
HAL Id: hal-01510078
https://hal.science/hal-01510078v1

Submitted on 19 Apr 2017 (v1), last revised 3 May 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Geometric Algebra Implementation using Binary Tree
Stéphane Breuils, Vincent Nozick, Laurent Fuchs

To cite this version:
Stéphane Breuils, Vincent Nozick, Laurent Fuchs. A Geometric Algebra Implementation using Binary
Tree. Advances in Applied Clifford Algebras, 2017, 1, pp.1-19. �10.1007/s00006-017-0770-6�. �hal-
01510078v1�

https://hal.science/hal-01510078v1
https://hal.archives-ouvertes.fr


A Geometric Algebra Implementation using
Binary Tree

Stéphane Breuils, Vincent Nozick and Laurent Fuchs

Abstract. This paper presents an efficient implementation of geomet-
ric algebra, based on a recursive representation of the algebra elements
using binary trees. The proposed approach consists in restructuring a
state of the art recursive algorithm to handle parallel optimizations. The
resulting algorithm is described for the outer product and the geomet-
ric product. The proposed implementation is usable for any dimensions,
including high dimension (e.g. algebra of dimension 15). The method is
compared with the main state of the art geometric algebra implemen-
tations, with a time complexity study as well as a practical benchmark.
The tests show that our implementation is at least as fast as the main
geometric algebra implementations.

Keywords. geometric algebra, implementation, binary trees.

1. Introduction

In this paper, we present a new method for computing geometric algebra
products. This method is based on a recursive way of presenting the algebra.
Currently, different implementations of geometric algebra exist. Gaigen [2],
developed by Fontijne and Dorst, is considered as the first efficient imple-
mentation of geometric algebra. This library is available in C++. At compile
time, a routine is generated from a specified geometric algebra. Products are
optimized with respect to the type of multivector, leading to a specialized im-
plementation. The optimized implementation includes specialized multivector
classes and methods for computing geometric algebra products. Specialized
multivectors do not store unspecified data. Moreover, products between these
multivectors are hardcoded. This leads to a minimization of memory access
and storage. All these optimizations hold when the type of each multivector
is known before the compilation, see Fontijne [1]. Otherwise, a general mul-
tivector class is used. This general multivector stores only specified data and
the grade of the multivector but the products of geometric algebra are not



2 Stéphane Breuils, Vincent Nozick and Laurent Fuchs

hardcoded. These products will consist in computing the geometric product
between each pair of non-zero elements from the two multivectors.

Gaalop [5], developed by Hildenbrand, is the most recent efficient imple-
mentation of the geometric algebra. This implementation uses a precompiler
to generate a specialized code of an operation at compile time. This imple-
mentation converts a Clucalc code [3] into either serial C++ code or parallel
Cuda/OpenCL code that already includes a developed form of the compu-
tations. That is to say, a significant part of the computations are performed
during this “compilation” step. In practice, a multivector is represented by a
list that stores each of its non-zero coefficients. At compile time, this imple-
mentation produces some 2D-tables indicating the resulting blade and sign
of the product of two input k-vectors. Geometric algebra products between
a pair of basis blades become constant time algorithm.

Geometric algebra can be used in a wide range of applications. An in-
creasing number of these applications use high dimensional space. For ex-
ample, Easter and Hitzer [10] introduced a new geometric algebra space,
enabling the modelling of quadric surfaces in a 210 dimensional space. In
such situation, the storage of tables may be memory expensive. Moreover,
for non-specific grade operation, Gaigen computes the products of two arbi-
trary blades with the general class representing multivectors. In such a case,
this implementation may compute the product of a pair of multivectors com-
posed by 2d non-zero coefficients, leading to 22d = 4d products. When the
product requires less than 4d products, useless products will be computed.
Furthermore, the cost of computation of the sign requires d operations per
product and is thus time consuming.

The method we propose is specifically well suited for high dimensional
spaces, leading to a complementary approach to Gaigen and Gaalop. In order
to compute efficiently each product, our approach is based on [4] developed by
Fuchs and Théry. In this approach, each product is explicitly defined using re-
cursive definitions. This approach leads to efficient computation of products.
However this method does not handle parallel algorithm implementations.

The method we propose fixes the issue just raised above and consists
in restructuring the recursive functions of [4] such that the products can be
specialized according to the grade or a particular coefficient of the resulting
multivector. The proposed approach yields to parallel algorithms. Indeed, we
construct the products of geometric algebra which is somewhat related to
the approach explained by Clifford in [11]. From this approach a specialized
multivector class is extracted. The generated products are vectorized using
SIMD instructions.



A Geometric Algebra Implementation using Binary Tree 3

2. Definitions and Notations

This section presents the notations used for the sequel. Lower-case bold letters
will denote basis blades and multivectors (multivector a). Lower-case letters
refers to multivector coordinates. For example, ai is the ith coordinate of the
multivector a. The vector space dimension is denoted by 2d, where d is the
number of basis blades ei of grade 1.

