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We experimentally study drops formed from a nozzle into an immiscible, cross-6	
flowing phase. Depending on the operating conditions, drops are generated either in 7	
dripping or jetting mode. We investigate the impact of the continuous and dispersed 8	
phase velocities, dispersed phase viscosity and interfacial tension on the drop 9	
generation mode and size. We find that a dripping to jetting transition (DJT) takes 10	
place at a critical inner Weber number, function of the outer capillary and Ohnesorge 11	
numbers. Two jetting regimes occur depending on the phase velocity ratio. When the 12	
continuous phase velocity is significantly greater (resp. lower) than the dispersed 13	
phase velocity, jet narrowing (resp. widening) occurs. In jet widening, the critical inner 14	
Weber number depends little on the outer capillary number whereas in jet narrowing, 15	
it sharply decreases as the outer capillary number increases. We propose a 16	
comprehensive model to describe the DJT based on the attached drop equation of 17	
motion. The model satisfactorily predicts the DJT and the effect of the outer capillary 18	
number on the critical inner Weber number. It also well accounts for the drop diameter 19	
in jet narrowing. 20	

 21	
 22	
 23	

I. INTRODUCTION 24	
Membrane emulsification is an industrial process used to generate emulsions by forcing a 25	

dispersed phase through an inorganic, porous membrane into a continuous cross-flowing phase.1 This 26	
process is usually operated in dripping (drop by drop) mode. The shear stress exerted by the 27	
continuous phase controls drop formation, so drag and the retaining capillary force are the main 28	
forces involved. In dripping mode, the drop diameter decreases with increasing shear stress, while 29	
remaining greater than the membrane pore size. A first estimate of the drop diameter may be given 30	
by a simple torque balance about the pore edge.2 31	

More recently, alternative fabrication methods based on microfluidics have appeared, such as 32	
flow-focusing and coflowing devices. These devices commonly operate in dripping or jetting 33	
(continuous jet) mode.3–6 In jetting mode, the liquid thread breaks up by Plateau-Rayleigh 34	
instabilities. In certain operating conditions, drops much smaller than the nozzle diameter may be 35	
produced. The same trend is expected for membrane emulsification operated in jetting mode. Thus, 36	
it is of high interest to study the dripping to jetting transition (DJT) in this process. 37	

A DJT can occur if the liquid thread exiting the nozzle grows to a length comparable to its radius 38	
and if the pinch-off time is larger than the thread growth time.7 The simplest case is the dripping 39	
faucet, where a dispersed phase flows from a nozzle into a stagnant, immiscible outer phase. Smith 40	
and Moss8 studied mercury jets into gases and found that above a critical velocity (named the jetting 41	
velocity), the liquid exits the nozzle as a jet. They proposed an empirical expression for the jetting 42	
velocity, which can be recovered from a simple balance between the jet momentum flux and the 43	
retaining capillary force. Scheele and Meister9 investigated the DJT for fifteen liquid-liquid couples 44	
and established the jetting velocity from a force balance, which further includes the excess pressure 45	
force. The maximum error between their data and predictions is of 30.2%. Richards et al.10 studied 46	
drop formation before and after the DJT by computational fluid dynamics (CFD) and obtained drop 47	
sizes that compare well with Scheele and Meister’s data.9 Clanet and Lasheras11 studied the DJT for 48	
water flowing from a stainless steel nozzle into air and found that the DJT occurs at a critical inner 49	
Weber number Wein function of Bond numbers (Bo, Bo#). Wein compares the inner momentum to 50	
the capillary force. It is built with the nozzle inner diameter and mean dispersed phase velocity in the 51	
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nozzle. Bo and Bo# compare buoyancy to the retaining capillary force. Bo (resp. Bo#) is built with 1	
the nozzle inner (resp. outer) diameter. When the dispersed phase does not wet the nozzle, only Bo 2	
is relevant. Clanet and Lasheras11 extended Taylor’s model12 for the recession of a free, liquid edge. 3	
Their model, adapted to drop recession and growth, predicts the jetting velocities. Their calculations 4	
are in good agreement with their own data and Scheele and Meister’s data9 (maximum error of 13.7% 5	
and 20%, resp.). 6	

In coflowing liquids, Cramer et al.13 examined the critical continuous phase velocity for the 7	
DJT. They found that it decreases for increasing dispersed phase flow rates or viscosity ratios 8	
𝜁 = 𝜂'(/𝜂*( and for decreasing interfacial tensions. Utada et al.3 proposed a state diagram of the 9	
DJT in coflowing liquids in a Ca#-.−We23 space. Ca#-. compares the viscous force (exerted by the 10	
outer fluid) to the capillary force. It is built with the nozzle inner diameter, the outer (continuous) 11	
phase viscosity and velocity. Two jetting regimes occur depending on the fluid velocity ratio. If the 12	
outer velocity is greater than the inner one, the inner liquid is stretched by the outer fluid and jet 13	
narrowing occurs. If the outer velocity is lower than the inner one, the outer fluid slows the inner 14	
fluid and jet widening occurs.3,4 In jet widening, Castro-Hernández et al.4 showed that inertial or 15	
viscous forces drove the DJT depending on the inner Reynolds number Re23 (built with the mean 16	
dispersed phase velocity and nozzle inner diameter). They proposed a unified scaling to predict drop 17	
size in both the widening and narrowing regimes (relative errors of 30%). Chen et al.14 studied both 18	
regimes by CFD. They noted that drop detachment in jet widening is due to high pressures in the 19	
neck whereas in jet narrowing, it is due to velocity differences between the front and rear ends of the 20	
neck (linking the drop to the thread).  21	

Two spatiotemporal instabilities may occur in coflowing liquids: an absolute instability (A), 22	
with disturbances advected up- and downstream or a convective instability (C), with advection only 23	
downstream.15,16 Linear stability analysis was performed for confined coflowing liquids. Concentric 24	
cylindrical capillaries17 and rectangular channels18 were studied at low Reynolds numbers. Analysis 25	
was extended to when liquid inertia is not negligible.19 A/C regions were typically provided as a 26	
function of the inner and outer phase flow rates. The A (resp. C) region coincides with the dripping 27	
(resp. jetting) region identified experimentally. Stability analysis was also performed for unbounded 28	
coflowing liquids: jet widening was reported as absolutely unstable and jet narrowing as convectively 29	
unstable. The widening regime was actually assimilated to a dripping regime, with drops formed at 30	
the end of the fluid thread.20  31	

