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Abstract. Image splicing is a common manipulation which consists in
copying part of an image in a second image. In this paper, we exploit
the variation in noise characteristics in spliced images, caused by the
difference in camera and lighting conditions during the image acquisition.
The proposed method automatically gives a probability of alteration for
any area of the image, using a local analysis of noise density. We consider
both Gaussian and Poisson noise components to modelize the noise in
the image. The efficiency and robustness of our method is demonstrated
on a large set of images generated with an automated splicing.
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1 Introduction

The number of digital images has hugely increased over the last decades. Their
sources have diversified with the arrival of smartphones and tablets, and they
form the majority of the pictures we see nowadays. The number of falsified
images has increased accordingly, both in number and sophistication, with tools
more and more efficient to do so. Farid [4] explains the rise of digital forensics
to combat this trend.

In this paper, we show a new method to detect a common falsification called
splicing. Splicing is one of the more common forms of image alteration. It consists
in inserting part of an image in a second, different image. Our method is based
on exploiting the noise density of an image. We focus here on raw images, with
the assumption that the noise is unaltered. Although raw images are harder to
tamper with than more common image formats, it is still possible, especially
with the DNG open file format [9].

1.1 Image splicing detection

Various ways to detect splicing already exist, however most of them cannot be
used on raw images: Farid bases his on JPEG ghosting [5] or on an analysis of



Color Filter Array pertubations with Popescu [18]. Lin et al. [11], He et al. [8],
and Popescu et al. [17] exploit the quantization in JPEG images. Some other
methods are either very high-level or have hard to meet prerequisites. Lukas
et al. [12] present a method based on the camera fingerprint, but this method
requires some unaltered images taken by the camera, or access to the camera
itself. Machine learning is also a possibility, such as presented by Bayram et
al. [2] or Fu et al. [7]: a classifier of image features learned from training sets of
authentic and forged images can be used to detect spliced regions in an image.

1.2 Splicing detection from image noise

Noise is a perturbation that can be found in all images captured by a digital
sensor. Although this noise may be reduced by the camera internal pipeline or
with post-processing, the noise in a single image will have the same parame-
ters throughout the image. These parameters will vary according to the camera
model and the light exposition during the image capture. Thus, observing a vari-
ation in noise parameters in a specific zone of an image will often be a strong
indicator of falsification. Consequently, some methods use image noise to detect
splicing regions. In most noise estimation methods used in digital forensics, noise
is simplified as Gaussian. This approach ignores the Poisson component in raw
images, which tends to be dominant in high-intensity zones.

Mahdian and Saic [14] use a block-based inconsistency detection relying on
the homogeneity of the standard deviation of the Gaussian noise. This approach,
however, relies on the assumption that the noise standard deviation is homoge-
neous over an image. This is not always true, especially in raw images where
the noise also includes a Poisson component. Pan et al. [15, 16] also propose a
block-based approach. Their method uses an analysis of kurtosis values in an
image. Although this method is very efficient at detecting noise inconsistencies,
it less efficient on images including textures and low noise values, increasing the
difficulty of splicing detection in natural images. Popescu and Farid [17] also
use noise estimation to detect splicing with excellent results, but their method
needs preliminary informations about the noise of the original image, which can
not be done in the case of a blind analysis. Finally, Julliand et al. [10] offer an
approach which takes into account the Poisson component, but their method
lacks precision in the localisation of the altered region.

Some methods are a combination of various approach. For example, Mah-
dian and Saic [13] combine resampling detection and noise analysis to highlight
suspicious areas.

