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Introduction

Identifying the light scattering regime in materials is of interest for various applications, as remote sensing [START_REF] Derode | Robust acoustic time reversal with high-order multiple scattering[END_REF], Lidar measurements [START_REF] Kavaya | Target reflectance measurements for calibration of lidar atmospheric backscatter data[END_REF][START_REF] Kavaya | Polarization effects on hard target calibration of lidar systems[END_REF], biological imaging [START_REF] Abou Nader | Early diagnosis of teeth erosion using polarized laser speckle imaging[END_REF][START_REF] Ceolato | Spectral degree of linear polarization of light from healthy skin and melanoma[END_REF], astrophysics [START_REF] Seager | Photometric light curves and polarization of close-in extrasolar giant planets[END_REF][START_REF] Kervella | The dust disk and companion of the nearby AGB star L 2 Puppis SPHERE/ZIMPOL polarimetric imaging at visible wavelengths[END_REF], and for a better understanding of light matter interactions [START_REF] Sorrentini | Statistical signatures of random media and their correlation to polarization properties[END_REF]. Experimentally, the classical method to measure the linear depolarization produced by a given sample is to illuminate it with a fully linearly polarized light, and to measure the back scattered intensities polarized along the parallel and perpendicular states of polarization. The DOLP is obtained with DOLP = I -I ⊥ I +I ⊥ , and is equal to 0 for a pure depolarizer and close to 1 for a mirror.

Spectralons are reference radiometric samples: their reflectance values are calibrated. Yet, their depolarization rate is rarely fully characterized. This is a major issue as most polarimetric dependency of optoelectronic devices transfer functions must be characterized, especially when using mirrors, diffraction gratings, lasers, etc. Spectralons are used for that purpose, thus there is a need in spectralon polarimetric characterization, in a large range of reflectances (2 -99 %).

In the case of low reflectance Spectralons, the depolarization decrease because of the absorption in the sample: the majority of multiple scattering events are absorbed. Conceptually, the degree of polarization of the back-scattered intensity is expected to reach 1 when the reflectance of the surface is reaching 0%. Measuring such a weak depolarization using the classical method is not trivial as the signal to noise ratio decreases for low reflectances. The polarimetric characterization of high reflectance Spectralon (R = 99%) has been performed through Mueller Matrix measurements [START_REF] Svensen | Mueller matrix measurements and modeling pertaining to Spectralon white reflectance standards[END_REF][START_REF] Sanz | Comprehensive polarimetric analysis of Spectralon white reflectance standard in a wide visible range[END_REF][START_REF] Kildemo | Parametric model of the Mueller matrix of a Spectralon white reflectance standard deduced by polar decomposition techniques[END_REF], resulting in a quasi perfect depolarizing Mueller Matrix, for small illumination and detection angles. However, an extrinsic spatial depolarization is often generated to overcome the speckle noise issue: the electromagnetic field is (temporally or spatially) averaged during measurements. That decrease in degree of polarization due to an incoherent spatial summation of various contibutions to the electromagnetic field has been for example observed in [START_REF] Li | Degree of polarization in laser speckles from turbid media: Implications in tissue optics[END_REF][START_REF] Ghabbach | Depolarization and enpolarization DOP histograms measured for surface and bulk speckle patterns[END_REF], and studied in the case of surface [START_REF] Zerrad | Gradual loss of polarization in light scattered from rough surfaces: Electromagnetic prediction[END_REF] and bulk [START_REF] Zerrad | Spatial depolarization of light from the bulks: electromagnetic prediction[END_REF] scattering. The formalism describing the Mueller matrix dependency with the spatial coherence of the fields has been studied in [START_REF] Ossikovski | General formalism for partial spatial coherence in reflection Mueller matrix polarimetry[END_REF].