Compared to coflowing liquids, the DJT in membrane emulsification (i.e., for cross-flowing 32	
liquids) was very little investigated: Meyer and Crocker21 performed experiments whereas Pathak22 33	
examined the DJT by CFD. For both, membrane emulsification was mimicked by forcing a dispersed 34	
phase through a single, circular pore of a plane wall sheared by a continuous phase flow. Meyer and 35	
Crocker21 found that the state diagram of the DJT depends on We23 and Ca#-., but also on the inner 36	
Ohnesorge number Oh'( (ratio of the viscocapillary to inertial-capillary time scale). Both authors 37	
proposed a correlation for the DJT by replacing Bo and Bo# by Ca#-. in Clanet and Lasheras’ DJT 38	
criterion11 and by adjusting coefficients. However, no comprehensive models were developed in this 39	
configuration.21,22 40	

The aim of this work is to study drop generation in cross-flow. The setup consists in a nozzle, 41	
which forms dispersed phase drops into a continuous cross-flowing phase. Both dripping and the 42	
DJT are studied for various phase velocities, interfacial tensions and dispersed phase viscosities. 43	
Dripping data are used to identify the drag force experienced by a drop attached to the nozzle. Then, 44	
a physical model is proposed to predict the jetting velocities and drop diameters at the DJT. This 45	
enables to gain insight on drop formation in membrane emulsification and more generally on the DJT 46	
for cross-flowing liquids.  47	

 48	
II. EXPERIMENTAL 49	
The systems investigated are reported in Table I. For the reference system, the continuous and 50	

dispersed phases are distilled water and dodecane, respectively. For systems 1 and 2, a surfactant 51	
(Sodium dodecyl sulfate, SDS) is added to the continuous aqueous phase to study the effect of the 52	
interfacial tension. We note that the SDS concentration of system 1 (resp. 2) is lower (resp. greater) 53	
than the critical micellar concentration (CMC) of SDS in water, i.e. 2 g.L-1. For both systems, a good 54	
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estimate of the interfacial tension when drops form is given by the value of the dynamic interfacial 1	
tension at the intermediate plateau.23,24 This value is greater than the equilibrium value. For system 2	
2, we consider that micelles have no specific impact on the process examined: surfactant essentially 3	
modifies the intermediate plateau value. Last, for systems 3 and 4, paraffin is added to dodecane to 4	
study the effect of the dispersed phase viscosity. 5	

We note 𝛾 the interfacial tension,	𝜌'(  and 𝜌*(  the dispersed and continuous phase densities, 6	
respectively, and  𝜂'( and 𝜂*( the dispersed and continuous phase viscosities. 𝛾 was measured for 7	
all systems by the rising drop method, with a tensiometer (Tracker, I.T. Concept, Teclis). 𝜂'( was 8	
measured at 25.1°C, with a Ubbelohde viscosimeter (AVS310, Schött-Gerade). 9	

TABLE I: Investigated system composition and physicochemical properties. Reproduced from A. Bertrandias, H. Duval, J. 10	
Casalinho and M. L. Giorgi, Phys. Fluids, 28, 102103 (2016), with the permission of AIP Publishing. 11	

System and 
symbol Dispersed phase 𝜂'( 

(mPa.s) 
𝜌'( 

(kg.m-3) 
Continuous phase 𝜂*( 

(mPa.s) 
𝜌*( 

(kg.m-3) 
𝛾 (mN.m-1) 

Reference (◊) Dodecane 1.34 750 Distilled water 0.89 997 50.7 ± 3.5a 

1 ( ) Dodecane 1.34 750 Distilled water and 
SDS (0.1 wt%) 0.89 997 ± 

1.4a 22.3 ± 0.5a,b 

2 (♦) Dodecane 1.34 750 Distilled water and 
SDS (2 wt%) 0.89 1001 ± 

1.2a 6.6 ± 0.2a,b 

3 (⊲) Dodecane (75 wt%) 
and paraffin (25 wt%) 

1.79 ± 
0.23a 

772 ± 
1.2a Distilled water 0.89 997 53.5 ± 2.4a 

4 (⊳) Dodecane (50 wt%) 
and paraffin (50 wt%) 

3.24 ± 
0.42a 

790 ± 
1.1a Distilled water 0.89 997 50.0 ± 1.2a 

The tabulated values a are measured experimentally; b correspond to those at the intermediate plateau. 12	
 13	

An original setup was designed (Fig. 1). It consists in a cell with a horizontal channel through 14	
which the continuous phase flows. A vertical nozzle of inner diameter 𝐷( = 0.32 mm emerges into 15	
the channel. The continuous phase is pumped in a closed cycle by a gear pump (MDG M15T3B, 16	
Iwaki Co.), perpendicular to the nozzle axis (cross-flow). The flow rate is adjusted (OVAL MIII 17	
LSF41, OVAL Corporation) with a 0.1 L.h-1 precision. The dispersed phase is forced through the 18	
nozzle with a syringe pump (PHD ULTRA, Harvard Apparatus) at a volumetric flow rate 𝑞'( 19	
(accuracy ≤ 0.25%), giving a mean dispersed phase velocity in the nozzle 𝑣'(. A cold light (KL 20	
2500 LCD, Schott) illuminates the setup. A high-speed camera (v310, Phantom) allowing up to 3250 21	
fps at full resolution (1280 × 800 px²) is mounted with a macro lens (Macro MP-E 65mm f/2.8, 22	
Canon) of magnification ×	5. Images are captured through the cell windows and are analysed with 23	
ImageJ to obtain data such as drop size 𝐷' , with the scale (238 px/mm) set by the nozzle outer 24	
diameter (433 ± 2 µm). Average relative standard deviations in drop diameters are of 3.4%, 8.7% 25	
and 7.7% in dripping, jet widening and narrowing, respectively. 26	

