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ABSTRACT 

 
Deterministic models describing heat transfer in cold chain, microbial growth and product quality evolution 

are widely studied. However, it is difficult to apply them in practice because of several random parameters 

of the logistic supply chain (ambient temperature varying due to season, product residence time in 

equipment...), and of the product characteristics (initial microbial load, lag time, water activity…). This 

variability can lead to different product evolutions (microbial load, weight losses, firmness and colour 

change) causing product losses and health risks.  

This study proposes a new approach combining the deterministic and stochastic modelling (Monte Carlo) to 

take into account the variability of the logistic supply chain and product characteristics. The developed 

methodology was applied to the cold chain of cooked ham including, display cabinet, transport by consumer 

and domestic refrigerator, to predict the evolution of state variables such as temperature and the growth of 

Listeria monocytogenes. The impact of inputs parameters was calculated and ranked to highlight the main 

sources of product degradation. 

 

Keywords: heat transfer, chilled food, variability, Listeria monocytogenes  

 

1. INTRODUCTION 

 
Temperature control along the cold chain is essential to maintain product quality and thus reduce food 

losses and health risks. Each year, in Europe Listeria monocytogenes is involved in more than one thousand 

cases of listeriosis (EFSA, 2012) with a fatality rate of about 20% among reported cases. These cases of 

listeriosis are mainly related to ready-to-eat dairy, vegetables and meat products. This pathogen is 

problematic for food industry because it is widespread in the environment and able to grow in the 

temperatures of the chilled products and also in a wide range of product properties (pH, water activity, 

CO2). In European Union regulation, food safety criteria are proposed to “define the acceptability of a 

product or a batch of foodstuff applicable to products placed on the market.” The food safety criteria for 

RTE foods that are able to support the growth of L. monocytogenes, is based on compliance with the criteria 

of absence of the pathogen (in 25 g) before the food has left the immediate control of the Food Business 

Operator (FBO) and levels up to 100 CFU/g in products placed on the market during their shelf-life 

(Anonymous, 2005). 

In this context, predictive microbiology and Quantitative Microbiology Risk Assessment (QMRA) have 

become important tools of food safety as they help FBO and competent authorities to define shelf-life or the 

impact of control measure on risk level. However, users of both predictive microbiology and QMRA 

generally consider simple time / temperature histories for assessing L. monocytogenes levels throughout the 

shelf life. Variability observed in the supply chain is not taken into account (ambient temperature varying 

due to season, product position and residence time in equipment). A few study such as those of Afchain et 

al.(2005) and Pouillot et al. (2007), based a French survey (ANIA, 2004) implemented the variability of the 

time / temperature history along the cold chain of cold cooked salmon in a QMRA to predict the exposure 

of L. monocytogenes but a constant product temperature was assumed in equipments.  

This study proposes a new approach combining the deterministic and stochastic modelling (Monte Carlo) to 

take into account the variability of the logistic chain and product characteristics. The developed 
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methodology was applied to sliced cooked ham including the last three links of the cold chain: display 

cabinet, transport by consumer and domestic refrigerator. The evolution of state variables such as 

temperature and microbial load was predicted. To reduce the complexity of these models due to the high 

number of input parameters, Augustin (2011) proposes to identify the relevant parameters by means of 

Sensitivity Analysis (SA). SA is defined as the study of the output parameter uncertainty related to different 

sources of uncertainty in the input parameters (Saltelli et al., 2004). Among several methods of SA (Scatter 

plot, ANOVA, regression analysis), variance based methods seem to be adapted to non-linear models like 

those in QMRA and are recognized in the statistical field (Ellouze et al., 2010). 

The aim of this study is to combine a heat transfer model of equipments (Flick et al., 2012; Hoang et al., 

2012) and a microbiological model to predict the contamination of L. monocytogenes in cooked ham at the 

consumption point. A sensitivity analysis was performed to highlight and rank the parameters which have 

the higher impact on the contamination level at consumption point. 

 

2. MATERIALS AND METHODS 

 
An overview of the methodology, the model development and the Sensitivity Analysis (SA) are presented 

below. 