In this paper, we propose to perform polarimetric measurements in the spatially resolved speckle fields, i.e. close to the limiting case of a total spatial coherence. Thus, the spatial depolarization is limited, and we approach intrinsic polarimetric parameters characterizing the samples, that does not depend on imaging processes or other external parameters. To perform these measurements, we use the SOPAFP method [START_REF] Dupont | Polarization analysis of speckle field below its transverse correlation width : application to surface and bulk scattering[END_REF][START_REF] Dupont | Polarized vortices in optical speckle field: observation of rare polarization singularities[END_REF] which increases the polarimetric accuracy, especially at places of destructive interferences, and in case of low reflectance samples. As a result, we are able to fully characterize the polarization state for every pixel of the speckle image. Every pixel exhibits a linear combination of a fully depolarized light, and a fully polarized light. The first term includes experimental noises and local depolarization due to eventual fields integration on the pixel surface, if the speckle is not enough spatially resolved. In order to study the depolarization produced by the samples, we spatially average the polarized fields on increasing areas, which globally lowers the DOP. This phenomenon is called spatial depolarization and leads to a first data set of DOP as a function of spatial averaging, the asymptotic values being the apparent DOP values that one would measure by integrating the whole fields on a photodiode surface, i.e. close to the limiting case of total spatial incoherence.

In order to increase the accuracy of the spatial depolarization determination, we come back to the measurements obtained in the case of a quasi total coherence (i.e. in spatially resolved speckle fields), then the statistics of the relative phase shifts between two orthogonal components of the electromagnetic field are studied. We perform the projection of all the Stokes vectors on the plane waves polarized at ±45 • relatively to the mean scattered state. As the Lambertian samples does not exhibit spatial variations of diattenuation, the mean intensities of the plane waves are equal, and the SOP dispersion around the mean state is only driven by the relative phase shift probability density function (PDF). The relative phase shifts PDF appears to be close to circular distributions [START_REF] Gatto | The generalized Von Mises distribution[END_REF][START_REF] Mccullagh | Möbius transformation and Cauchy parameter estimation[END_REF][START_REF] Elderton | Systems of Frequency Curves[END_REF][START_REF] Hall | The approximation of symmetric X-ray peaks by Pearson type VII distributions[END_REF]. The bandwidth of the distribution, depending on a concentration parameter ρ, is demonstrated to be equal to the spatially integrated DOP. For Lambertian samples, the concentration of the phase distribution ρ appears to be only depending on the reflectance R of the samples. Thus, an analytic equation is given, allowing to estimate the SOP dispersion, or the monochromatic spatially integrated DOP (if the fields are incoherently spatially averaged), as a function of the reflectance of the Lambertian samples.

Method and formalism

Any State Of Polarization (SOP) can be described by a sum of two plane waves, orthogonal to each other, with amplitudes E x and E y , and φ their relative phase shift. If we consider a polarized wave propagating along the z axis, its SOP is described by the following Stokes vector [START_REF] Goldstein | Polarized Light[END_REF]:

S =            I = E 2 x + E 2 y + C 2 Q = 2 E x E y cos (φ) U = E 2 x -E 2 y V = 2 E x E y sin (φ) (1) 
With I the total intensity (polarized or not), Q the intensity polarized along the horizontal or vertical, U the intensity polarized in the ±45 • direction and V the intensity polarized along a right or left handed circular SOP; E x the amplitude of the first plane wave linearly polarized along the x axis, E y the amplitude of the second plane wave linearly polarized along the y axis (with x and y corresponding respectively to ±45 • direction), φ their relative phase shift, and C 2 the constant intensity corresponding to the depolarized fields and experimental noises [START_REF] Dupont | Speckle fields polarimetry: statistical analysis and polarization singularities measurements[END_REF]. The corresponding local Degree Of Polarization (DOP) is:

DOP = Q 2 + U 2 + V 2 I = 1 - C 2 I (2) 
In order to perform the polarimetry of the scattered fields, the State Of Polarization Analysis by Full Projection on the Poincaré sphere (SOPAFP) method [START_REF] Dupont | Polarization analysis of speckle field below its transverse correlation width : application to surface and bulk scattering[END_REF][START_REF] Dupont | Polarized vortices in optical speckle field: observation of rare polarization singularities[END_REF] is used, which consists in the non linear regression of the intensity recorded during n polarimetric projections. These multiple projections (300 for the measurements presented in this paper) increase the polarimetric accuracy, especially at places of destructive interference, where the signal to noise ratio drastically decreases.