 27	
FIG. 1: Cell cross-section by CAD (to scale). Cell (left): (a) continuous phase flow axis; (b) optical axis; (c) dispersed 28	
phase flow axis; (d) cell binding point; (e) frame for zoom. Zoom in the cell (right): 1, dispersed phase inlet (microfluidic 29	
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system); 2, continuous phase flow; 3, growing drop; 4, nozzle; 5, formed drop carried away; 6, optical glass window; 7: 1	
window for user. 2	

 3	
In order to obtain the so-called unperturbed continuous phase velocity at the location of the 4	

bound drop center of mass (denoted 𝑣*(), the continuous phase flow is analyzed by particle image 5	
velocimetry (PIV), without dispersed phase injection (see supplementary material A, Fig. A1). 6	
Analysis is performed for the range of continuous phase volumetric flow rates 𝑞*( tested in this work. 7	
The average continuous phase velocity is essentially uniform above the nozzle except in a thin 8	
adjacent layer (see supplementary material A, Fig. A2). We theoretically estimate the boundary-layer 9	
thickness at a distance 𝐷( 2 from the leading edge of the nozzle25 for all 𝑞*( and find a thickness of 10	
0.06 mm for the highest 𝑞*( to 0.2 mm for the lowest 𝑞*(: the boundary-layer thickness is always 11	
small compared to the minimum drop diameter formed at the given 𝑞*( (0.302 mm and 1.019 mm, 12	
resp.). The drop is thus mainly located above the shear layer that develops above the nozzle. This 13	
differs from Meyer and Crocker’s21 or Pathak’s22 work, where the drop is entirely located in the shear 14	
flow set up by the continuous phase flowing parallel to the plane wall. In the following, the 15	
continuous phase velocity 𝑣*( seen by a growing drop corresponds to the velocity measured in the 16	
uniform flow above the shear layer. 17	

Drop formation by dripping is studied as a function of the continuous phase velocity 𝑣*( seen 18	
by the growing drop. The parameters tested are reported in Table II (dripping trials). We consider 19	
that the Reynolds number characteristic of the continuous phase flow in the channel inside the cell is 20	
close to the Reynolds number in the cylindrical tubes on the sides of the cell, in series with this 21	
channel (see Fig. 1). We find Re = 4𝜌*(𝑞*(/𝜋𝐷D𝜂*( from 330 to 3300, with 𝐷D the tube diameter. 22	
According to Morrison25, the continuous phase flow entering the cell is laminar (Re < 2100) or 23	
transitional (2100 < Re <  3300). The inner Reynolds number Re23 = 4𝜌'(𝑞'(/𝜋𝐷(𝜂'(  ranges 24	
from 2 to 38, so the dispersed phase flow is laminar in the nozzle.  25	

Then, the DJT is studied. The 𝑣*(  values tested are given in Table II (DJT trials) and the 26	
dispersed phase velocity 𝑣'( is increased slowly until the DJT. The onset of jetting is defined as in 27	
the literature21,22: it occurs when 𝐿G/𝐷' > 1, with 𝐿G the thread length prior to drop break off (from 28	
the nozzle surface to the drop base) and 𝐷' the detached drop diameter. We obtain jetting velocities 29	
with a precision of 2.9 to 7.7% in jet widening and 2.6 to 11.1% in jet narrowing (due to the chosen 30	
increment in dispersed phase flux). We note that these velocities correspond to a transition from 31	
dripping to jetting. For the transition from jetting to dripping, the value may vary due to hysteresis 32	
phenomena.11 Re23 ranges from 7 to 130, so the dispersed phase flow is laminar in the nozzle. In the 33	
tubes on the sides of the cell, Re ranges from 330 to 6600, so for the highest 𝑞*( , i.e. 𝑣*( , the 34	
continuous phase flow is turbulent in the channel.25 35	

TABLE II: Operating conditions investigated. 36	

System Dripping trials DJT trials 
𝑣*( (m.s-1) 𝑣'( (m.s-1) 𝑣*( (m.s-1) 

Reference 0.18 - 0.55 0.016, 0.031, 0.063, 0.14, 0.21 0.17 - 1.03 

1 0.11 - 0.50 0.031 0.17 - 0.59 
2 0.10 - 0.40 0.031 0.17 - 0.40 
3 0.11 - 0.55 0.031 0.23 - 1.03 
4 0.10 - 0.60 0.031 0.23 - 0.94 

 37	
After a series of trials (either PIV or dripping and DJT trials), the cell is filled with 3 vol% 38	

Mucasol (Merz) for 24h and is rinsed with distilled water. The nozzle surface is then hydrophilic: the 39	
organic dispersed phase does not wet the nozzle surface, so its outer diameter does not impact drop 40	
generation. 41	

 42	
III. DROP GENERATION BY DRIPPING WITH CROSS-FLOW 43	

Drop diameters 𝐷' were measured as a function of the continuous phase velocity 𝑣*( (Fig. 2), 44	
at constant 𝑣'(= 0.031 m.s-1. As 𝑣*( increases, 𝐷' decreases due to the increasing shear exerted by 45	
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the continuous phase flow. Drop diameters scale as 𝑣*(JK.MN to 𝑣*(JK.OK, depending on the system. A 1	
lower interfacial tension 𝛾  leads to smaller drops (systems 1 and 2, Fig. 2). The capillary force 2	
decreases with 𝛾, so a drop detaches earlier, also found by Xu et al.26 No significant impact on 𝐷' is 3	
seen with the dispersed phase viscosity 𝜂'( (possibly a slight decrease in 𝐷' with increasing 𝜂'() 4	
(Fig. 2). In membrane emulsification, Timgren et al.27 numerically found a decrease in drop size with 5	
a thousand-fold increase in 𝜂'(, expected as the drag coefficient then notably increases.28 In our case, 6	
the difference may not be large enough to significantly impact drop size.  7	