2.1. Binary Trees and Multivectors

A multivector a is represented as a sum of basis blades weighted by coeffi-
cients ai, i.e.:

a =

2d−1∑
i=0

aiEi (2.1)

where Ei denotes a basis blade whose grade ranges from 0 to d (i.e. E7 = e123
with d = 3).

Fuchs and Théry [4] proposed a recursive representation of multivectors
over binary trees. This binary tree is recursively defined as follows:

an = (an+1
1 , an+1

0 )n (2.2)

where n is the depth of recursion. This depth may vary from 0 (root level)
to d (leaf level). In this representation, each node of the binary tree a is
considered as multivector which contributes to the construction of the multi-
vector a. Each depth of the binary tree corresponds a basis vector (of grade 1).
This basis vector contributes to the construction of the multivector of upper
grades. A binary tree (an+1

1 , an+1
0 )n is thus interpreted as (en∧a1)+a0 at each

depth n, that is to say an is divided into two subtrees, namely the tree a1
containing en and a0 which does not, as shown on Figure 1. Considering
that a leaf represents a basis blade, a multivector is defined by the mapping
between these leaves and the multivector coefficients (see coefficients ai on
Figure 1). For the following, we define a node an as a multivector composed
of basis blades whose maximum grade is n.

3. Outer product

In this section, we consider the computation of the outer product in any
d-dimensional space. Let c = a ∧ b be the outer product between two multi-
vectors a and b, then we have:

c =

2d−1∑
k=0

ckEk =

2d−1∑
i=0

aiEi ∧
2d−1∑
j=0

bjEj (3.1)

The distributivity of the outer product leads to:

c =

2d−1∑
i=0

2d−1∑
j=0

aibj
(
sij Ei ∧Ej

)
(3.2)



4 Stéphane Breuils, Vincent Nozick and Laurent Fuchs

a

a1

e123

a7

e3

e12

a6

e2

e13

a5

e3

e1

a4

e1

a0

e23

a3

e3

e2

a2

e2

e3

a1

e3

1
a0

Figure 1. Binary tree of a, representing a multivector in a
23-dimensional space. There is a mapping between the coef-
ficients ai of the multivector and the leaves of the tree.

Hereabove, sij denotes the sign of the outer product Ei ∧Ej . Finally a coef-
ficient ck of c can be expressed as:

ck =
∑

i,j such that
Ei∧Ej=sijEk

sij · ai ∧ bj =
∑

i,j such that
Ei∧Ej=sijEk

sij · aibj (3.3)

In order to extract each coefficient ck, one may think of computing each
product Ei ∧Ej , as performed by the non-specialized form of Gaigen. In this
case, some products will lead to useless operations where Ei ∧ Ej = 0, for
example where i = j . General multivectors a and b may have up to 2d non-
zero coefficients, leading to 2d×2d = 4d products. This number of operations
can be reduced by avoiding useless products.

In [4], each product is explicitly defined using a recursive definition over
binary trees. The outer product between a and b is defined as follows:

an ∧ bn = (an+1
1 , an+1

0 )n ∧ (bn+1
1 , bn+1

0 )n

if n < d , an ∧ bn =(
an+1
1 ∧ bn+1

0 + a0
n+1 ∧ bn+1

1 , an+1
0 ∧ bn+1

0

)n
if n = d , an ∧ bn = ad ∧ bd

(3.4)

where a expresses the anticommutativity of the outer product. The outer
product of two multivectors consists in developing the hereabove formula
from the root to the leaves. From this formula, we may derive that for each
depth n, the number of recursive calls is multiplied by 3. Thus the total
number of recursive calls for a d-dimensional space is:

d∑
i=1

3i =
3

2

(
3d − 1

)
(3.5)



A Geometric Algebra Implementation using Binary Tree 5

Therefore, the number of recursive calls is thus inO(3d) which is less thanO(4d)
corresponding to the complexity of the naive method.

3.1. Proposed method

To reduce the number of products of Equation (3.2) and to use parallel opti-
mizations, we present a rewriting of the recursive functions. The contributions
of our method are:

• to extract all products aibj for a considered coefficient ck, and the sign
associated with each product,

• to determine the products involved in c knowing the grade of a and b.

3.1.1. Binary trees labelling.
We first define a label for each node of the binary tree, derived from Huffman
labelling, as illustrated in Figure 2. The label of a leaf provides the path from

c

c1

c11

c111 c110

c10

c101

1

c100

0

1

c0

c01

c011 c010

c00

c001 c000

Figure 2. Labelling of a binary tree c in a 3-dimensional space.

this leaf to the root. For example, the path that connects the leaf labelled 101
to the root is (left, right, left), as shown in red Figure 2.

3.1.2. From trees to lists. We know, from Equation 3.3, that each leaf ck is
expressed as a sum of products aibj . In order to compute these products, we
want to identify the lists ai and bj involved in the computation of each coef-
ficient ck. For example, the computation of c5 will be based on the extraction
of the list (a5, a4, a1, a0) and (b0, b1, b4, b5), see Table 1.