We define the two intensities I x = |E x | 2 and I y = |E y | 2 , the intensities of the two plane waves respectively polarized along the x and y directions, and the following intensity ratios:

R x = < I x > < I > R y = < I y > < I > R c = < C 2 > < I > (3) 
With <> indicating the spatial averaging. R x describes the mean fraction of the total intensity polarized along the x direction; R y the mean fraction of the total intensity polarized along the y direction; and R c the mean fraction of totally depolarized intensity.

The spatially integrated degree of polarization DOP, not equivalent to the mean local degree of polarization < DOP >, is the degree of polarization that one would measure after a spatial integration of all the fields incoming in the CCD, e.g. by replacing it with a photo-diode. The spatially integrated DOP can be computed with:

DOP = < Q > 2 + < U > 2 + < V > 2 < I > (4) 
With I, Q, U and V described in Eq. ( 1). In order to measure the spatial correlation between the two intensities I x and I y , we use the sample Pearson correlation coefficient (r), defined by:

r xy = m n (x mn -x)(y mn -ȳ) ( m n (x mn -x) 2 )( m n (y mn -ȳ) 2 ) (5)
With m, n the pixels coordinates, and -1 ≤ r xy ≤ 1. If r xy = -1 or r xy = 1 the two intensities exhibit a negative or positive spatial correlation, if r xy = 0 the two intensities are spatially uncorrelated.

Finally, we describe the relative phase shift PDF p(φ) with different circular distributions. We made a first attempt with a Von Mises distribution V M(φ), approximation of a circular normal distribution [START_REF] Gatto | The generalized Von Mises distribution[END_REF]:

V M(φ) = 1 2π exp(κ.cos(φ -φ 0 )) I 0 (κ) , 0 ≤ φ < 2π (6) 
With κ a parameter describing the concentration of the Von Mises distribution, I n (x) the n th order modified Bessel function and φ 0 a location parameter. We also tried to describe the relative phase shift distribution p(φ) with a circular Cauchy (or Lorentzian) CC(φ) distribution [START_REF] Mccullagh | Möbius transformation and Cauchy parameter estimation[END_REF]:

CC(φ) = 1 2π 1 -ρ 2 1 + ρ 2 -2ρcos(φ -φ 0 ) , 0 ≤ φ < 2π (7) 
With ρ the concentration of the circular Cauchy distribution. In order to get a better accuracy, we finally tried the following circular convolution:

CV = V M ⊗ CC (8) 
Where CV denotes circular Voigt, analogy of a Voigt profile, well defined as the convolution of a classical Gaussian and Lorentzian (also called Cauchy) profile [START_REF] Elderton | Systems of Frequency Curves[END_REF][START_REF] Hall | The approximation of symmetric X-ray peaks by Pearson type VII distributions[END_REF].

Experimental setup

We use the experimental set up presented in Fig. 1. The wavelength is 532 nm. The illumination beam is collimated, with a diameter of roughly 1 cm, and the incident SOP is set to the vertical by a Glan-Taylor polarizer (P lin ). The illumination beam is scattered by the sample, the polarimetric projections of the scattered field are performed by two Nematic Liquid Crystals (N LC) and a linear grid polarizer (P lin ). The resulting intensity is imaged by a lens, which entrance pupil is reduced by a pinhole (P), on a 1000×1000 pixels CCD. The distance between the sample and the entrance pupil is roughly 20 cm, the measurement is performed in the far field region. The Fig. 1. Schema of the experimental setup. The source is a SLM laser @532nm. The illumination SOP is set to the vertical by P lin . The samples are Lambertian Spectralons, the polarimetric projections of the scattered fields are performed by two Nematic Liquid Crystals (NLC) and a vertical polarizer. The resulting intensity is imaged by a lens, in which the imaging pupil is reduced using a diaphragm P, and a CCD camera.

