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ABSTRACT

Superpixel decomposition methods are widely used in computer vision and image processing applica-
tions. By grouping homogeneous pixels, the accuracy can be increased and the decrease of the number
of elements to process can drastically reduce the computational burden. For most superpixel methods,
a trade-off is computed between 1) color homogeneity, 2) adherence to the image contours and 3)
shape regularity of the decomposition. In this paper, we propose a framework that jointly enforces
all these aspects and provides accurate and regular Superpixels with Contour Adherence using Lin-
ear Path (SCALP). During the decomposition, we propose to consider color features along the linear
path between the pixel and the corresponding superpixel barycenter. A contour prior is also used to
prevent the crossing of image boundaries when associating a pixel to a superpixel. Finally, in order
to improve the decomposition accuracy and the robustness to noise, we propose to integrate the pixel
neighborhood information, while preserving the same computational complexity. SCALP is exten-
sively evaluated on standard segmentation dataset, and the obtained results outperform the ones of the
state-of-the-art methods. SCALP is also extended for supervoxel decomposition on MRI images.

€ 2018 Elsevier Ltd. All rights reserved.

1. Introduction the goal is to split the image into similar regions according to

object, color or texture priors, the decomposition into superpix-
The use of superpixels has become a very popular technique ) )
o ) . ~_els may improve the segmentation accuracy and decrease the

for many computer vision and image processing applications ) )

computational burden. (Gould et al., 2014). Contrary to multi-
such as: object localization (Fulkerson et al., 2009), contour de- ) ) . ]

resolution approaches, that decrease the image size, superpixels
tection (Arbelaez et al., 2011), face labeling (Kae et al., 2013), ) ] . )

preserve the image geometry, since their boundaries follow the
data associations across views (Sawhney et al., 2014), or multi- ) )

image contours. Hence, the results obtained at the superpixel
class object segmentation (Giraud et al., 2017b; Gould et al., )

level may be closer to the ground truth result at the pixel level.
2008, 2014; Tighe and Lazebnik, 2010; Yang et al., 2010).

Superpixel decomposition methods group pixels into homoge- Many superpixel methods have been proposed using various

: - . ._techniques. Although the de nition of an optimal decomposi-
neous regions, providing a low-level representation that tries

. . . tion depends on the tackled application, most methods tend to
to respect the image contours. For image segmentation, where

achieve the following properties. First, the boundaries of the

_ decomposition should adhere to the image contours, and super-
Corresponding author: Tel.: +33(0)540006937; fax: +33(0)50006669;

e-mail: remi.giraud@labri.fr (Remi Giraud) pixels should not overlap with multiple objects. Second, the
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superpixel clustering must group pixels with homogeneous coltion. However, they are very sensitive to parameters and are ob-
ors. Third, the superpixels should have compact shapes ardined with high computational cost (Vedaldi and Soatto, 2008).
consistent sizes. The shape regularity helps to visually analyz&nother approach considers pixels as nodes of a graph to per-
the image decomposition and has been proven to impact aperm a faster agglomerative clustering (Felzenszwalb and Hut-
plication performances (Reso et al., 2013; Veksler et al., 201Genlocher, 2004). These methods present an important draw-
Strassburg et al., 2015). Finally, since superpixels are usuallgack: they do not allow to directly control the number of super-
used as a pre-processing step, the decomposition should be glixels. This is particularly an issue when superpixels are used
tained in limited computational time and allow the control of as a low-level representation to reduce the computational time.
the number of produced elements. The SEEDS method (Van den Bergh et al., 2012) proposes a
To achieve the aforementioned properties, most state-of-the&oarse-to- ne approach starting from a regular grid. However,
art methods compute a trade-off between color homogeneitthis method may provide superpixels with irregular shapes. Al-
and shape regularity of the superpixels. Nevertheless, sonthough a compactness constraint can be set to compute regular
approaches less consider the regularity property and can preuperpixels, the authors report degraded results of decomposi-
duce superpixels of highly irregular shapes and sizes. In th#on accuracy with such approach.
following, we present an overview of the most popular super-
pixel methods, de ned as either irregular or regular ones. Noté?egular Superpixel Methods
that although some methods can include terms into their mod- For superpixel-based object recognition metheds, Gould
els to generate for instance more regular reselig, Van den et al. (2008, 2014), or video tracking,g, Reso et al. (2013);
Bergh et al. (2012), we here consider methods in their defaukvang et al. (2011), the use of regular decompositions is manda-
settings, as described by the authors. tory, i.e, decompositions with superpixels having approxi-
The regularity criteria can be seen as the behavior to fremately the same size and compact shapes. For instance, for
quently produce irregular regions, in terms of both shapes ansuperpixel-based video tracking applications, the tracking of
sizes (Giraud et al., 2017c). Methods such as Felzenszwalb asipject trajectories within a scene is improved with consistent
Huttenlocher (2004); Vedaldi and Soatto (2008) generate verglecompositions over time (Chang et al., 2013; Reso et al.,
irregular regions in terms of both size and shape while SLIC ca?013).
generate a few irregular shapes but their sizes are constrainedMost of the regular methods consider an initial regular grid,
into a xed size window. allowing to set the number of superpixels, and update super-
pixels boundaries while applying spatial constraints. Classi-
Irregular Superpixel Methods cal methods are based on region growing, such as Turbopixels
With irregular methods, superpixels can have very differen{Levinshtein et al., 2009) using geometric ows, or eikonal-
sizes and stretched shapes. For instance, small superpixels dzesed methodsg,.g, ERGC (Buyssens et al., 2014), while other
be produced, without enough pixels to compute a signi cantapproaches use graph-based energy models (Liu et al., 2011;
descriptor. Too large superpixels may also overlap with sevVeksler et al., 2010). In Machairas et al. (2015), a watershed
eral objects contained in the image. First segmentation mettalgorithm is adapted to produce regular decompositions using a
ods, such as the watershed approach, Vincent and Soille  spatially regularized image gradient. Similarly to SEEDS (Van
(1991), compute decompositions of highly irregular size andden Bergh et al., 2012), a coarse-to- ne approach has recently
shape. Methods such as Mean shift (Comaniciu and Meeheen proposed in Yao et al. (2015), producing highly regular
2002) or Quick shift (Vedaldi and Soatto, 2008) consider arsuperpixels.