2 Noise Density Contribution Tables

2.1 Principles and definitions

Noise in digital images can come from a wide variety of sources. In a raw im-
age, noise follows a Poisson-Gauss probability distribution, with the standard
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Fig. 1. Poisson-Gauss density map. The dark line is a cross-section along a single
denoised value.

deviation varying with the intensity of each pixel. A noise density table is the
representation of this probability distribution. For each pixel, we consider its de-
noised value vd and its noised value vn. To each pixel of the image corresponds
a value pair (vd, vn), which are accumulated in the table. This way, the table
can be seen as a 2D histogram, as depicted in Figure 1. The exact function
defining the Poisson-Gauss probability density table is shown in Eq.1, where σ
is the standard deviation of the Gaussian portion of the function and α a scaling
parameter applied to the Poisson portion:

f(vd, vn) =
α

σ
√

2π
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(αx)!
exp

(−(vn − x)2

2σ2

)
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In practice, the value of the table at any point (i, j) is the number of value
pairs where (vd, vn) = (i, j). For numerical purposes, we normalize the table on
each row (denoised values) to offset potential intensity imbalances in the image.
Indeed, the table of an image with a high proportion of high (or low) intensity
pixels would have very high values in the corresponding areas. This would reduce
the usability of the table. The normalization suppresses this problem, as shown
in Figure 1.

A cross-section of the table along a single denoised value follows a Poisson-
Gauss probability distribution (see dark line in Figure 1). However, in the case
of a spliced image, the noise density will be the sum of two different noise proba-
bility functions: one for the original image, and one for the spliced element (Fig-
ure 2). The objective of our method is to differentiate these two contributions,
and to identify the parts of the image that participate in each contribution.
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Fig. 2. Density map is an addition of two curves.

A naive approach would be to try to fit a model, such as the one in Eq.1,
based on the overall noise characteristics over the noise density table, to try
and see which parts can be considered as outliers. However, this proves to be
ill adapted for two reasons: first, unless the spliced area represents a significant
portion of the original image, the impact on the noise density table will not
be noticeable. Second, the normalization process will flatten any major and
noticeable difference.

2.2 Noise density contribution table

A noise density contribution table (referred to as “contribution table” from here
on) represents the contribution percentage of any subimage of an image to the
noise density table of the full image − more specifically, its contribution to each
of the (vd, vn) value pair presented before. Basically, a contribution table Csub
is the noise density table Dsub of a subimage divided by the noise density table
Dim of the whole image. A contribution can never be more than 1, 1 meaning
that all the pixels contributing to a pair are included in the subimage. More
formally, we get:

Csub(vd, vn) =
Dsub(vd, vn)

Dim(vd, vn)
, ∀(vd, vn)

As a consequence of the overall noise being the sum of two different noises,
two shapes of contribution tables in a spliced image will appear. This is due to
the impact of each type of noise on the global one: as we can see on Figure 2,
each curve will have a zone with higher participation. The first will have higher
contributions on the identity axis, and the second higher contributions outside
of the identity axis, respectively referred to as ∧ type and ∨ type.



2.3 Classification between ∧ type and ∨ type

The next step is to define the subimages and identify the type of their contribu-
tion tables. To do so, the image is divided into a high number of square blocks
of identical size. Each of these blocks will be considered as a subimage, and will
have its own contribution table, see Fig. 3(a) and 3(b). To identify the type of
a contribution table, we locate its M highest contributions (corresponding to
the M maxima of the table). According to the location of these maxima, a type
will be attributed to the block: if there is a clear majority of them on, or near,
the identity axis, it will be a ∧ type. If there is a clear majority outside of this
axis, it is a ∨ type (Fig. 3(c)). If none of those conditions are fulfilled, the type
remains undefined.

To make the method more robust, a good approach is to increase the number
of pixels in the subimages. Indeed, contribution tables are easier to identify when
they are built from more pixels. However, increasing the size of our blocks would
greatly reduce the spatial precision of our detection. To increase the robustness
while keeping the same precision, we create overlapping square cells, each con-
taining a moderate number of blocks. The contribution table of a cell is the sum
of the contribution tables of the blocks it contains. This results in contribution
tables which are easier to identify, thanks to the higher amounts of pixels used
in each cell. The type of each block then corresponds to the type in majority
present in the cells containing it. If there is no clear majority, the block type is
undefined and it will be changed in the seed expansion phase (see Fig.4, middle
column).