In order to identify these products for any dimension and for any coeffi-
cient ck, we transform the recursive functions. More precisely, instead of
reducing a set of products to a base case (recursive function), we start with
a base case (root node), then we build some sequences forward from the base
case. To achieve this, we use the labelling on Equation 3.4 to identify each
node by a word u. A binary tree an can be expressed as anu, with its left child
rewritten as an+1

u1 and its right child as an+1
u0 .



6 Stéphane Breuils, Vincent Nozick and Laurent Fuchs

e123 e12 e13 e1 e23 e2 e3 1
c7 c6 c5 c4 c3 c2 c1 c0
a7b0 a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0
a6b1 a4b2 a4b1 a0b4 a2b1 a0b2 a0b1
−a5b2 −a2b4 −a1b4 −a1b2
a4b3 a0b6 a0b5 a0b3
a3b4
−a2b5
a1b6
a0b7
Table 1. Outer product table in a 3-dimensional space.

Using this labelling, we can also rearrange the recursive definition of the
outer product (Equation 3.4) as follows:

anu ∧ bnv = (an+1
u1 , an+1

u0 )n ∧ (bn+1
v1 , bn+1

v0 )n

if n < d , anu ∧ bnv =(
an+1
u1 ∧ bn+1

v0 + au0
n+1 ∧ bn+1

v1 , an+1
u0 ∧ bn+1

v0

)n
if n = d , anu ∧ bnv = adu ∧ bdv

(3.6)

In order to identify the components ai and bj involved in the computa-
tion of each coefficient ck, we extract a construction of labels of a and b from
Equation (3.6). Let Alist and Blist be these recursive constructions for labels
of a and b respectively. In the following, we will only consider the construc-
tion of labels of a. We can prove by induction that labels of b are the labels
of a in reverse order. The recursive definition of this Alist is the following:

if n < d ,
{
Alistn

}
=({

Alist(1)n+1,Alist(0)n+1
}
,
{
Alist(0)n+1

})
if n = d ,

{
Alistn

}
=
{
Alist

} (3.7)

where
{
. , .

}
denotes the merge of two lists of labels, and Alist(r) indicates

that the elements of the list are suffixed by the letter r. The resulting tree of
dimension 23 is depicted on Figure 3.

3.1.3. Construction of Alist . The recursive construction of the Alist provides
the number p of products associated to a label u of c:

p = 2h(u) (3.8)

where h(u) denotes the Hamming weights of u (i.e. the number of ones in a
binary word u).

We now introduce an approach to determine the evolution of the labels of a
involved in the computation of each leaf c. The recursive function (3.7) shows
that each left subtree is both suffixed by 0 and 1, meaning a duplication of the
number of elements of the list, whereas the right subtree is only suffixed by 0.



A Geometric Algebra Implementation using Binary Tree 7

Alist

{1 + 0}

{11 + 10 + 01 + 00}

{111+
110 +
101 +
100 +
011 +
010 +
001 +
000 }

{110+
100 +
010 +
000 }

{10 + 00}

{101+
100 +
001 +
000 }

{100+
000 }

{0}

{01 + 00}

{011+
010 +
001 +
000 }

{010+
000 }

{00}

{001+
000 }

{000 }

Figure 3. Recursive definition of Alist pushed down to the leaves.

From this result, an algorithm to construct Alist at only one level is extracted.
In this algorithm, Alist is represented by a list of binary sequences. A binary
sequence is an integer representing a label. Algorithm 1 gives pseudo-code
for the method.

As an example, let us consider the Alist for the node c101. This con-
struction is equivalent to computing each product aibj for the leaf c5 (for
example 5(10) = 101(2)). The computation of the Alist for the coefficient
c101 is described Table 2. In this table, the binary words (000, 001, 100, 101)
correspond to the coefficients (a0, a1, a4, a5) in table 1.

Algorithm 2 shows the pseudo-code of our method for a considered coeffi-
cient of c. The function reverse(binaryWord, dimension) computes the op-
eration (2d−1−binaryWord), in order to compute the Blist coefficients from
a Alist . Thus Algorithm 2 enables us to compute any coefficients of c indepen-
dently. Therefore the algorithm can be used to compute different coefficients
of c in parallel.

The latter algorithm can be further improved when the grade of the two
multivectors are known. Let M be the grade of a, N the grade of b and L
the grade of a∧ b. Then the grade of a∧ b is L = M +N . Thus, the compu-
tation of the outer product is equivalent to identifying and computing each
coefficient ck whose grade is L. The labelling of the binary tree enables to
efficiently extract the leaves of c whose grade is L. An algorithm is produced
and consists in traversing the binary tree of c. At each depth of this tree, if
the grade of the label of c is L then the products at this label can be com-
puted and the children of this node don’t have to be traversed. This enables



8 Stéphane Breuils, Vincent Nozick and Laurent Fuchs

Algorithm 1: Outer product at one level

1 Function oneLevelOuterProduct
Input: list : list of binary sequences

b: bit of a label
2 tmpList ← { }
3 if b == 1 then
4 tmpList .push

(
addBitList(list , 1, 0)

)
5 else
6 tmpList .push

(
addBitList(list , 0)

)
7 return tmpList
8

9 Function addBitList(list , bit)
10 listRes ← { }
11 foreach label u of list do
12 listRes.push(concat(u, bit))

13 return listRes
14

// Overload the function above

15 Function addBitList(list , bitA, bitB)
16 listRes ← { }
17 foreach label u of list do
18 listRes.push(concat(u, bitA))

19 listRes.push(concat(u, bitB))

20 return listRes

bit subtree Alist
Beginning root ε

1 left subtree (0, 1)
↓

0 right subtree (00, 10)
↓

1 left subtree (000, 001, 100, 101)
Table 2. Alist computed at the node c101.

us to efficiently compute the products. The algorithm used is shown in Al-
gorithm 3. This algorithm is used to implement a per-grade specialization of
our implementation.