The influence of 𝑣'( was also tested on the reference system (not shown). We find that 𝑣'( 8	
does not impact drop diameter, as found for a stationary outer phase29 or in cross-flow26. For these 9	
trials, drops form in dripping mode. Ca#-. = 𝜂*(𝑣*(/𝛾 ranges from 3.1×10-3 to 9.7×10-3, We23 =10	
𝜌'(𝐷(𝑣'(N /𝛾 from 1.1×10-3 to 2.0×10-1 and Oh'( = 𝜂'(/ 𝜌'(𝐷(𝛾 = 1.2×10-2. This is in fact in the 11	
dripping region of the state diagram reported in the literature.21,22 12	

 13	
FIG. 2: Drop diameter 𝐷' function of the continuous phase velocity 𝑣*(, 𝑣'( = 0.031 m.s-1. See Table I for symbols.  14	
 15	

In order to account for the drop diameter scaling observed in dripping mode, we consider that 16	
drag and the retaining capillary force are the main forces involved. Buoyancy is neglected since the 17	
buoyancy to drag force ratio is on average less than 5%. As Peng and Williams2, we assume that the 18	
drop subjected to the forces discussed above stays spherical and rotates about the nozzle edge until 19	
detachment. The fraction of the drop that could remain attached to the nozzle tip after break off is 20	
neglected. The torque balance (TB) about the nozzle edge reads: 21	

𝜋𝐷'N

4
𝐶Q
𝜌*(
2
𝑣*(N

𝐷'
2
= 	𝜋𝐷(𝛾

𝐷(
2
																																																													(1) 22	

with 𝐶Q the drag coefficient. In Eq. (1), we neglect the velocity of the drop center of mass 𝑣'. Indeed, 23	
if we assume that in dripping mode, the main contribution to the drop center of mass motion is due 24	
to drop growth, a rough estimate of 𝑣'  is given by 𝑣' 𝑡 ≈ 0.5 d𝐷' d𝑡 , where 𝐷'  increases in 25	
time according to 𝐷' 𝑡 = 6𝑞𝑡/𝜋 Z [. For all systems and phase velocities tested, we find 𝑣' ≪26	
𝑣*( (38 to 589 times). We further rearrange Eq. (1) as: 27	

𝐷'
𝐷(

= 𝑘
Oh*(
Ca#-.

N/[

																																																																						(2) 28	

with 𝑘 = 8/𝐶Q Z [ and Oh*( = 𝜂*(/ 𝜌*(𝐷(𝛾 the outer Ohnesorge number. We note that Eq. (2) 29	
may also be written as 𝐷' 𝐷( = 𝑘	Weout

JZ [ , with Weout  the outer Weber number, built with the 30	
continuous phase velocity. If we assume that 𝐶Q is approximately constant (corresponding to the 31	
Newton regime), from Eq. (2), we find that the drop diameter scales as 𝑣*(

JN [ . This is in good 32	
agreement with our experimental data (𝑣*(JK.MN to 𝑣*(JK.OK). However, this scaling differs from the one 33	
found by Meyer and Crocker21, i.e. 𝐷' 𝐷(	~	Caout

JZ N. In their trials, drops are entirely located in the 34	
shear layer that develops along the plane wall and their diameters seem better described by a force 35	
balance. 36	

For a solid sphere in an infinite fluid, the Newton regime holds for particle Reynolds numbers 37	
Reb = 𝜌*(𝑣*(𝐷'/𝜂*( from 103 to 105.25 In this range, 𝐶Q ≈ 0.4. In our case, Reb = 92 to 360, so 𝐶Q 38	
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may vary. We estimate 𝐶Q from Eq. (1) and find that 𝐶Q decreases with increasing Reb (data points, 1	
Fig. 3). Our 𝐶Q values are higher than reported for a viscous sphere in an infinite fluid by Feng and 2	
Michaelides30 (dashed line, Fig. 3). Indeed, in our trials, the drop is not isolated but bound to a nozzle. 3	
We propose to model the variations of 𝐶Q as a function of Reb by the law of Eq. (3), in the form 4	
obtained by Abraham31 for a solid sphere: 5	

𝐶Q = 𝐶K 1 +
𝛿K

Reb
Z N

N

																																																																	(3) 6	

We perform a weighted least squares minimization to identify the free coefficients of Eq. (3) 7	
from the data of the reference system, systems 1 and 2. These systems are characterized by a viscosity 8	
ratio 𝜁 = 1.5, with Reb = 92 to 360. We find 𝐶K = 0.14 and 𝛿K = 17.7. The data are well described 9	
by the adjusted law (solid line, Fig. 3). In the Stokes limit (Reb ≪  1), Eq. (3) reads 𝐶Q ≈10	
𝐶K𝛿KN/Reb ≈ 45/Reb close to the drag coefficient of a solid sphere at a wall in creeping flow, i.e. 11	
𝐶Q ≈ 1.7× 24/Reb ≈ 41/Reb.32 We only retain that the order is satisfactory as our drop deviates 12	
from a solid sphere and the coefficients were adjusted far from the Stokes regime. 13	

For system 3 (𝜁 = 2.0) and 4 (𝜁 = 3.6), we cannot carry out the above method since our trials 14	
do not cover a wide range of Reb for these viscosity ratios. We assume that 𝐶Q are not significantly 15	
different than from Eq. (3) fitted on systems with 𝜁 = 1.5, consistently with the analysis of Fig. 2. In 16	
Section IV, Eq. (3) will be used to estimate the drag force experienced by a drop near the DJT.  17	

 18	
FIG. 3: Drag coefficient 𝐶Q function of the particle Reynolds number Reb. Experimental results from Eq. (1), see Table I 19	
for symbols. Feng and Michaelides predictions for 𝜁 = 1.5 (dashed line); our fit from Eq. (3) with 𝐶K = 0.14 and 𝛿K = 17.7 20	
(solid line). 21	

