylene molecules, either directly (R1) or via 369 

diacetylene and iC4H3 radical (𝐻𝐶 ≡ 𝐶 − 𝐶 = 𝐶𝐻2). 370 



 

During ethylene pyrolysis, two major reaction pathways, which are roughly equivalent, 371 

appear. Both involve 1,3-butadiene, one of the major product, mainly formed by the addition of vinyl 372 

radical on an ethylene molecule: 373 

𝐶2𝐻4 + 𝐶2𝐻3 ⇄ 1,3 − 𝐶4𝐻6 + 𝐻          (𝑅22) 374 

The first pathway is the cyclization of a linear C6H9 radical (CH2=CH ̶ CH2  ̶CH=CH  ̶CH2), which is 375 

produced by the addition of vinyl radical on 1,3-butadiene. The second involves fulvene, which 376 

undergoes an isomerization to benzene. Fulvene is mainly formed from iC4H5 radical (H2C=CH  ̶377 

C=CH2) by the following reaction: 378 

𝑖𝐶4𝐻5 + 𝐶2𝐻2 ⇄ 𝑓𝑢𝑙𝑣𝑒𝑛𝑒 + 𝐻          (𝑅23) 379 

iC4H5 radical is produced by H-atom abstractions on 1,3-butadiene. 380 

Lastly, the model was used to simulate propylene pyrolysis and propane pyrolysis. Reaction 381 

pathways to benzene are similar in both cases. Benzene comes mainly from fulvene isomerization. 382 

However, unlike ethylene pyrolysis, fulvene is formed from propylene thanks to a reaction chain 383 

involving different C3 species. These reactions are the following: 384 

- formation of tC3H5 radical (H2C=C ̶ CH3) from propylene by H-atom abstraction 385 

- formation of allene by β-scission of tC3H5 radical 386 

- formation of propargyl radical C3H3 from allene by H-atom abstraction 387 

- combination of a propargyl radical with an allyl radical or with another propargyl radical to 388 

form fulvene. Allyl radicals are derived from propylene by H-atom abstraction. 389 

In the case of propane pyrolysis, H-atom abstraction reactions of propane lead to iC3H7 radical (H3C ̶ 390 

CH ̶ CH3), which produces propylene by β-scission. 391 

The different reaction pathways to benzene, which have been detailed here, represent the 392 

major pathways for the different reactants. Nevertheless, minor pathways involve other cyclic species 393 

such as methylcyclopentadiene, toluene, styrene or 1,3,5,7-cyclooctatetraene. 394 

 395 

4.2. Influence of the reactant on the formation of PAHs 396 



 

The model was used to compare PAH formation during the pyrolysis of three different 397 

hydrocarbons: acetylene, ethylene and propane. These reactants were chosen because they are the 398 

compounds most used in low-pressure gas carburizing [37] and because they represent an alkyne, an 399 

alkene and an alkane, respectively. 400 

As an order of magnitude, Figure 9 presents mole fractions for each of the sixteen EPA-PAHs 401 

produced by the pyrolysis of the three pure reactants at 1173 K, 15 kPa and at a reactant conversion of 402 

50%. This conversion is equivalent to a residence time of 0.68 s for acetylene, 1.05 s for ethylene and 403 

3.9 10-3 s for propane. Propane conversion is much faster than acetylene or ethylene conversion 404 

because of fast reactions of C-C bond breaking [62]. To better understand the results, a flux analysis 405 

for benzo[a]pyrene formation is presented in Figure 10. It shows the pathways of formation of 406 

benzo[a]pyrene during acetylene and ethylene pyrolysis. Propane pyrolysis is not represented on the 407 

figure but pathways are similar to those for ethylene: benzo[a]pyrene is produced from 408 

benzo[a]anthracene at 26% and from chrysene at 70% (via intermediate radicals); benzo[a]anthracene 409 

and chrysene are formed from the recombination of two indenyl radicals at 98% and 99% respectively. 410 

Figure 9 shows that all PAHs are present in larger amounts during acetylene pyrolysis than during 411 

ethylene pyrolysis, which joins the results of section 3. This is explained by the importance of the 412 

HACA mechanism in the process of PAH growth, which can be noticed in Figure 10. Benzo[a]pyrene 413 

is almost entirely produced through this mechanism from benzo[a]anthracene and chrysene. These two 414 

PAHs are produced by combination of two indenyl radicals during ethylene pyrolysis but they are 415 

mainly produced from naphthyl radicals or naphthalene during acetylene pyrolysis. Pathways for 416 

naphthalene formation are presented in Supplementary data (S6). They show that the HACA 417 

mechanism is mostly responsible for the production of naphthalene during acetylene pyrolysis. 418 