Finally, note that the considered label is enough to compute the Alist el-
ements. Firstly the binary 0 is in this list. Then the other elements can be
defined by the list of binary words whose length is d such that the logical AND
operator between this binary word and the label is non-zero. This method is



A Geometric Algebra Implementation using Binary Tree 9

Algorithm 2: Outer product corresponding to a coefficient ck
Data:

a, b: multivectors
Alist : sequence of binary words
k: label of a coefficient of the multivector c
d: dimension

Result: ck: kth coefficient of the multivector c = a ∧ b
1 Alist ← { }
2 Sign← { }
3 SignOuter(Sign, 1, 1, d) // refer to Algorithm 4

4 foreach bit ki of k do
5 Alist ← oneLevelOuterProduct(Alist ,ki)

6 ck ← 0

7 i ← 0

8 foreach label u of Alist do
9 ck ← ck + Sign[i] · au · breverse(u,d)

10 i ← i+ 1

derived from the Hamming expression of Equation (3.8).

3.1.4. Complexity of this method.
The performance of our method is estimated from Algorithm 2. Firstly, the
cost of the function oneLevelOuterProduct() in Algorithm 2 is linear to the
size of the list and more precisely proportional to the hamming weight of
the coefficient of the node. Thus, this operation is repeated d times. The
latter computation is repeated 2d times in the worst case (2d non-zero coef-
ficients) which leads to a complexity proportional to 3d. The performance of
this approach is thus asymptotically equivalent to the cost of the previous
approach [4].

3.1.5. Sign computation.
Finally, the sign of each product aubv is computed. From our experimental

results described in section 5, this computation might be the most time-
consuming part of the outer product. The first method that we explored
consisted in a “convolution” between the considered label in Alist and in
Blist in a similar way to [1]. The convolution consists of right-shifting each
bit of the label in Alist until the label is zero. At each iteration, we count
the number of ones in common between the shifted label and the other label.
The sign is obtained by raising −1 to the power of the number of ones.

The performance of this approach is estimated by computing the total number
of right-shifting in a∧b. For a label a in Alist , the maximum number of right-
shifting is blog2(a)c. As mentioned in the previous subsection, the occurrence
of a label a in the computation of the outer product is given by 2d−h(a), with h



10 Stéphane Breuils, Vincent Nozick and Laurent Fuchs

Algorithm 3: Outer product of two multivectors, with a known re-
sulting grade

Data:
Sign: Sequence of signs
a, b: multivectors

1 Function perGradeOuterP
Input:

Alist : sequence of binary words
ck: node of c = a ∧ b
L: grade of c
d: dimension
lPathNum: number of ones in the label of the node of c
depth: depth of the current node

Result: c = a ∧ b
// lPathNum represents the grade of the node

2 if lPathNum == L then
3 i← 0

4 foreach label u of Alist do
5 v ← 2d−depth · u // from node to leaf

6 ck ← ck + Sign[i] · av · breverse(v,d)
7 i← i+ 1

8 else
9 list ← { }

10 depth← depth+ 1

11 if ck is not a leaf then
12 list ← oneLevelOuterProduct(Alist ,1)

13 perGradeOuterP(list , ck1, L, d, lPathNum+ 1,depth)

14 list ← oneLevelOuterProduct(Alist ,0)

15 perGradeOuterP(list , ck0, L, d, lPathNum, depth)

the hamming weight of a. Instead of computing the leading formula, we give
an upper bound to the number of total right-shifting. From the Equation 2.1,
an upper bound to the coefficient is 2d. Therefore, for any label a ≥ 1, the
upper bound of the maximum number of right-shifting is blog2(2d)c = d.
Thus, the number of right-shifting for the total number of occurrences of the
label a is bounded as follows:

2d−h(a) · blog2(a)c ≤ d · 2d−h(a) (3.9)

Finally, the total number of right-shifting is obtained by summing over the
number of coefficients in a multivector:

2d−1∑
a=1

2d−h(a) · blog2(a)c ≤
2d−1∑
a=1

d · 2d−h(a) (3.10)



A Geometric Algebra Implementation using Binary Tree 11

Due to the linearity of the summation, we can rearrange the upper bound by
extracting the dimension the following way:

2d−1∑
a=1

2d−h(a) · blog2(a)c ≤ d ·
2d−1∑
a=1

2d−h(a) (3.11)

Here, the Hamming weight h(a) is ranging from 1 to d. The number of coef-

ficients whose hamming weight is k, is

(
n

k

)
. Hence the upper bound can be

rewritten as
∑d

k=1

(
n

k

)
2k. From the binomial theorem, the upper bound is

thus proportional to d · 3d.