illumination is perpendicular to the sample surface, and the detection is centered roughly at 45 • respectively to the illumination beam. We perform measurements on Lambertian samples with calibrated reflectances. Thus, the surface luminance is approximately invariant in function of the detection angle. The designation of the samples are SRS -X X -010, with X X the theoretical reflectance value, from 02% to 99%. We also use the colored sample SCS -RD -010. The reflectances are measured using a PerkinElmer Spectrophotometer @ 532 nm, the results are resumed in Table 1 for each sample, here we describe the samples through their reflectance values.

Table 1. Diffuse reflectance R of each sample measured using a PerkinElmer Spectrophotometer @ 532 nm.

Sample SRS-02 SCS-RD SRS-20 SRS-50 SRS-75 SRS-99 R (%)

1.2 6.9 18.4 49.9 77.4 98.7

In order to reduce the sources of depolarization (i.e. to reduce the C 2 value), some precautions are taken: the laser source is Single Longitudinal Mode (SLM), in order to avoid spectral depolarization, and we reduce the diameter of the imaging pupil, in order to reduce the pixel spatial depolarization. As the diameter of the imaging pupil is reduced, the size of the imaging Point Spread Function is increased by the diffraction. Thus, the number of pixels per speckle grain in the image plane is increased and we have a correct spatial sampling of the diffraction pattern. Indeed, the quality of the spatial sampling impacts the amount of spatial depolarization [START_REF] Zerrad | Gradual loss of polarization in light scattered from rough surfaces: Electromagnetic prediction[END_REF][START_REF] Zerrad | Spatial depolarization of light from the bulks: electromagnetic prediction[END_REF].

Thus, the contributions remaining in the C 2 value are the intensity variations uncorrelated with polarimetric projections, mostly experimental noises as photon noise, non linearity of the pixels quantum efficiency, dark current, etc. As the experimental noises can lead to higher or lower DOP values, the C 2 value is not restricted to be positive, i.e. C is a complex number.

Results

SOP statistics: spatial depolarization measurements

We perform polarimetric measurement using the SOPAFP method [START_REF] Dupont | Polarization analysis of speckle field below its transverse correlation width : application to surface and bulk scattering[END_REF][START_REF] Dupont | Polarized vortices in optical speckle field: observation of rare polarization singularities[END_REF] on reference samples, with calibrated reflectances. As the scattered fields are temporally stable, we neglect the impact of the time of exposure on polarimetry, and we adjust the integration time of the CCD in order to avoid the saturation, the illumination beam being unchanged for all samples. The intensities I and C 2 , the relative phase shifts φ and the SOP probability density in the Poincaré sphere measured in the fields scattered by the samples with R = 1%, R = 7% and R = 99% are displayed in Fig. 2, for a 50×50 pixels area. By looking at the relative phase shifts φ, Fig. 2(c) shows that the sample R = 1% scatters a field in which phase shifts are centered around π, while no predominant value can be distinguished in the field scattered by the sample R = 99% in Fig. 2(k). Moreover, the SOP are spreading on the Poincaré sphere surface when the sample reflectance increases: a majority of the scattered SOP are centered around the illumination SOP for the sample R = 1%, Fig. 2(d), while there is no predominant SOP scattered by the sample R = 99%, Fig. 2(l). With the plane waves decomposition described by Eq. ( 1), and because the illumination SOP is set to the vertical (i.e.