 

2.1. Overview of the methodology 

The global methodology is presented in the Figure 1, three parts can be distinguished. It should be noted 

that only contaminated packages were considered. Contamination level were predicted from the display 

cabinet in supermarket (time=t0) to the consumption point (time=tend). The part 1 presents the initial 

biological parameters (initial contamination y0, lag time represented by physiological state Q0 of the cells 

that contaminate the products), product properties (pH, Aw, NIT and CO2) and time / temperature profile of 

I packages. The part 2 illustrates the relationship between the primary growth model which aims to compute 

the bacterial growth with time y(t) (log10cfu/g) as a function of the initial contamination, physiological state 

and secondary growth model which allows taking into account the environmental parameters (properties 

and time / temperature histories of products ). The growth and the impact of competitive flora are not taken 

into account in this study. The output parameter of the part 2, final contamination yend, will be used as input 

in the SA (part 3) to assess the impact of inputs parameters. The detail of model development is presented 

in 2.2. 

 
Figure 1 : Organigram to estimate the sensibility of input parameters on the final concentration of L. 

monocytogenes
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2.2 Model development 

2.2.1 Modelling the time / temperature history 

Time / temperature history of the product along the cold chain was modelled using the methodology 

developed by Flick et al.(2012). This study proposes a general methodology combining determinist models 

for equipment and product evolution and stochastic models to consider different sources of variability of the 

cold chain (sequence of equipments, ambient conditions and thermostat setting temperature). The variability 

of these parameters is characterized by a Probability Density Functions (PDF). The studied product, called 

‘product of interest’, can follow different itineraries (type of equipment, position and residence time). This 

methodology was applied by Hoang et al. (2012) to the pre-package meat cold chain (without water 

transfer). 

The survey data in France (ANIA, 2004) were used to estimate the residence time of ham in the different 

links of the cold chain.  

It is to be emphasised that the temperature T(t) of the product of interest changes with time and it 

approaches the load temperature Tload.j.l (other product located near the product of interest). The load 

temperature is assumed to be time independent and can be calculated from the equipment parameters 

(ambient temperature, thermostat setting temperature, etc) using equations developed by Laguerre et al 

(2010a) for display cabinet and Laguerre and Flick (2010b) for domestic refrigerator. In these studies, 4 

load positions are considered in a display cabinet (top/front, top/rear, bottom/front and bottom rear) and 2 

positions in domestic refrigerator (top and bottom). This methodology is applied to each link j of product 

number i at the position l in the equipment. The temperature evolution is calculated using the following 

equation: 

 

      (1) 

 

where Ti.j.l(t) is the temperature of the product of interest i in the link j and position l, T0.i.j.l is the initial 

temperature of the product of interest i in the link j and position l, Tload.j.l is the load temperature in the link j 

and position l. For ham, the weight m and the thermal capacity C are assumed to be constant and equal to  

m = 160 g and C = 3500 J.kg
-1

.°C
-1

, respectively. The conductance Hj.l was measured for each position l of 

each link j. 

More details about the development of this methodology have been presented in Flick et al (2012) and 

Hoang et al (2012).  

 

2.2.2 Modelling the initial contamination 

The initial contamination of L. monocytogenes, y0, in products was assessed from a survey undertaken from 

January 1997 to December 1998 in a big supermarket in Belgium (Uyttendaele et al., 1999). Data of cooked 

ham after slicing were used, among 879 products, L. monocytogenes was detected in 54 products (sample of 

25 g) and 8 of them were detected in sample of 0.1g. The distribution of the initial contamination was 

evaluated using the fitdistplus package of the R software (Pouillot and Delignette-Muller, 2010). This 

package includes a set of functions dedicated to facilitating the entire process of fitting parametric 

distributions for different types of data, including censored data. 

 

2.2.3 Modelling the growth of Listeria monocytogenes 

Growth of L. monocytogenes in cooked ham was predicted from the display cabinet to the consumption. 

The output parameter of the model is the bacterial contamination at the consumption point yend (log10cfu/g).  

Two approaches are mainly used to evaluate the initial physiological state of microorganism Q0: 

populational and individual approaches. The first one considers the global growth of the population and 

assigns one value to the whole population. The variability of Q0 is deduced from the experimental data of 

Guillier and Augustin (2006). In this study, L. monocytogenes were stressed by benzalkonium chloride 

(BAC) which is disinfectant largely used in food industry. The second one (individual approach) considers 

a different physiological state Q0.b for each cell of a population. Individual physiological states Q0.b are 

deduced from a different expression of the individual physiological state, h0b given by eq. (2). 