We now introduce our method to reduce this number of arithmetic operations.
The key point of the method lies in the fact that the sequence of signs over
the binary tree remains the same for any coefficient c. This is explained by the
structure of the recursive definition of the sign explained in [4]. The recursive
definition of the sign is as follows:

if n < d , au
n =

(
− au1

n+1, au0
n+1
)

if n = d , an = a
(3.12)

This formula combined with the recursive definition of the outer product
Alist is the following:

if n < d ,
{
Alistn

}
=({

Alist(1)n+1,Alist(0)
n+1 }

,
{
Alist(0)n+1

})
if n = d ,

{
Alistn

}
=
{
Alist

} (3.13)

From Equation (3.13), the sequence of signs is left unchanged for each right
subtree. Therefore, the sequence of signs is completely determined by the
sequence of signs of the far left leaf of c.

Thus, we only have to compute the sequence of signs for the far left leaf
and store the sequence. Then for each leaf, the outer product algorithm goes
through the elements of this sequence. Algorithm 4 gives pseudo-code for our
method.

In this algorithm, the variable comp enables the flip of sign. From this algo-
rithm, the number of operations to be performed is 2d for a d-dimensional
space. Therefore, using this algorithm in the computation of the outer prod-
uct takes 3d proportional time.

In order to confirm these results, the two algorithms described in this section
will be compared through some tests in Section 5.



12 Stéphane Breuils, Vincent Nozick and Laurent Fuchs

Algorithm 4: Computation of the sequence of signs

1 Function SignOuter
Input:

Sign: list to store the resulting signs
currentSign: sign
comp: complementary operator
depth: depth of the current node
d: dimension

2 if depth == d then
3 Sign.push(currentSign)

4 else
5 SignOuter(comp× currentSign, comp, depth+ 1, d)

6 SignOuter(currentSign,−comp, depth+ 1, d)

4. Geometric product

4.1. Euclidean space

We now consider the computation of the geometric product of two multivec-
tors a and b in an Euclidean space. We first describe the geometric product in
an Euclidean space and then in an non-Euclidean space. We denote the geo-
metric product between a and b by c = a∗b. The overall method is equivalent
to the method described in Section 3.1.2. The labelled recursive equation of
the geometric product gives:

anu ∗ bnv = (an+1
u1 , an+1

u0 )n ∗ (bn+1
v1 , bn+1

v0 )n

if n < d , anu ∗ bnv =

(an+1
u1 ∗ b

n+1
v0 + an+1

u0 ∗ b
n+1
v1 , an+1

u1 ∗ b
n+1
v1 + an+1

u0 ∗ b
n+1
v0 )n

if n = d , anu ∗ bnv = adu ∗ bdv

(4.1)

The development of this recursive formula in a 3-dimensional space is pre-
sented in Table 3, where the sign of each product is computed with a equiv-
alent method used for the outer product, see Algorithm 5.
As for the outer product, we extract a recursive construction of the set of
labels of a and b. Alist and Blist are again these recursive constructions of
labels. The recursive definitions of Alist and Alist are the following:

If n < d ,
{
Alistn

}
=({

Alist(1)n+1,Alist(0)n+1
}
,
{
Alist(0)n+1,Alist(1)n+1

})
If n = d ,

{
Alistn

}
=
{
Alist

} (4.2)

If n < d ,
{
Blistn

}
=({

Blist(0)n+1,Blist(1)n+1
}
,
{
Blist(0)n+1,Blist(1)n+1

})
If n = d ,

{
Blistn

}
=
{
Blist

} (4.3)



A Geometric Algebra Implementation using Binary Tree 13

e123 e12 e13 e1 e23 e2 e3 1
c7 c6 c5 c4 c3 c2 c1 c0
a7b0 a7b1 -a7b2 -a7b3 a7b4 a7b5 -a7b6 -a7b7
a6b1 a6b0 a6b3 a6b2 -a6b5 -a6b4 -a6b7 -a6b6
-a5b2 -a5b3 a5b0 a5b1 a5b6 a5b7 -a5b4 -a5b5
a4b3 a4b2 a4b1 a4b0 a4b7 a4b6 a4b5 a4b4
a3b4 a3b5 -a3b6 -a3b7 a3b0 a3b1 -a3b2 -a3b3
-a2b5 -a2b4 -a2b7 -a2b6 a2b1 a2b0 a2b3 a2b2
a1b6 a1b7 -a1b4 -a1b5 -a1b2 -a1b3 a1b0 a1b1
a0b7 a0b6 a0b5 a0b4 a0b3 a0b2 a0b1 a0b0

Table 3. Geometric product table in a 3-dimensional space.

4.1.1. Iterative construction of Alist and Blist .
In order to extract a construction, an analysis of these recursive definitions is
performed. Figures 4 and 5 shows the development of these recursive formula
in a 3-dimensional space.