 22	
IV. DRIPPING TO JETTING TRANSITION (DJT) 23	

A. Experimental results 24	
For a set system and continuous phase velocity 𝑣*(, the DJT is reached for a critical dispersed 25	

phase velocity (corresponding to the jetting velocity for the given 𝑣*(). We remind that the onset of 26	
jetting is defined when the length of the liquid thread connecting the drop to the nozzle reaches the 27	
drop diameter (see Section II). Typical snapshots of dripping and jetting are reported in Fig. 4. We 28	
note that in Fig. 4(a) and (b), the first image on the left represents “strict” dripping (as studied in 29	
Section III), with a drop rotating about the nozzle edge.  30	

As in coflowing liquids,3,4,14 when the DJT is reached, two jetting regimes may be observed. 31	
When 𝑣*( ≲ 𝑣'(, the liquid thread is on average thicker than the nozzle inner diameter (Fig. 4(a), 32	
last image): this is the widening regime. On the contrary, when 𝑣*( ≳ 𝑣'(, the liquid thread gets 33	
thinner from the nozzle to the drop (Fig. 4(b), last image): this is the narrowing regime. Curiously, 34	
Meyer and Crocker21 did not  distinguish these regimes in their paper. 35	

In jet widening, we also see that the thread undergoes surface oscillations (see supplementary 36	
material B, Fig. B1). These oscillations are essentially stationary in space. According to Utada et 37	
al.20 who studied jet widening in coflowing liquids, this behavior is characteristic of an absolute 38	
instability. To quantify this, as Utada et al.20, we examine the variations of the neck diameter 39	
(between the thread and growing drop) as a function of time (see supplementary material B, Fig. B2). 40	
The neck diameter oscillates about its mean with an increasing amplitude until pinch off and 41	
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subsequent drop detachment. The oscillation frequency is around 350 Hz for the reference system, 1	
consistent with the inertial-capillary time scale of this system. 2	

As for coflowing or cross-flowing liquids3,21,22, we represent the DJT in the Ca#-.−We23 space. 3	
We remind that We23  is the inner Weber number (We23 = 𝜌'(𝐷(𝑣'(N /𝛾 ) and Ca#-.  the outer 4	
capillary number (Ca#-. = 𝜂*(𝑣*(/𝛾). Figure 5(a) presents the variations of We23  built with the 5	
jetting velocity as a function of Ca#-., for the five systems of Table II. The curves exhibit a plateau 6	
for lower Ca#-. values and a sudden decrease for higher Ca#-.. They are similar in shape to the 7	
curves established by Meyer and Crocker21 and Pathak.22 We associate the plateau with jet widening 8	
and the sudden decrease with jet narrowing. For all systems, at the plateau, We23 is in the order of 1, 9	
in the order of magnitude reported for jet widening in coflow.3 Our plateau values are also similar to 10	
those of Meyer and Crocker21 and Pathak.22 The transition between widening and narrowing occurs 11	
at a critical value of Ca#-., such that 𝑣*( ≈ 𝑣'(. This value is denoted Ca∗ for the reference system 12	
in Fig. 5(a).  13	

 14	
FIG. 4: Reference system snapshots (Oh*( = 7.0×10-3): (a) jet widening, Ca#-. = 5.1×10-3; (b) jet narrowing, Ca#-. = 15	
1.3×10-2. Continuous phase flow from right to left. 16	

 17	
The same trends, i.e. a plateau followed by a marked decrease, are obtained for the drop 18	

diameters formed at the DJT as a function of Ca#-. (Fig. 5(b)). The variations in drop diameters at 19	
the DJT as a function of Ca#-. were not reported before.21,22 In jet widening, we expect that the drop 20	
diameter is controlled by a balance between the jet momentum and the retaining capillary force. In 21	
jet narrowing, the drop diameter should be controlled by a balance between the drag force 22	
experienced by the drop and the capillary force. As the continuous phase velocity increases, the 23	
thread gets thinner leading to a lower retaining capillary force, thus smaller drops. 24	

As the interfacial tension 𝛾 decreases between the reference system, system 1 and 2, the plateau 25	
value for We23 decreases and the transition from jet widening to narrowing is shifted towards higher 26	
Ca#-.. This result, to which we shall return, was not reported before. The influence of 𝛾 on the DJT 27	
was not examined in detail in cross-flow.21,22 28	

In our trials, the dispersed phase viscosity 𝜂'( does not affect the jetting velocity since the data 29	
for the reference system, system 3 and 4 collapse onto a unique curve (Fig. 5(a)). This is in good 30	
agreement with Meyer and Crocker’s results.21 They found that the jetting velocity does not vary 31	
significantly with the inner Ohnesorge number Oh'( = 𝜂'(/ 𝜌'(𝐷(𝛾 while Oh'( is below 3×10-2. 32	
Indeed, while Oh'( ≪ 1, the pinch-off time scale is in the order of the inertial-capillary time scale, 33	
thus it does not depend on 𝜂'(. This corresponds to our experimental range: Oh'( increases from 34	
1.2×10-2 to 2.9×10-2 as 𝜂'( increases from 1.34 to 3.24 mPa.s. Drop diameters are also unaffected by 35	
𝜂'( (Fig. 5(b)). 36	
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 1	
FIG. 5: Characteristic values at the DJT, see Table I for symbols: (a) We23 function of Ca#-.. Widening to narrowing limit 2	
Ca∗ for the reference system (dashed line); (b) Drop to pore diameter ratio 𝐷'/𝐷( function of Ca#-..  3	

 4	
According to Utada et al.3 and Meyer and Crocker21, our DJT curves should overlap in the 5	

Ca#-.−We23 space since Oh'( ≪ 1. However, as stated before, our DJT curves are shifted towards 6	
higher Ca#-. as the interfacial tension decreases. We attribute this to the hydrodynamic regime of the 7	
drag force experienced by a growing drop. Indeed, the particle Reynolds number Reb ranges from 8	
114 to 424 in our DJT trials. These values are much higher than those reported by Utada et al.3 and 9	
Meyer and Crocker.21 Thus, the drag force in our trials rather corresponds to the Newtonian regime 10	
than to the Stokes regime. Since the ratio of the drag to capillary force is in the order of 11	
(Ca#-./Oh*()² = Weout  under Newton regime assumption (as opposed to Ca#-.  under Stokes 12	
approximation), we plot We23  as a function of Ca#-./Oh*(  (see supplementary material C). We 13	
remind that Oh*( is the outer Ohnesorge number (Oh*( = 𝜂*(/ 𝜌*(𝐷(𝛾). We find that reference 14	
system and system 1 and 2 data then actually collapse in the narrowing regime.  15	