        ))1)/(exp(1ln( 00  bb hQ                 (2) 

Initial physiological state h0b are calculated from the population initial physiological state h0 using an 

Extreme Value type II distribution (EVII) characterised by 3 coefficients: a, b and c:  
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     3658.0/Db  , bMa  1645.1  and 5c     (3) 

with M and D, the mean and the standard deviation of individual cell physiological state, respectively 

calculated with the following equation (Guillier and Augustin, 2006; Guillier and Augustin, 2008): 

      )447.0)ln(004.1exp(  MD       (4) 

   )1549.0)ln(1941.1))(ln(0586.0))(ln(039.0))(ln(0065.0))(ln(0103.0exp( 0

2

0

3

0

4

0

5

0  hhhhhM      (5) 

The growth of each cell was calculated independently. The final contamination is the sum of sub-population 

of each individual cell of the initial contamination. It was assumed a limit value of 10 cells between the 

populational and individual approaches. 
The primary model is an exponential growth model with lag time proposed by Baranyi and Roberts (1994):  

 

               (6a) 

 

               (6b) 

 

               (6c) 

 

where y(t) is the bacterial load (log10cfu/g) at the time t, y0 the initial bacterial concentration, ymax the 

maximum bacterial concentration, Q0 the initial physiological state, μmax the maximum specific growth rate 

(h
-1

), T the product of interest temperature (°C) and E the product characteristics (Aw, pH, NIT, CO2). To 

predict the microbial growth under dynamic conditions and describe the effect of environmental conditions 

(temperature, product properties), a simplified expression of the secondary model proposed by Mejlholm et 

al (2010) was used: 

   

                    (7a) 

  

with :                      (7b) 

 

  

 

where μref is the reference specific growth rate with a value of 0.419 h
-1

 for μmax at the reference temperature 

(Tref) of 25 °C, Aw is the water activity, NIT and CO2equilibrium are the concentrations (ppm) of nitrite, and 

dissolved CO2 at equilibrium, respectively. Tmin, Awmin, pHmin, NITmax and CO2max are the theoretical 

minimal value of temperature, water activity, pH and maximal concentrations (ppm) of nitrite and CO2, 

respectively, that allow growth of L. monocytogenes. The effect of interactions between environment 

parameters was not considered. Product temperature is a time dependant parameter while product properties 

(pH, Aw, CO2, NIT) are time independent. However, the variability of product properties is taken into 

account using a survey data of 50 ham products of 10 different brands (Ifip, 2010). 

The Runge Kutta method (ODE 45 function of Matlab software vR2012a, The MathWorks Inc., Natick, 

MA, USA) was used to solve the differential equation of the primary model. 

 

2.3 Sensitivity Analysis 

To perform sensitivity analysis, the Saltelli method (Saltelli, 2002) was chosen. This method was 

recommended by Augustin (2011) in QMRA because of its simplicity of implementation and acceptable 

computation time. SA is based on three steps: (i) definition of range of variation, (ii) model running (iii) 

computation of first order (Si) and total effect (Sti) indices. Parameters of the model were estimated from 

several sources: surveys, experiment and literature. A range was considered for inputs parameters to 

perform SA except for itinerary I of the products along the cold chain.  

 

2.3.1 Range of variation of input parameters 

The range of variation of the input parameters is presented in the Table 1. The range of the initial 

contamination y0 is the 1
st
 and 99

th
 percentile of the normal distribution provided by Uyttendaele (1999). 

The initial physiological state Q0 was obtained with experimental data, taking the value of Q0 for the stress 

with BAC (-2.92) for the lower boundary and considering that there was no lag time for the upper boundary 

(Q0=8.29 for a lag time of 1s in the experimental conditions of Guillier and Augustin (2006)). Product 
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property boundaries E correspond to the maximal and minimal values of the survey of Ifip (2010). μref and 

Tmin ranges were obtained from Augustin (2005) and (Mejlholm et al., 2010), respectively. Finally, the 

impact of cold chain itinerary for 10000 packages was considered. 