Alist

{1 + 0}

{11 + 10 + 01 + 00}

{111+
110 +
101 +
100 +
011 +
010 +
001 +
000 }

{110+
111 +
100 +
101 +
010 +
011 +
000 +
001 }

{10 + 11 + 00 + 01}

{101+
100 +
111 +
110 +
001 +
000 +
011 +
010 }

1

{100+
101 +
110 +
111 +
000 +
001 +
010 +
011 }

0

1

{0 + 1}

{01 + 00 + 11 + 10}

{011+
010 +
001 +
000 +
111 +
110 +
101 +
000 }

{010+
011 +
000 +
001 +
110 +
111 +
100 +
101 }

{00 + 01 + 10 + 11}

{001+
000 +
011 +
010 +
101 +
100 +
111 +
110 }

{000+
001 +
010 +
011 +
100 +
101 +
110 +
111 }

Figure 4. Alist development in a 3-dimensional space.

Let us now analyse these formula. Firstly, for any recursion level on
Alist and Blist , the number of labels is multiplied by 2. Hence, the number p
of products for a d-dimensional space is the following:

p = 2d (4.4)

Moreover we observe that each subtree is suffixed by the same binary word.
We also observe and we can show that the obtained labels are composed of
the binary words whose length n is ranging from (00 · · · 00︸ ︷︷ ︸

n

) to (11 · · · 11︸ ︷︷ ︸
n

).

Finally the construction of labels of Alist is extracted from Equation (4.2). We
first define a list of labels Rlist , composed of consecutive binary words whose



14 Stéphane Breuils, Vincent Nozick and Laurent Fuchs

Blist

{0 + 1}

{00 + 01 + 10 + 11}

{000+
001 +
010 +
011 +
100 +
101 +
110 +
111 }

{000+
001 +
010 +
011 +
100 +
101 +
110 +
111 }

{00 + 01 + 10 + 11}

{000+
001 +
010 +
011 +
100 +
101 +
110 +
111 }

1

{000+
001 +
010 +
011 +
100 +
101 +
110 +
111 }

0

1

{0 + 1}

{00 + 01 + 10 + 11}

{000+
001 +
010 +
011 +
100 +
101 +
110 +
111 }

{000+
001 +
010 +
011 +
100 +
101 +
110 +
111 }

{00 + 01 + 10 + 11}

{000+
001 +
010 +
011 +
100 +
101 +
110 +
111 }

{000+
001 +
010 +
011 +
100 +
101 +
110 +
111 }

Figure 5. Blist development in a 3-dimensional space.

length is n and ranging from (00 · · · 00︸ ︷︷ ︸
n

) to (11 · · · 11︸ ︷︷ ︸
n

). Therefore, the labels

of Alist are determined by the bitwise XOR logical operation (⊕ operator)
between elements of Rlist and the binary word of the considered node. For
example, the construction of Alist for the node 101 is presented in Figure 6.

Rlist k Alist
000 101 101 ⊕ 000 = 101
001 101 101 ⊕ 001 = 100
010 101 101 ⊕ 010 = 111
011 101 101 ⊕ 011 = 110
100 101 101 ⊕ 100 = 001
101 101 101 ⊕ 101 = 000
110 101 101 ⊕ 110 = 011
111 101 101 ⊕ 111 = 010

Figure 6. Construction of Rlist and Alist for the node 101.

The method to construct the geometric product leads to Algorithm 5. The
computation of the sign is adapted from Algorithm 4 and shown in Algo-
rithm 5.

4.2. Non-Euclidean space

In this section, we show the construction of the geometric product for a non-
Euclidean space. We assume in this paper that the basis used is orthogonal.
If non-orthogonal basis is needed, then a change of basis can be performed,
similarly to what is explained in [1]. In order to construct the geometric
product, the quadratic form φ is required. The representation of the quadratic



A Geometric Algebra Implementation using Binary Tree 15

Algorithm 5: Geometric product corresponding to a coefficient ck
Data: a, b, c: multivectors,
Alist ,Blist : sequences of binary words,
k: label of a coefficient of the multivector c,
d: dimension
Result: ck: kth coefficient of the multivector c = a ∗ b

1 Alist ← { }
2 Blist ← { }
3 for binaryWords from 0 to 2d − 1 do
4 Alist .push(binaryWords⊕ k)

5 Blist .push(binaryWords)

6 Sign← SignGeo(1, 0, k, d, 1) ck ← 0

7 i← 0

8 foreach label u, v of Alist and Blist do
9 ck ← ck + Sign[i] · au · bv

10 i← i+ 1
11

12 Function SignGeo
Input:

CurrentSign: sign
level:Integer
k:coefficient
d: dimension
comp: Integer

Result: Sign: sequence of signs
13 if level==d then
14 Sign = Sign.push(CurrentSign)

15 else
16 b← levelth bit of k

17 if b==1 then
18 SignGeo(comp ∗ currentSign, level + 1, k, d , comp)