Otherwise, Figure 9 shows that for propane pyrolysis, PAHs are formed in much lower amounts, 419 

especially for the heaviest. Alkanes are less favorable to the formation of aromatic rings because C/H 420 

ratio is smaller than for alkenes or alkynes. It is therefore necessary to produce unsaturated products to 421 

allow cyclisation and aromatic formation. Moreover, because of the weakness of C-C bonds, propane 422 

pyrolysis generates many radicals. These radicals have to lead first to the formation of unsaturated 423 

molecules (acetylene, ethylene), which then allow PAH formation. 424 



 

However, these results are obtained for the same conversion rate but for different residence 425 

times. In industrial gas carburizing, residence time into the reactor is an important parameter because it 426 

has an influence on the amount of carbon adsorbed on steel. Figure 11 represents the evolution of the 427 

mole fraction of benzo[a]pyrene plotted as a function of the residence time for acetylene, ethylene and 428 

propane pyrolysis at 1173 K and 15 kPa. On the one hand, benzo[a]pyrene is always more produced 429 

by acetylene than ethylene. On the other hand, this PAH is more produced by propane than acetylene 430 

or ethylene at low residence times because of fast conversion of propane. Propane conversion is 431 

stabilized very quickly since it reaches 99% at 0.04 s while acetylene and ethylene conversion 432 

gradually increases. From 0.4 s, propane produces less benzo[a]pyrene than acetylene (converted at 433 

38%) and from 0.98 s, it produces less benzo[a]pyrene than ethylene (converted at 49%). Other PAHs 434 

have a similar trend. A sensitivity analysis was carried out at a residence time of 1 s and 1173 K to 435 

highlight the reactions which impact the production of benzo[a]pyrene. It is available in 436 

Supplementary data (S7). During acetylene, ethylene and propane pyrolysis, the kinetically limiting 437 

reaction for benzo[a]pyrene is the addition of a radical derived from benzo[a]anthracene on acetylene 438 

to form benzo[a]pyrene. This strengthens the previous observations on the importance of the HACA 439 

mechanism. Other sensitive reactions during acetylene pyrolysis are those of formation and 440 

consumption of iC4H3 radical, which is an important intermediate of benzene formation (Figure 8). 441 

During ethylene and propane pyrolysis, sensitive reactions on benzo[a]pyrene involve chrysene and 442 

derived radicals, and benzyl radical which is an important intermediate of indene formation 443 

(Supplementary data (S6)). Similarities between ethylene and propane are understandable because 444 

ethylene is the main primary product of propane pyrolysis. 445 

Acetylene produces more PAHs than propane from some residence time but it is also one of 446 

the most efficient hydrocarbons for surface reactions [63]. By making the approximation that only 447 

acetylene is adsorbed on steel, the time required for carburizing depends on the amount of acetylene 448 

available in gas phase, more important for acetylene pyrolysis than for propane pyrolysis. By dividing 449 

mole fractions of PAHs for a residence time of 1 s by the mole fraction of acetylene present at this 450 

time, several PAHs are formed in larger amount for propane than for acetylene, including 451 

benzo[a]pyrene. These results are presented in Figure 12 for the sixteen EPA-PAHs. 452 



 

 453 

5. Conclusion 454 

 A detailed kinetic model has been developed to describe the formation of PAHs from light 455 

hydrocarbon pyrolysis (acetylene, ethylene, etc.). It is mainly focused on the formation of the sixteen 456 

EPA-PAHs at low pressure. The aim is to use the model to evaluate the potential of toxicity, especially 457 

linked to benzo[a]pyrene concentration, of processes such as low-pressure gas carburizing. It was 458 

validated by various experimental data from the literature. Compared to previous model, it includes 459 

new reaction pathways from the literature and represents an improvement for the reactions of small 460 

unsaturated species and for the formation of first rings. However, some differences with experimental 461 

points are observed, which shows that some reaction pathways are still missing or wrongly evaluated. 462 

 Simulations allowed to highlight the diversity of reaction pathways leading to benzene and to 463 

show the strong dependence between reactant and the predominance of some pathways compared to 464 

others. They also allowed to compare PAH formation during the pyrolysis of different hydrocarbons. 465 

 Experiments of acetylene, ethylene and propane pyrolysis will be performed in the near future 466 

in a plug-flow reactor and in a perfectly stirred reactor. They will allow a better validation of the 467 

model in low-pressure gas carburizing conditions. Some experiments will be carried out with an iron 468 

piece to study the influence of surface reactions on PAH formation and to determine how it is possible 469 

to insert those reactions in the model. 470 

 