I (n.c.) C 2 (n.c.) φ (rad) PDF(S) (arb.) R = 1% (a) (b) (c) (d) R = 7% (e) (f) (g) (h) R = 99% (i) (j) (k) (l)
x and y are respectively at ±45 • relatively to the mean scattered state), for each sample we obtain exponentially decreasing Probability Density Functions (PDF) for p(I x ) and p(I y ), with equal mean intensity levels: R x = R y . Thus for all the samples, I x and I y are two independent speckle fields [START_REF] Goodman | Speckle Phenomena in Optics[END_REF], with equal mean intensities. Reciprocally, in order to modelize the polarized subjective speckle produced by any kind of Lambertian scatterer (from a simple to a multiple scatterer), a simple way is to sum two independent speckles with the same mean intensity, orthogonally polarized and with partially correlated phase planes, the scattering regime depending on that partial correlation [START_REF] Dupont | Simulation of polarized optical speckle fields: effects of the observation scale on polarimetry[END_REF].

The intensity spatial correlation r xy between I x and I y is equal to r xy = 0.72 for the sample R = 1%, and r xy = 0.14 for the sample R = 7%. For samples with higher reflectances, the spatial correlation falls roughly around 0 and is spatially variant. Thus this parameter is not sufficiently sensitive to fully describe the polarimetric behavior of the samples on the whole reflectance range 1% -99%. In classical polarimetry, usually the lens aperture is large relatively to the wavelength, and the effect of diffraction, the speckle pattern, is spatially summed on the pixels surface. This summation leads to a measurement of the DOP of several contributions to the field, spatially integrated. For our measurements, the surface of a single speckle grain is roughly 15 × 15 pixels. The corresponding f-number N can be estimated through the speckle transverse width l x in the approximation of a diffraction limited lens: N l x /(2.44λ). For 4.4 µm square pixels, and a speckle transverse width of 15 pixels, the f-number is approximated by N 51.

For all samples, we measure 3% < R c < 7%, thus the mean local DOP value measured in the speckle fields remain relatively high. We spatially sum the measured SOP on larger areas, from 2 × 2 to 300 × 300 pixels windows, leading to a deacreasing of the apparent spatially integrated Degree Of Polarization (DOP). The DOP variations in function of the size of spatial averaging is displayed in Fig. 3. The DOP isn't monotonically decreasing in function of the size of the spatial summation, it depends on the spatial gradient of SOP variations and on the C 2 intensity, which are fluctuating at the speckle grain scale. The fact that the DOP is globally decreasing with the spatial integration is called "spatial depolarization" [START_REF] Li | Degree of polarization in laser speckles from turbid media: Implications in tissue optics[END_REF][START_REF] Zerrad | Gradual loss of polarization in light scattered from rough surfaces: Electromagnetic prediction[END_REF][START_REF] Zerrad | Spatial depolarization of light from the bulks: electromagnetic prediction[END_REF]. The asymptotic values (for a spatial averaging of 300 × 300 pixels) are indicated in Fig. 3, and are corresponding to the values measured using a large pupil aperture relatively to the wavelength. For example, in the case of the same sample R = 99%, we obtain a good agreement with the classical measurement method: the spatially integrated DOP (here equal to 0.04) is measured "lower than 0.03" in [START_REF] Ceolato | Spectral degree of linear polarization of light from healthy skin and melanoma[END_REF].

By looking at Fig. 3 (obtained with 15 × 15 pixels per speckle grains) one can notice that the DOP value is stable with at least a 100 × 100 pixels window size, which would corresponds roughly to the integration of 50 speckle grains on each pixel.

The spatially integrated DOPs values DOP are here obtained for one incident SOP (vertical), and for fixed illumination and detection angles relatively to the sample normal (resp. 0 • , 45 • ). The DOP of R99 has been widely studied in function of these angles and its dependency with the illumination SOP through Mueller polarimetry, e.g. in [START_REF] Kildemo | Parametric model of the Mueller matrix of a Spectralon white reflectance standard deduced by polar decomposition techniques[END_REF]. Here, we propose to return to the measurements obtained in the spatially resolved speckle fields (i.e. in the case of quasi total coherence, leading to the local SOP and DOP values), and to characterize, for the experimental setup used here, the process leading to that apparent DOP decreasing, and its dependency with the sample reflectance.