 16	
B. Model 17	

The DJT criteria proposed by Pathak22 and Meyer and Crocker21 are not adapted to our case. 18	
Indeed, in our trials, the growing drops are mainly located above the shear layer adjacent to the nozzle 19	
tip (see Section II) and the particle Reynolds number is far from the Stokes regime (see Section 20	
IV.A). Figure D1 (supplementary material D) shows the discrepancy between our DJT data for the 21	
reference system and previous authors’ DJT criteria.21,22 We remind that these criteria are semi-22	
empirical since these authors simply replaced Bo and Bo#, the Bond numbers built with the nozzle 23	
inner and outer diameters, by Ca#-. in Clanet and Lasheras’ criterion11 and adjusted the coefficients 24	
to fit their data. In this section, we propose a comprehensive model to account for the jetting velocity 25	
and drop diameters at the DJT. 26	

Firstly, the footage shows that thread dynamics occur essentially along the 𝑥-axis (Fig. 4): the 27	
drop forms at the end of a thread that tends to align with the continuous phase flow. Thus, we 28	
approximate our configuration by a coflow configuration (Fig. 6). A force balance is now more 29	
relevant than a torque balance since the drop can no longer be considered as a sphere rotating about 30	
the nozzle edge. 31	

We revisit Clanet and Lasheras’ approach11 developed for a liquid injected downwards into a 32	
stagnant gas under gravity and amend the drop equation of motion to consider coflowing liquids. We 33	
thus add a drag force induced by the continuous flowing phase since 𝜂*( is orders of magnitude 34	
higher than the dynamic viscosity of air and we account for the added mass effect since 𝜌*(~𝜌'(. 35	
We neglect buoyancy since for the largest drops (obtained in the widening regime), the buoyancy to 36	
capillary force ratio is lower than 3%. 37	

In Clanet and Lasheras’ scenario11, drops are generated as follows: a first drop detaches (at 𝑥 = 38	
0 in Fig. 6), leaving a thread behind that recedes at a velocity d𝑥/d𝑡, due to surface tension effects. 39	
During recession, a mass (drop) 𝑀 forms (sphere in Fig. 6). It recedes until it reaches a distance 𝑥nop 40	
(closer to the nozzle, Fig. 6). The mass then progresses the other way, once momentum and drag 41	
overcome surface tension effects. It is assumed that pinch off begins at 𝑥nop. From that point, the 42	
drop no longer grows. The drop travels a distance 𝑙' until detachment. If 𝑥nop > 𝑙', dripping occurs. 43	
Oppositely, if 𝑥nop < 𝑙', the detachment point advances each time, leading to jetting.  44	
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The mass 𝑀(𝑡) of the drop is given by 1	

𝑀 𝑡 =
𝜋
4
𝐷(N	𝜌'(𝑣'(𝑡 + 𝜌'( 𝑆Ds(𝑥′)

p(D)

K
𝑑𝑥′																																												(4) 2	

We remind that 𝑣*( and 𝑣'( are velocity moduli. 𝑆Ds(𝑥) is the thread cross-section at the location 𝑥. 3	
𝑆Ds(𝑥) is related to 𝑣Ds(𝑥), the mean fluid velocity modulus in the thread at the location 𝑥, by 𝑞'( =4	
𝑆Ds 𝑥 𝑣Ds(𝑥). The variations of the mean dispersed phase velocity 𝑣Ds along the thread depend on 5	
the continuous phase shear stress. 6	

 7	
FIG. 6: Model configuration with the different variables involved.  8	

The drop equation of motion during recession reads: 9	

d
d𝑡

𝑀(𝑡) + 𝑀o(𝑡)
d𝑥
d𝑡

= 𝜋𝐷Ds 𝑥 𝛾 − 𝜌'(𝑞'(
d𝑥
d𝑡
+ 𝑣Ds 𝑥 −

𝜋
4
𝐷nN 𝑡 𝐶Q

𝜌*(
2

𝑣*( +
d𝑥
d𝑡

N

			(5) 10	

The left-hand side of Eq. (5) corresponds to the drop effective inertia and includes 𝑀o 𝑡  the added 11	
mass due to the surrounding continuous phase. We suppose that the added mass is equal to half of 12	
the displaced volume of continuous phase, as for a solid sphere in an infinite medium. It is thus given 13	
by 𝑀o 𝑡 = 0.5𝑀 𝑡 𝜌*(/𝜌'( . The first term on the right-hand side of Eq. (5) is the retaining 14	
capillary force, with 𝐷Ds 𝑥  the thread diameter at the location 𝑥 . The second term is the jet 15	
momentum flux entering the drop. The last term is the drag force, in which the frontal area 16	
corresponds to that of a sphere with the given mass. The drop mass diameter is given by: 17	

𝐷n(𝑡) =
6
𝜋
𝑀 𝑡
𝜌'(

Z [

																																																																							(6) 18	

In the drag force, the drag coefficient 𝐶Q(Reb) is estimated from Eq. (3), with the coefficients adjusted 19	
before and Reb is built with 𝐷n(𝑡) (Eq. (6)) and the relative velocity 𝑣*( + d𝑥 d𝑡 . At the DJT, we 20	
find Reb = 114 to 424 (estimated with the experimental 𝐷' and 𝑣*(). This is in the same range as 21	
where the coefficients of Eq. (3) were adjusted. However, Eq. (3) was established for drops detaching 22	
in dripping mode: we here neglect the deviations in 𝐶Q that may arise at the DJT when the thread 23	
linking the drop to the nozzle is larger. We assume that 𝐶Q  essentially depends on the drop mass 24	
diameter and the particle Reynolds number and little on the drop shape details. 25	