Supplementary data 471 

Mechanism and transport data in CHEMKIN format, and Supplementary data associated with this 472 

article can be found in the online version. 473 
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Table 

 

Table 1: Reactions of production and consumption of dibenzo[a,h]anthracene (DBAHA3L) and 

derived radicals with kinetic constants1 by analogy with benzo[a]anthracene reactions 

No. Reaction2 A (cm3mol-1s-1) n Ea (cal mol-1) 

1 𝑝ℎ𝑒𝑛𝑎𝑛𝑡ℎ𝑟𝑒𝑛𝑒 + 𝐶6𝐻4#𝐶2𝐻 •↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐻  8.51 1011 0 3 987 

2 𝑝ℎ𝑒𝑛𝑎𝑛𝑡ℎ𝑟𝑒𝑛𝑒 − 2 + 𝐶6𝐻5#𝐶2𝐻 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐻  8.51 1011 0 3 987 

3 𝐵𝐴𝐴3𝐿 − 9 + 𝐶4𝐻4 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐻  9.90 1030 5.07 21 101 

4 𝐵𝐴𝐴3𝐿 − 8 + 𝐶4𝐻4 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐻  9.90 1030 5.07 21 101 

5 𝐵𝐴𝐴3𝐿𝐸 − 1𝑃 + 𝐶2𝐻2 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 − 1  1.87 107 1.787 3 262 

6 𝐵𝐴𝐴3𝐿𝐸 − 2𝑆 + 𝐶2𝐻2 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 − 12  1.87 107 1.787 3 262 

7 𝐵𝐸𝑖𝑛𝑑𝑒𝑛𝑒 • +𝑖𝑛𝑑𝑒𝑛𝑦𝑙 → 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐻 + 𝐻  1.00 1012 0 7 999 

8 𝑁𝐹𝑖𝑛𝑑𝑒𝑛𝑒 • +𝐶5𝐻5 → 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐻 + 𝐻  1.00 1012 0 7 999 

9 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐻 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 − 1 + 𝐻2  3.23 107 2.095 15 843 

10 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐻 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 − 12 + 𝐻2  3.23 107 2.095 15 843 

11 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐻 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 − 4 + 𝐻2  3.23 109 2.095 15 843 

12 𝐷𝐵𝐴𝐻𝐴3𝐿 − 1 + 𝐻 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿  5.00 1013 0 0 

13 𝐷𝐵𝐴𝐻𝐴3𝐿 − 12 + 𝐻 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿  5.00 1013 0 0 

14 𝐷𝐵𝐴𝐻𝐴3𝐿 − 4 + 𝐻 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿  5.00 1013 0 0 

15 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐶𝐻3 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 − 1 + 𝐶𝐻4  2.00 1012 0 15 059 

16 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐶𝐻3 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 − 12 + 𝐶𝐻4  2.00 1012 0 15 059 

17 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐶2𝐻3 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 − 1 + 𝐶2𝐻4  6.00 1011 0 12 978 

18 𝐷𝐵𝐴𝐻𝐴3𝐿 + 𝐶2𝐻3 ↔ 𝐷𝐵𝐴𝐻𝐴3𝐿 − 12 + 𝐶2𝐻4  6.00 1011 0 12 978 
1k = ATnexp(-Ea/RT) with gas constant R in cal mol-1K-1

 

2Notations used for the different species are clarified in Figure 1 

 

  



 

Figure captions 

Figure 1: Molecules and radicals involved in Table 1 

Figure 2: Mole fraction profiles of light species during acetylene pyrolysis at 1173 K and 8 kPa. Points 

refer to experiments [31], solid lines to simulations and dashed lines to the model of Norinaga et al. 

[32]. 

Figure 3: Mole fraction profiles of first aromatic rings and light PAHs during acetylene pyrolysis at 

1173 K and 8 kPa. Points refer to experiments [31], solid lines to simulations and dashed lines to the 

model of Norinaga et al. [32]. 

Figure 4: Mole fraction profiles of heavy PAHs during acetylene pyrolysis at 1173 K and 15 kPa. 

Points refer to experiments [31], solid lines to simulations and dashed lines to the model of Norinaga 

et al. [32]. * indicates a logarithmic scale in ordinate. 

Figure 5: Mole fraction profiles of light species during ethylene pyrolysis at 1173 K and 8 kPa. Points 

refer to experiments [31], solid lines to simulations and dashed lines to the model of Norinaga et al. 

[32]. 

Figure 6: Mole fraction profiles of first aromatic rings and light PAHs during ethylene pyrolysis at 

1173 K and 8 kPa. Points refer to experiments [31], solid lines to simulations and dashed lines to the 

model of Norinaga et al. [32]. 