19 SignGeo(currentSign, level + 1, k, d , −comp)
20 else
21 SignGeo(comp ∗ currentSign, level + 1, k, d , −comp)
22 SignGeo(currentSign, level + 1, k, d , comp)

used in the sequel is picked up from [4]. The values of this quadratic form
are represented with d-tuple. We aim now at determining the construction
of the geometric product with this quadratic form. In [4], Fuchs and Théry



16 Stéphane Breuils, Vincent Nozick and Laurent Fuchs

define the geometric product with the quadratic form as follows:

anu ∗ bnv = (an+1
u1 , an+1

u0 )n ∗ (bn+1
v1 , bn+1

v0 )n

if n < d , anu ∗ bnv =

(an+1
u1 ∗ b

n+1
v0 + an+1

u0 ∗ b
n+1
v1 , an+1

u0 ∗ b
n+1
v0 + φn+1a

n+1
u1 ∗ b

n+1
v1 )n

if n = d , anu ∗ bnv = adu ∗ bdv

(4.5)

where φn+1 = φ(en+1, en+1) denotes the (n+ 1)th element of this quadratic
form, and represents the squared of en+1.

Firstly, the sequence of labels of a and b remain the same. Therefore we deter-
mine the sequence of φ in the binary tree. Let φlist denote this construction.
This construction is computed with a list of elements of φ in an equivalent
way as the sequence of labels. It is extracted from Equation (4.5) and defined
as follows:

If n < d ,
{
φlistn

}
=({

φlistn+1, φlistn+1
}
,
{
φlistn+1, φn+1.φlist(1)n+1

})
If n = d ,

{
φlistn

}
=
{
φlist

} (4.6)

Algorithm 6 shows the pseudo-code for the construction of this sequence.

Algorithm 6: Geometric product corresponding to a coefficient ck

1 Function quadraticForm
Input:

currentCoef : coefficient
metric: list of coefficients
level: Integer
k: coefficient
d: dimension

Result: seq: sequence of metric elements for a leaf ck
2 if level==d then
3 seq.push(CurrentCoef)

4 else
5 φ← levelth element of metric

6 b← levelth bit of k

7 if b==1 then
8 quadraticForm(currentCoef , metric, level + 1, k , d)

9 quadraticForm(currentCoef , metric, level + 1, k , d)

10 else
11 quadraticForm(φ ∗ currentCoef , metric, level+ 1, k , d)

12 quadraticForm(currentCoef , metric, level + 1, k , d)



A Geometric Algebra Implementation using Binary Tree 17

This construction is inserted in the implementation of the geometric product.

4.3. Complexity of geometric product

For each coefficient of c, the number of sequence construction is proportional
to 2d and the number of products is 2d, leading to a total number of prod-
ucts of 4d. This number of products is equivalent to the performance of the
geometric product algorithm described in [1] and [4]. However our approach
enables us to compute independently each leaf of c.

5. Experimental results

5.1. Implementations

In order to test our method, we first realized a generalized multivector im-
plementation in C++. This implementation stores the 2d coefficients in an
array and the products are performed using the method proposed in this ar-
ticle. The computation of the products is performed at compile time using
metaprogramming described in [9]. We implement also specialized multivec-
tor classes to represent some decided geometric objects. In this implementa-
tion, multivectors are represented with optimized memory storage, according
to their grade. Geometric algebra products are also specialized according to
the grade of each operand. This leads to an equivalent of Gaigen. Addition-
ally, the products are vectorized using SIMD instructions described in [8],
enabling us to operate up to four leaves of the tree at the same time by using
SIMD registers. The SIMD code is inserted on line 6 of Algorithm 3. For
each group of 4 operations, a SIMD code is produced. This code consists in
shuffling the indices of the two multivectors. Using SIMD code, the addition
and multiplication are then performed. Our approach is well suited for this
kind of optimizations because our products are explicitly defined for each leaf
of c (result of the product between a and b). More precisely, from a coefficient
of c, we can directly extract each product of a and b which contributes to
the construction of the leaf of c which have a known grade. Finally, each co-
efficient of c can be computed independently. We thus benefit from the high
degree of parallelizability of our approach.

5.2. Tests

5.2.1. Practical benchmark. We first compared the two approaches to com-
pute the sign described in subsection 3.1.5. Actually we compare three meth-
ods. The first computes the outer product without any sign computation.
The two last approaches differ in that they do not compute the sign the same
way. If we get rid of the sign, they all have the same runtime performance
(proportional to 3d). For these methods, the outer product was computed
with general multivectors whose dimension may vary between 5 (conformal
geometric algebra space, see [1]) and 10 (double conformal geometric algebra
space, see [10]). The leading runtime performance are recorded. We observe



18 Stéphane Breuils, Vincent Nozick and Laurent Fuchs

that the ratio between the runtime of the sign computed by convolution and
the runtime without sign computation is linear to the dimension. This con-
firms the result in Section 3.1.5. Another interesting thing is the runtime
performance for the sign computed using sequences and the performance of
the algorithm whose performance is proportional to 3d. These two algorithms
have the same asymptotic behaviour. This also confirms that the runtime
performance is proportional to 3d.

The resulting implementations are compared, through different tests, to the
Gaigen implementation of the general multivector and an another implemen-
tation derived from the table based approach explained in [5].