Relative phase shifts statistics: characterization of the intrinsic spatial depolarization

Figure 4 displays the PDFs of the relative phase shifts weighted by their corresponding intensity values p(φ) for all samples, measured in their respective speckle fields, and the one measured in a field scattered by a mirror. As a result, distributions centered around the relative phase shift π are observed, which correspond, when I x = I y , to the vertical incident polarization state: )). Moreover, one can see that when the reflectance increase, p(φ) becomes broader. The evolution of the measured standard deviation σ of the relative phase shifts in function of the sample reflectance is displayed in Fig. 5 (black crosses). This evolution can be fitted by the following equation:

S in = [1 -1 0 0] (see Eq. ( 1 
σ(R) = σ M I N + τ σ τ σ + 1/R * (9)
With σ the standard deviation of the relative phase shifts φ, R * = R 100-R , R * ∈ [0 ; +∞[, σ M I N an offset parameter (when the reflectance reaches 0%), and τ σ a scale parameter. By regression of Eq. ( 9) on the experimental results, we obtain σ M I N = 0.77 rad, τ σ = 21.48. The adjusted curve is plotted in Fig. 5 (red). The theoretical maximum value for the standard deviation σ is the one of a uniform (U) PDF in the interval [0 ; 2π]:

σ(U) = 2π √ 12
1.81 rad (black dashed line). Fig. 4. Representation of the measured relative phase shifts probability density functions, weighted by the intensity value, for the samples with various reflectances and a mirror as a reference. The PDFs integral are normalized to 1. One can see that when the reflectance increases, the phase distribution tends to be uniform. Thus, the standard deviation of the relative phase shifts σ is depending on the sample reflectance, i.e. the more the light has undergone multiple scattering events, the more σ increases following Eq. ( 9), and almost reaches its theoretical value: max(σ) = 1.77 σ(U). One can notice that the offset value (σ M I N = 0.77 rad) is representative of a constant phase shift dispersion, whatever the sample reflectance value. The offset value σ M I N is roughly 40 times higher than the phase dispersion in the field scattered by the mirror (σ mirror = 0.02 rad). However, it is known that the polarimetric behavior of a sample which reflectance is reaching 0% should be similar to the one of a quasi perfect surface scatterer, quasi all multiple scattering events being absorbed due to its low reflectance value. Thus, the standard deviation of the relative phase shifts appears to be a biased interval estimator for the phase dispersion quantification.

These distributions appears to be more accurately described by circular distributions, we adjust various distributions on the experimental measurements. The mean error between adjusted distribution y(φ) and the experimental data p(φ) is computed with:

err = φ |y(φ) -p(φ)| φ p(φ) (10) 
We adjust circular distributions by regression of Eqs. ( 6), ( 7) and ( 8) on the p(φ) distributions, for each samples. In the case of the sample R = 1%, the error for the p(φ) description using a Von Mises distribution V M(φ) (circular normal distribution) is 13%, the correlation coefficient is R 2 = 0.994. Using a circular Cauchy CC(φ) distribution, the mean error is 23%, the correlation coefficient is R 2 = 0.980. Finally, we tried the convolution of the Von Mises with the circular Cauchy distribution, that we called CV(φ), Circular Voigt, the mean error is 6%, the correlation coefficient is R 2 = 0.999. For higher reflectance samples, we measure quasi equal ρ parameters and errors using a CC and a CV distribution, denoting that these two distributions are quasi equivalent and that the circular Cauchy distribution is sufficient for the p(φ) description for samples with R ≥ 7%. Thus, for the sample R = 1% for which the SNR decreases, we present the ρ parameter measured using a CV distribution, and for higher reflectance samples, we use a CC distribution. The fluctuations of the ρ parameter in function of the reflectance are plotted in Fig. 6 (black crosses), with their mean errors for the p(φ) description (blue dots). Finally, we plot the best adjusted fluctuation (red dashed line) computed with Eq. [START_REF] Kildemo | Parametric model of the Mueller matrix of a Spectralon white reflectance standard deduced by polar decomposition techniques[END_REF]:

ρ(R) = ρ M I N + τ ρ τ ρ + R * (11) 
With R * = R 100-R , R * ∈ [0 ; +∞[. One could use Eq. ( 11) in order to estimate the relative phase dispersion produced by any sample corresponding to that type of scatterer, for a vertical incident SOP and normal incidence / 45 • detection, only given its reflectance value. By regression, we measure ρ M I N = 0.05 and τ ρ = 0.05. When the reflectance is reaching 0%, the relative phase concentration is reaching 1.05 (i.e. close to the Dirac function). Moreover, when the reflectance is equal to 100%, the relative phase concentration is reaching 0.05 (close to a uniform distribution). These results have to be compared with the measurements of the phase dispersion using the standard deviation (Fig. 5): using that interval estimator, σ M I N = 0.77 rad for R = 0% (see Fig. 5). Thus, ρ appears to describe the intrinsic depolarization of the sample, the extrinsic part (experimental noises and artifacts) being extracted by the convolution with a VM distribution, especially in the case of low reflectance samples.

Indeed, we can draw analogy with molecular spectroscopy, where Gaussian profile generally describes inhomogeneous frequency broadening, while the Lorentzian profile describes homogeneous broadening, their convolution leading to the well defined Voigt profile [START_REF] Elderton | Systems of Frequency Curves[END_REF][START_REF] Hall | The approximation of symmetric X-ray peaks by Pearson type VII distributions[END_REF]. Here, the "homogeneous broadening" of relative phase shifts (CC distribution) would only be depending on the sample. However, the "inhomogeneous broadening" of relative phase shifts (VM distribution) would be depending on experimental noises and artifacts (angular diversity due to the incident beam divergence, angular diversity in the detection line, decreasing of the SNR for low reflectances, ...). Thus, the inhomogeneous broadening (VM distribution) is expected to be only dependent on the experimental set-up. Moreover, in [START_REF] Ossikovski | General formalism for partial spatial coherence in reflection Mueller matrix polarimetry[END_REF] the polarimetric formalism dependant on the illumination / detection spatial coherence is found to be the convolution of the material response and an instrumental complex phase function.

Thus by studying only the homogeneous part (CC distribution) of the circular Voigt profile (convolution of CC with VM), we believe to study only the intrinsic part of the relative phase shifts dispersion, i.e. only due to the scattering by the sample.

Besides, the DOP value can be computed with Eq. ( 2). Back to Eq. ( 1) with C = 0, E x = E y = 1/ √ 2 (as the diattenuation of the samples can be neglected), it comes I(φ) = 1, Q(φ) = cos(φ), U(φ) = 0 and V(φ) = sin(φ). By integration on the entire field (i.e. all the φ values), one obtain:

Q = ∫ 2π 0 cos (φ) p(φ) dφ V = ∫ 2π 0 sin (φ) p(φ) dφ (12) 
By substituting p(φ) by Eq. ( 7), i.e. p(φ) = CC(φ) in Eq. ( 12), one obtain V = 0 and Q = ρ. Thus, Eq. ( 2) can be rewritten as: Which indicates that the concentration of the relative phase weighted by its corresponding intensity, described by a circular Cauchy distribution is directly equal for that type of material to the DOP value. We plot in Fig. 7 the DOP (the asymptotic DOP values in Fig. 3) of each sample (black crosses), and the measured relative phase concentration ρ (red crosses). One can observe a good agreement between these two parameters. Equation (11) becomes:

DOP = ρ (13) 
ρ(R) = DOP(R) = DOP M I N + τ dop τ dop + R * (14) 
With DOP M I N = 0.05 = ρ M I N , τ dop = 0.05 = τ ρ . Thus, for that type of material and with our experimental setup, we have shown that the DOP is solely dependent on the sample reflectance. The offset value in Eq. ( 14) is relatively small: DOP M I N = 0.05, which is roughly equivalent to the instrument uncertainties: R c = 7% for the sample R = 99%. Moreover, for a theoretical sample with a reflectance reaching 0%, DOP M AX is reaching 1.05, which is close to 1 given the instrument uncertainties: the mean local DOP value measured in the field reflected by a mirror is < DOP >= 1.02, with a standard deviation σ(DOP) = 0.03. Similarly, for a vertical illumination SOP and similar illumination and detection angles, one could use Eq. ( 14) in order to estimate the spatially integrated DOP of the fields scattered by any equivalent Spectralon, only given its reflectance value.