𝑥nop is determined from the numerical integration of system (4-6) (see Appendix). As stated 26	
above, the DJT occurs at 𝑥nop = 𝑙'. 𝑙' is the detachment distance by pinch off, such that: 27	

d𝑥
𝑣Ds(𝑥)

uv	

K
= 𝜏G																																																																									(7) 28	

𝜏G is the necking time or pinch-off time (in the order of the inertial-capillary time), given by: 29	

𝜏G = 𝑘′
𝐷x[ 𝑥nop 𝜌'(

8𝛾

Z N

																																																															(8) 30	

We estimate 𝑘′ ≈	8.26 ± 0.43 by Clanet and Lasheras’ method11: we measure the neck diameter 31	
variations in dripping mode as a function of time during pinch off, we fit the variations to an 32	
exponential form to find 𝜏G and we plot 1/𝜏G as a function of 𝜏* = 8𝛾/𝐷([𝜌'(

Z N
. This was done 33	

for the reference system, systems 1 and 2 (see supplementary material E). These systems differ only 34	
by their interfacial tension and are characterized by a viscosity ratio 𝜁 = 1.5. We find 𝜏G 2.6 times 35	
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higher than Clanet and Lasheras11 for a liquid in air, which depicts a lower instability growth rate. 1	
This is in agreement with results reported in the literature: Rayleigh33 found a growth rate (made 2	
dimensionless by 𝜏*) of 0.34 for an inviscid liquid in air. On the other hand, Funada and Joseph34 3	
found a growth rate 1.3 to 4.8 times lower for water in benzene (𝜁 = 1.5) in the range of our Re23, 4	
from a fully viscous analysis.  5	

Returning to the model, the jetting velocity at a set 𝑣*( is obtained as follows (see Appendix for 6	
details): 𝑣'( is scanned and for each 𝑣'(, the system (4-6) is integrated as a function of time, until 7	
𝑥 = 𝑥nop. If 𝑥nop coincides with 𝑙' (Eq. (7)), the corresponding 𝑣'( value is the jetting velocity at 8	
the given 𝑣*(. The resulting drop diameter is deduced from Eq. (6): 𝐷' ≈ 𝐷n(𝑡nop), where 𝑡nop is 9	
the time taken for the mass to travel from 0 to 𝑥nop. This method may be repeated for each 𝑣*( tested 10	
to reproduce our experimental results.  11	

 12	
C. Comparison with experiments 13	

To implement the above model, we must describe the mean dispersed phase velocity along the 14	
thread. Two limit cases will be considered: (1) the thread diameter and mean velocity are negligibly 15	
affected by the continuous phase flow in both jetting regimes and (2) the mean thread velocity quickly 16	
reaches the continuous phase velocity in the narrowing regime. 17	
C.1. Uniform nozzle-sized thread 18	

First, we consider the simplest scenario where the thread diameter is not affected by the 19	
continuous phase in either jetting regime. In this case, we assume 𝑣Ds 𝑥 = 𝑣'( and 𝐷Ds 𝑥 = 𝐷( 20	
from 𝑥 = 0 to 𝑥nop. Then, the thread cross-section reads 𝑆Ds(𝑥) = 𝜋𝐷(N 4. We call this the uniform 21	
nozzle-sized thread limit. We solve system (4-6) under this assumption by the method described in 22	
the Appendix. The results are reported in Fig. 7 (solid lines). 23	

The variations of the critical inner Weber number We23 function of the outer capillary number 24	
Ca#-. are satisfactorily reproduced (Fig. 7(a), solid lines). The same conclusion may be drawn for 25	
the variations of the dimensionless drop diameter as a function of Ca#-.  (Fig. 7(b), solid lines). 26	
Furthermore, the effect of the interfacial tension on the transition is well accounted for. 27	

The model predicts a plateau in jet widening (for small Ca#-.), but in our experiments, the 28	
plateau is more pronounced and extends for higher Ca#-.. Furthermore, in jet widening, We23 and 29	
especially 𝐷'  are overpredicted. The difference in plateau values for We23 between the reference 30	
system and system 2 is also not reproduced (Fig. 7(a)). We checked that the differences in plateau 31	
values cannot be attributed to the relative effect of buoyancy. We attribute them to the thread surface 32	
oscillations (see supplementary material B), which affect the retaining capillary force and pinch-off 33	
time. These oscillations cannot be accounted for in the framework of the present model. 34	

Lastly, we note that We23 and 𝐷' are overestimated at high Ca#-. for the reference system (and 35	
systems 3 and 4, not shown in Fig. 7). This may be explained by the narrowing of the thread which 36	
becomes significant at high 𝑣*( but is neglected in the present case. In the next section (IV.C.2), we 37	
attempt to take this effect into account. 38	

 39	
FIG. 7: Characteristic values at the DJT, see Table I for symbols. (a) We23 function of Ca#-.. (b) Drop to pore diameter 40	
ratio 𝐷'/𝐷( function of Ca#-.. Simulation results for the reference system (grey); system 2 (black). Uniform nozzle-sized 41	
thread limit of Section IV.C.1 (solid line); maximal narrowing limit of Section IV.C.2 (dashed line).  42	

 43	
C.2. Maximal narrowing 44	
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We measure the thread diameter for the reference system in the narrowing regime: it decreases 1	
by less than 10% for 𝑣*( ≤ 0.73 m.s-1 (Caout = 1.3×10-2) but decreases by more than 50% for the 2	
highest 𝑣*( . In the latter case, narrowing effects can no longer be neglected and our hypothesis 3	
𝐷Ds 𝑥 = 𝐷( of Section IV.C.1 is no longer valid. 4	

We suppose that the momentum diffusion across the thread is rapid and fully efficient in the 5	
narrowing regime. In this case, we may consider that if 𝑣*( > 𝑣'(, the thread is characterized by 6	
𝑣Ds 𝑥 = 𝑣*( , 𝐷Ds 𝑥 = 𝐷((𝑣'( 𝑣*()