Figure 7: Mole fraction profiles of heavy PAHs during ethylene pyrolysis at 1173 K and 15 kPa. 

Points refer to experiments [31], solid lines to simulations and dashed lines to the model of Norinaga 

et al. [32]. * indicates a logarithmic scale in ordinate. 

Figure 8: Main reaction pathways for benzene formation at 1173 K, 8 kPa and 1 s of residence time 

during: a) acetylene pyrolysis; b) ethylene pyrolysis. Percentages are related to the weight of the 

reaction in the formation of products. 

Figure 9: Mole fractions of the EPA-PAHs obtained by modeling during acetylene, ethylene and 

propane pyrolysis at 1173 K, 15 kPa and a reactant conversion of 50% 

Figure 10: Main reaction pathways for benzo[a]pyrene formation at 1173 K, 15 kPa and a reactant 

conversion of 50% during acetylene pyrolysis (percentages in bold) and ethylene pyrolysis 

(percentages in italic). Percentages are related to the weight of the reaction in the formation of 

products. Reaction pathways for naphthalene and indene formation are available in Supplementary 

data (S6). 

Figure 11: Profiles of benzo[a]pyrene mole fraction obtained by modeling during acetylene, ethylene 

and propane pyrolysis at 1173 K and 15 kPa 

Figure 12: Mole fractions of the EPA-PAHs divided by the mole fraction of acetylene obtained by 

modeling during acetylene and propane pyrolysis at 1173 K, 15 kPa and a residence time of 1 s 

 

  



 

 

Figure 1: Molecules and radicals involved in Table 1 

 

  



 

 

Figure 2: Mole fraction profiles of light species during acetylene pyrolysis at 1173 K and 8 kPa. Points 

refer to experiments [31], solid lines to simulations and dashed lines to the model of Norinaga et al. 

[32]. 

  



 

 

Figure 3: Mole fraction profiles of first aromatic rings and light PAHs during acetylene pyrolysis at 

1173 K and 8 kPa. Points refer to experiments [31], solid lines to simulations and dashed lines to the 

model of Norinaga et al. [32]. 

  



 

 

Figure 4: Mole fraction profiles of heavy PAHs during acetylene pyrolysis at 1173 K and 15 kPa. 

Points refer to experiments [31], solid lines to simulations and dashed lines to the model of Norinaga 

et al. [32]. * indicates a logarithmic scale in ordinate. 

  



 

 

Figure 5: Mole fraction profiles of light species during ethylene pyrolysis at 1173 K and 8 kPa. Points 

refer to experiments [31], solid lines to simulations and dashed lines to the model of Norinaga et al. 

[32]. 

  



 

 

Figure 6: Mole fraction profiles of first aromatic rings and light PAHs during ethylene pyrolysis at 

1173 K and 8 kPa. Points refer to experiments [31], solid lines to simulations and dashed lines to the 

model of Norinaga et al. [32]. 

 

  



 

 

Figure 7: Mole fraction profiles of heavy PAHs during ethylene pyrolysis at 1173 K and 15 kPa. 

Points refer to experiments [31], solid lines to simulations and dashed lines to the model of Norinaga 

et al. [32]. * indicates a logarithmic scale in ordinate. 

  



 

 

Figure 8: Main reaction pathways for benzene formation at 1173 K, 8 kPa and 1 s of residence time 

during: a) acetylene pyrolysis; b) ethylene pyrolysis. Percentages are related to the weight of the reaction 

in the formation of products. 

  



 

 

Figure 9: Mole fractions of the EPA-PAHs obtained by modeling during acetylene, ethylene and 

propane pyrolysis at 1173 K, 15 kPa and a reactant conversion of 50% 

  



 

 

Figure 10: Main reaction pathways for benzo[a]pyrene formation at 1173 K, 15 kPa and a reactant 

conversion of 50% during acetylene pyrolysis (percentages in bold) and ethylene pyrolysis (percentages 

in italic). Percentages are related to the weight of the reaction in the formation of products. Reaction 

pathways for naphthalene and indene formation are available in Supplementary data (S6). 

  



 

 

Figure 11: Profiles of benzo[a]pyrene mole fraction obtained by modeling during acetylene, ethylene 

and propane pyrolysis at 1173 K and 15 kPa 

  



 

 

Figure 12: Mole fractions of the EPA-PAHs divided by the mole fraction of acetylene obtained by 

modeling during acetylene and propane pyrolysis at 1173 K, 15 kPa and a residence time of 1 s 

 

 

 