Additional studies could be done to analyze the potential effects producing the homogeneous and inhomogeneous contributions to the relative phase shifts dispersion, in case of low reflectance samples: e.g. impact of the angle diversity on the sample interface and detection line, effect of the size / shape diversity of the scatterers relatively to the wavelength, size of the pixel relatively to the speckle grain size or the absorption and scattering coefficients µ a and µ s .

Conclusion

In this paper, experimental polarimetric measurements on reference radiometric samples have been performed. The method used allows to characterize the scattered fields with a high spatial resolution, which limits the spatial depolarization effect at the pixel scale.

The relative phase shifts dispersion produced by the scattering events in that type of samples can be described by circular Cauchy distributions. We proposed the characterization of the samples through their relative phase shifts statistics, with the concentration parameter ρ of circular Cauchy distributions, which appears to be a sensible intrinsic parameter. We saw that this ρ value is decreasing with the sample reflectance, thus ρ is decreasing with the number of multiple scattering events in the material. By regression of the ρ fluctuations in function of the reflectance, the amplitude of phase dispersion produced by multiple scattering in that type of material has been characterized. The ρ measurement can be useful for material distinction, or for defects or inhomogeneities characterization, via the detection of scattering regime variations.

Finally, this ρ parameter appears to be directly equal to the spatially integrated DOP. Thus, the equation allowing to compute the monochromatic DOP value of the entire field scattered by a same type of material with a known reflectance has been calibrated.

Fig. 2 .

 2 Fig. 2. First row: R = 1%, second row: R = 7%, third row: R = 99%. (a, e, i) Intensity I scattered by the samples, expressed in numerical counts. (b, f, j) Totally depolarized intensity and experimental noises C 2 , expressed in numerical counts. (c, g, k) Relative phase shifts φ between the orthogonal plane waves polarized along the x and y directions. (d, h, l) Probability density functions of the measured SOPs represented in the Poincaré sphere.

Fig. 3 .

 3 Fig. 3. Evolution of the measured spatially integrated DOP in function of the size of the window of spatial summation, for the 6 different samples with various reflectances. The asymptotic values only depend on the sample reflectance, and correspond to the values that one would measure with a large pupil aperture relatively to the wavelength.

Fig. 5 .

 5 Fig. 5. Evolution of the measured standard deviation σ of the relative phase shifts φ in function of the reflectance R of the samples (black crosses). Regression of Eq. (9) on experimental measurements (red). Standard deviation of an uniform distribution on [0 ; 2π] (black dashed line).

Fig. 6 .

 6 Fig. 6. Measured ρ parameters (cross, black) of respectively the best circular Voigt (R < 7%) and circular Cauchy (R ≥ 7%) distributions describing the p(φ) distributions, for each sample. (red) Regression of the ρ fluctuations with Eq. (11). Dots: mean error between the p(φ) distribution and respectively the best circular Voigt (R < 7%) and circular Cauchy (R ≥ 7%) distributions.

Fig. 7 .

 7 Fig.7. Measured ρ values for each sample, using a circular Voigt profile for R < 7% and a circular Cauchy profile for R ≥ 7% (red crosses). For the sample R = 1%, we display the ρ measurement using also a circular Cauchy distribution (blue cross). Measured spatially integrated DOP (black crosses). DOP and ρ best adjusted Eq. (11) (dashed lines, resp. black and red). Mean level of local depolarization and experimental noises R c (green dots). One can see a good agreement between ρ and DOP.
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