 

Table 1 : Input parameters and the range of variations 
 

Factor Unit Range References 

y0 (initial contamination) log10CFU g
-1

 0  /  3,05 Uyttendaele et al (1999) 

Q0 (initial physiological state) dimensionless - 2,92  /  8,29 
Guillier and Augustin 

(2006) 

E (product characteristics) dimensionless 0,396  /  0,642 Ifip (2010) 

μref (reference growth rate) h
-1

 0.2 / 0.6 Augustin (2005) 

Tmin (minimum growth temperature) °C -3,99  /  -1,19 Pouillot et al (2003) 

I (product itinerary) dimensionless 10000 - 

 

2.3.2 Computation of Saltelli’s indices 

Saltelli’s SA is based on a numerical procedure for computing the full set of first-order indices, Si, and total 

effect indices, Sti, for all the studied factors k (k = 1, . . . , K). Two matrices A (N,K), B (N,K) (N number of 

simulation runs, K factors) were generated from a space filling method, the Latin Hypercube Sampling 

(LHS) (Helton and Davis, 2003) with respect to the range of variation of each factor. Then, k matrices Ck (k 

= 1,…,K) identical to B but with the k
th
 column replaced by the k

th
 column of the matrix A were built. For 

each row of the k + 2 matrices, the model was run and provided k + 2 vectors (YA, YB, YCi) filled with 

values of the final concentration of the product yend. Fist order indices Si and total effect indices Sti were 

computed using the following expressions: 

 

 

  

   (8)  
 

 

 

(9)   (10)  

 

    

 

 

3. RESULTS AND DISCUSSION 
 

Input parameters were ranked according to their total effect indices obtained with 10
4
 runs of LHS indices 

and presented in the Table 2. Differences observed between first order (Si) and total effect (Sti) indices 

illustrate that the output variance was also due to interactions between input parameters and justify the use 

of variance based sensitivity analysis. Moreover, the sum of first order indices (0.91) indicates that the 

contribution of the individual effect of input parameters explained 91% of the total output variance, 

interactions between input parameters represents 9% of the total output variance. 
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Table 2 : Influence of studied factors on the final contamination at the consumption (classified by the order 

of importance), estimated by the individual effect (Si) and Total Effect (Sti) 

 

Factor Si Sti 

I (itinerary) 0.52 0.61 

y0 (initial contamination) 0.28 0.35 

μref (reference growth rate) 0.06 0.14 

E (product characteristics) 0.02 0.11 

Tmin (minimum growth temperature) 0.01 0.09 

Q0 (initial physiological state) 0.02 0.08 

 

In our case, the most important factor influencing the variance of the contamination at the consumption 

point was the itinerary of the product along the cold chain (I). The itinerary was previously identified as one 

of the most important factor in an exposure assessment model of L. monocytogenes in cold smoked salmon 

(Ellouze et al., 2010; Pouillot et al., 2007). This result shows on one hand the importance of food retailer 

practices and the consumer behaviour and on other hand that a special attention has to be paid in QMRA 

regarding time / temperature profiles. The second important parameter was the number of initial 

contaminating cells (y0) previously identified by Pouillot et al (2007) but less significant in Ellouze et al 

(2010) and Augustin (2011). Differences between the results of these studies highlight the importance of the 

range of variation of input parameters using Saltelli method. The high impact of initial contamination in our 

study can also be explained by the number of input parameters. In fact, Saltelli indices are relative and the 

number of input parameters can explain the significance or not of the initial contamination in the different 

studies. The reference growth rate, the product characteristics, the minimum temperature of growth and the 

initial physiological state have a slight impact on the final contamination. The value of these parameters can 

be fixed at their mean value in order to simplify the model and thus, decrease the calculation time without 

affecting the accuracy of the prediction. 

The developed methodology enables the quantification of the impact of the whole cold chain logistic on 

food safety. However, it does not highlight the parameter which has the greater influence because of the 

variability of equipments and positions. Satelli’s indices allow simplifying the model and develop a more 

detailed sensitivity analysis focused on the last three links of the cold chain. It is possible to assess the 

impact of residence time, load temperature and also to compare different positions in equipment by means 

of accept and reject algorithm (Guillier et al., 2011). These aspects, however, are not the subject of this 

preliminary study. 

 

4. CONCLUSION 
 

A methodology combining deterministic and stochastic models applied to cook ham was developed. The 

models allow the prediction of the L. monocytogenes contamination in the display cabinet, transport by 

consumer after purchase and domestic refrigerator. The sensitivity analysis highlights the high impact of the 

time / temperature history of the product during the last three links of the cold chain on the final 

contamination and hence the importance of food retailer practices and consumers behaviour. Results shows 

also that time / temperature profiles variability has to be taken into account in risk assessment. In further 

work, the first links of the cold chain, cold room, transport and warehouse and the variation of the load 

temperature in equipment due to refrigeration cycle (defrost, doors opening) will be integrated in our model. 

This approach can be used as guideline by industry and public organizations to improve practices, to 

evaluate the risk and to establish new legislations.  
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