5.2.2. First tests:
This serie of tests consist in computing the geometric product and the outer
product between a multivector whose grade is 1 and another whose grade
is 2 for different dimensions ranging from 4 to 10. This computation is re-
peated 105 times. Firstly we compare our generalized method to the Gaigen
implementation of the general multivector and an another implementation
derived from the table based approach. The runtime performance shows an
averaged 20% relative gain over the other generalized multivector implemen-
tations.

5.2.3. Second tests:
These tests consist in computing the intersection between two hyperspheres
whose radii are fixed. The dimensions of the multivectors are ranging from 4
to 10. Here, the 5-dimensional space corresponds to the conformal geomet-
ric algebra space (e0,e1,e2,e3,e∞), and the 10-dimensional space which has
the same number of basis vectors than the double conformal space explained
in [10]. From the radius and the centre, we construct these hyperspheres.
With this test, the intersection is simply computed with the outer product
between the vectors of the two hyperspheres. The computation of each inter-
section between two hyperspheres is repeated 105 times. At each iteration,
the position of the second hypersphere is set. The performance is determined
by comparing the runtime for the three approaches previously described. The
runtime performance for dimensions from 4 to 10 show relative gain ranging
from 15% in the 4 dimensional space to 30% in the 9 dimensional space.

Our implementation can now be compared to Gaigen [2]. These specialized
implementations are compared with the same protocol used for the general-
ized version. The specialized version are also tested on the computation of
the intersection of two spheres, as described in [5]. The results show here an
overall 25% relative gain over Gaigen mainly due to the SIMD implementa-
tion.



A Geometric Algebra Implementation using Binary Tree 19

5.2.4. Third tests:
These tests consists in generating our library in a 15-dimensional spaces. The
number of generated functions is quadratic to the dimension. Thus, the size
of the leading library is roughly 200 MB and the size of the binary file is
1 GB. That would be the approximate size of Gaigen library if Gaigen gener-
ated it. If one used only multiplication tables, the size of the tables would be
a problem. If we consider the storage of unsigned integers (32 bits) at each
element of this table, then, the memory cost would be approximately 12 GB
(32 bits/element×415 elements/table ×3 tables). For these high dimensions,
none of these methods are suitable for practical use due to the huge mem-
ory requirement. However, we can directly use online computations without
any precomputed functions. In that case, our recursive method has O(3d)
complexity where the same approach with Gaigen has O(4d) complexity.

6. Conclusion

In this paper, we present a new method to compute geometric algebra prod-
ucts, defined in any dimension. We show that the proposed method is at
least as fast as the main state of the art specialized geometric algebra imple-
mentations. As future work, we want to extend our method to handle high
dimension applications, namely higher than 15. For these kind of spaces, the
number of specialized functions to generate might be too numerous.

References

[1] Dorst, Leo and Fontijne, Daniel and Mann, Stephen, Geometric Algebra for
Computer Science: An Object-Oriented Approach to Geometry (2007), Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[2] Fontijne, Daniel Gaigen 2:: a geometric algebra implementation generator, Pro-
ceedings of the 5th international conference on Generative programming and
component engineering,pages 141–150, (2006), ACM.

[3] Perwass, Christian CLUCal/CLUViz Interactive Visualization [online],
http://www.clucalc.info/, (2010).

[4] Fuchs, Laurent and Théry, Laurent Implementing Geometric Algebra Products
with Binary Trees, Advances in Applied Clifford Algebras, pages 22, (2014).

[5] Hildenbrand, Dietmar Foundations of Geometric Algebra Computing, Springerr-
Verlag Berlin Heidelberg, (2013).

[6] Fontijne, Daniel GAViewer Documentation Version 0.84,
http://www.science.uva.nl/research/ias/ga/viewer, University of Amster-
dam.

[7] Kanatani, Kenichi Understanding Geometric Algebra: Hamilton, Grassmann,
and Clifford for Computer Vision and Graphics,CRC Press, (2015).

[8] Fog, Agner Optimizing software in C++ An optimization guide for Windows,
Linux and Mac platforms, (2014).



20 Stéphane Breuils, Vincent Nozick and Laurent Fuchs

[9] Abrahams, David and Gurtovoy, Aleksey C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond, Addison-Wesley Pro-
fessional (2004).

[10] Easter, Robert Benjamin and Hitzer, Eckhard Double Conformal Geometric
Algebra for Quadrics and Darboux Cyclides., CGI2016.

[11] Clifford, William KingdonApplications of Grassmann’s Extensive Algebra.,
American Journal of Mathematics Pure and Applied 1, 350-358 (1878).

Stéphane Breuils
Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI,
UMR 8049, Université Paris-Est Marne-la-Vallée, France
e-mail: stephane.breuils@u-pem.fr

Vincent Nozick
Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI,
UMR 8049, Université Paris-Est Marne-la-Vallée, France
e-mail: vincent.nozick@u-pem.fr

Laurent Fuchs
Laboratoire XLIM-ASALI, UMR CNRS 7252, Université de Poitiers, France
e-mail: Laurent.Fuchs@univ-poitiers.fr