3 Seed Expansion

Once every block has been assigned a primary type (be it ∧, ∨, or undefined), we
begin the expansion to find which of the two main categories each undefined block
is more likely to belong to. This expansion is based on the similarity between
blocks and the assumption that two similar blocks will probably belong to the
same type ∧ or ∨. The similarity s between two contribution tables C1(vd, vn)
and C2(vd, vn) is simply a sum of term by term absolute difference, but only in
the rows where both tables have non-zero values:

s =
∑
i∈D

vmax
n∑
j=0

|C1(i, j)− C2(i, j)|

where

D =
{
i |

vmax
n∑
j=0

C1(i, j) 6= 0 and

vmax
n∑
j=0

C2(i, j) 6= 0
}

For a higher accuracy, we assign to each undefined block a probability p to belong
to the ∧ shape group, and thus a probability 1 − p to belong to the ∨ shape
group. These probabilities are computed with an iterative scheme with an initial
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Fig. 3. The two types of contribution tables. 3(a) and 3(b) show their overall appear-
ance, 3(c) shows their projection on a plane orthogonal to the identity axis.

value set to 0.5. Then, each undefined block probability is iteratively set as the
weighted average probability of the N blocks whose contribution table is the
most similar to that of the current block, with higher similarities giving a higher
weight. At an iteration k, the probability pkb of an undefined block b is:

pkb =

N∑
n=1

pk−1n

n

N∑
n=1

1

n



(a) A falsified image (b) The corresponding clas-
sification image

(c) The final probability
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sification image
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Fig. 4. Left column: spliced images. Middle column: block types after the initial classi-
fication. Blue zones are ∧, red zones are ∨, and grey zones are undefined. Right column:
Final result after the seed expansion.

This process is iterated on all undefined blocks until convergence. Finally, if a
block probability is high enough, the block is considered as being fully in said
category. The result can be seen in Fig.4, right column.

4 Multichannel

In order to improve our results, we apply the whole process - denoising, noise
density table, contribution tables, classification, and expansion - to each channel
of the input image (R, G1, B, G2). Although the grey world assumption [6] can be
applied on a multi-channel image, each channel can contain drastically different
information − a clear sky, for example, will appear with a much higher intensity
on the blue channel. As each channel can give a more precise information on
various parts of the image, the multi-channel approach grants a higher precision
and more robustness in the final result. To do so, the probability map of each
channel are merged and averaged.

5 Implementation and Results

The raw images are loaded using LibRaw [1]. The denoising process is performed
by BM3D using the Matlab code provided by [3]. Not taking the denoising time
into account, which we have little control over, the multi-channel version of the



code runs in around a minute for a 2000×2000 pixels image on consumer-grade
hardware.

The choice of the code handling the denoising part is a crucial part of the
method: indeed, our method is extremely dependant on the quality of the de-
noising. Although the procedure we used [3] is state-of-the-art for Poisson-Gauss
denoising, it tends to produce relatively poor results on dark textured areas. Even
though our method has no theoretical weakness on such areas, due to this, our
output quality drops similarly on images containing this kind of elements.

For our experiments, we used a base of 290 spliced images and 27 authentic
images. Those images come from a wide variety of cameras: Canon (2 models),
Leica (4 models), Nikon (1 model), Panasonic (9 models), Pentax (3 models),
and Sony (3 models). The results are exposed in Table 1. However, those results
do not take into account images containing dark textured areas (respectively 73
spliced and 7 authentic). If those images are considered, the splicing localization
rate drops to 51.7%, and the authentic detection rate to 58%. The splicing
detection rate remains at 100%.

Our method’s effectiveness is likely to increase in accordance to the efficacy
of upcoming denoising methods.

Table 1. The detection rate on spliced and unspliced images.

falsified / authentic Splicing localization
Image type correctly identified correct

Spliced 100% 68.6%

Authentic 86% na

6 Conclusion

We present a new method to automatically detect splicing in raw images. This
method is based on the discrimination of contributions in the noise density of the
image, when the image contains a spliced element. By looking at the locations
where the contribution to the noise is different, we show that it is possible to
pinpoint a spliced area in an image. The robustness of the approach is increased
by replicating it over all the channels of the image. Further research will aim to
adapt this method for JPEG images.
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