Z N  and 𝑆Ds 𝑥 = 𝜋𝐷DsN (𝑥) 4  from 𝑥 = 0  to 𝑥nop . This 7	
gives the maximal narrowing limit. According to Castro-Hernandez et al.4, maximal narrowing is 8	
observed when Re23 < 1. In our trials, Re23 = 7 to 130, so their assumption is not strictly applicable. 9	
However, it will give us an overestimate of the narrowing effect on the DJT and drop diameter. If 10	
𝑣*( < 𝑣'( (jet widening), we still neglect the effect of the continuous phase on the thread size and 11	
assume that 𝐷Ds 𝑥 = 𝐷( and 𝑣Ds 𝑥 = 𝑣'(, as in Section IV.C.1. 12	

As before, we solve system (4-6) under these new assumptions (see Appendix) and we report 13	
the results in Fig. 7 (dashed lines). For the reference system (and systems 3 and 4, not shown), our 14	
data for We23 and 𝐷' in jet narrowing lie in between the maximal narrowing limit (dashed lines, Fig. 15	
7(a) and (b)) and the uniform nozzle-sized thread limit (solid lines, Fig. 7(a) and (b)). 16	

We note that the data for system 2 are surprisingly well described by the uniform nozzle-sized 17	
thread limit. This is probably due to the compensation of different errors related to the uniform 18	
nozzle-sized approximation, the use of the drag coefficient estimated in the dripping regime and the 19	
assumption that forces act only along the 𝑥-axis. 20	

 21	
V. CONCLUSIONS 22	

While the dripping to jetting transition (DJT) is well documented for liquid-air8,11 or liquid-23	
liquid coflow3,4,13,14, liquid-liquid cross-flow21,22 has received little attention and no comprehensive 24	
model was proposed to describe the DJT in this configuration. Also, drop diameters specifically at 25	
the DJT were either not measured or not reported.21,22  26	

In the present work, we studied liquid-liquid cross-flow for different phase velocities, interfacial 27	
tensions and dispersed phase viscosities. Contrary to previous work21,22, the growing drops are mainly 28	
located above the shear layer that develops above the nozzle. Furthermore, since the inner Ohnesorge 29	
number (characteristic of the dispersed phase flow) is much lower than 1, drop pinch-off is controlled 30	
by the inertial-capillary time scale. 31	

 In strict dripping, we found that the drop diameter is well described by a simple torque balance 32	
about the nozzle edge, taking into account the drag force experienced by the drop and the retaining 33	
capillary force. This result was used to estimate the drag coefficient for an attached drop as a function 34	
of the particle Reynolds number. 35	

The DJT occurs at a critical inner Weber number function of the outer capillary and Ohnesorge 36	
numbers. Two jetting regimes occur (widening and narrowing) depending on the phase velocity ratio. 37	
In jet widening (when the dispersed phase velocity is greater than the continuous phase one), the 38	
critical inner Weber number depends little on the outer capillary number whereas in the narrowing 39	
regime, it sharply decreases as the outer capillary number increases. Furthermore, when the outer 40	
Ohnesorge number increases, the transition between widening and narrowing is shifted to higher 41	
values of the outer capillary number. The hydrodynamic regime of the drag force experienced by a 42	
growing drop is actually inertial and not viscous. 43	

We proposed to model the DJT in liquid-liquid cross-flow by revisiting an approach originally 44	
developed by Clanet and Lasheras for a liquid injected into a stagnant gas under gravity. The model 45	
describes the recession dynamics and the growth of the drop until pinch off. In the present case, the 46	
driving force for drop detachment is not buoyancy but the drag force exerted by the continuous phase 47	
flow. We distinguished two limit cases for the thread profile that exits the nozzle and enters the drop: 48	
a uniform nozzle-sized thread limit and a maximal narrowing limit. Jetting velocities and drop 49	
diameters measured at the DJT in jet narrowing are well accounted for and lie in between model 50	
predictions in the two limit cases. Furthermore, the effect of the outer Ohnesorge number on the DJT 51	
is well reproduced. In jet widening, the agreement is less satisfactory. Discrepancies are attributed to 52	
thread surface oscillations which appear in jet widening. However, we may conclude that the main 53	



12	
	

features of the DJT in cross-flow are captured which highlights the insight and the robustness of 1	
Clanet and Lasheras’ original model. 2	
 3	
SUPPLEMENTARY MATERIAL 4	

See supplementary material for insight on: A, continuous phase flow analysis using Particle 5	
Image Velocimetry (PIV); B, oscillations in jet widening; C, collapsed data in jet narrowing; D, 6	
comparison with Pathak’s and Meyer and Crocker’s DJT criteria; E, estimation of the necking time. 7	
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APPENDIX: NUMERICAL METHOD TO OBTAIN THE JETTING VELOCITY 11	
For a set 𝑣*(, the jetting velocity is obtained by an iterative procedure. 𝑣'( is varied with a 0.001 12	

m.s-1 increment. For each 𝑣'(  value, the recession dynamics of a growing drop is computed by 13	
integrating system (4-6) using the fourth order Runge-Kutta method. The initial conditions are 14	
𝐷' 0 = 0 and 𝑥 0 = 0. According to Eq. (5), 𝑥 0  is then given by Eq. (A1) for the uniform 15	
nozzle-sized thread limit and by Eq. (A2) for the maximal narrowing limit. 16	

𝑥 0 = −
𝑣'(
2

1 +
𝜌'(
𝜌y

+
1
2

𝑣'(N 1 −
𝜌'(
𝜌y

N
+
16𝛾
𝐷(𝜌y

Z N

																															(𝐴1) 17	

𝑥 0 = −
𝑣*(
2

1 +
𝜌'(
𝜌y

+
1
2

𝑣*(N 1 −
𝜌'(
𝜌y

N
+
16𝛾 𝑣'( 𝑣*(

Z N

𝐷(𝜌y

Z N

											(𝐴2) 18	

with 𝜌y = 𝜌'( + 𝜌*( 2. Integration is performed until the drop stops and changes direction. That 19	
point is denoted 𝑥nop. The above iterative procedure is stopped as soon as 𝑥nop = 𝑙', the latter 20	
calculated from Eq. (7). At this point, the 𝑣'( value corresponds to the jetting velocity.  21	
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