initial decomposition and perform a histogram-based segmenta- The SLIC method (Achanta et al., 2012) performs an iterative
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accurate clustering, while providing regular superpixels, in orcompletion step is hence necessary. Many contour completion
der of magnitude faster than graph-based approaches (Liu et anethods have been proposed (see for instance Arbelaez et al.
2011; Veksler et al., 2010). The SLIC method has been ex2011) and references therein). This step may improve the ac-
tended in several recent worlesg, Chen et al. (2017); Huang curacy of the contour detection, since objects are generally seg-
et al. (2016); Rubio et al. (2016); Zhang et al. (2016); Zhangnented by closed curves.

and Zhang (2017). However, it can fail to adhere to image \jethods such as Arbelaez and Cohen (2008); Arbelaez et al.

contours, as for other regular methodsy, Levinshtein et al. (2009), propose a hierarchical image segmentation based on

(2009); Yao et al. (2015), since itis based on simple local cologgnioyr detection. This can be considered as a probability con-

features and globally enforces the decomposition regularity usg, map, that produces a set of closed curves for any thresh-

ing a xed trade-off between color and spatial distances. old. Although such methods enable to segment an image from

_ a contour map, they do not allow to control the size, the shape

Contour Constraint ) ) )
and the number of the produced regions, while most superpixel
In the literature, several works have attempted t0 Improvey, o qqs enable to set the number of superpixels which approx-

the decomposition performances in terms of contour adherenqﬁme'y have the same size. Moreover, the performances of the

by using gradient or contour prior information. In Mori et al. ;o4 detection is extremely dependent on the xed thresh-

(2004), a contour detection algorithm is used to compute a pré;q parameter, which depends on the image content (Arbelaez

segmentation using the normalized cuts algorithm (Shiand Mas; al., 2009). Hence, they are mainly considered as segmenta-

lik, 2000). The segmentation may accurately guide the supetjo, methods and cannot be considered as relevant frameworks

pixel decomposition, but such approaches based on normalizqg compute superpixel decompositions.

cuts are computationally expensive (Mori et al., 2004). More-

over, the contour adherence of the produced decompositions are

far from state-of-the-art results (Achanta et al., 2012). In Moorq?obustness t0 Noise

et al. (2008), the superpixel decomposition is constrained to t

to a grid, also called superpixel lattice. The decomposition is

then re ned using graph cuts. However, this method is very Superpixel decompositions are usually used as a pre-

dependent on the used contour prior. Moreover, although thprocessing step in many computer vision applications. There-

superpixels have approximately the same sizes, they have quifiere, they tend to be applied to heterogeneous images that

irregular shapes and may appear visually unsatisfactory. can suffer from noise. Moreover, image textures and high lo-
In Machairas et al. (2015), the image gradient information iscal gradients may also mislead the superpixel decomposition.

used to constrain the superpixel boundaries, but the results dviost of the state-of-the-art superpixel methods are not robust

superpixel evaluation metrics are lower than the ones of SLIGo noise, and provide degraded decompositions when applied

(Achanta et al., 2012). In Zhang et al. (2016), the local gradiento slightly noised images or images with low resolution. With

information is considered to improve the superpixel boundariesuch approaches, a denoising step is necessary to compute a

evolution. However, the computational cost of the method igelevant decomposition. For instance, the watershed approach

increased by 40 order of magnitude compared to SLIC. of Machairas et al. (2015) uses a pre- Itering step to smooth

local gradients according to the given size of superpixels. Nev-
Segmentation from Contour Detection ertheless, this step is only designed to smooth local gradients
Contour detection methods generally do not enforce the corsf initial images and the impact of this Itering is not reported

tour closure. To produce an image segmentation, a contofMachairas et al., 2015).
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Fig. 1. Comparison of the proposed SCALP approach to the following state-of-the-art superpixel methods: ERS (Liu et al., 2011), SLIC (Achanta et al.,
2012), SEEDS (Van den Bergh et al., 2012), ERGC (Buyssens et al., 2014), ETPS (Yao et al., 2015) and LSC (Chen et al., 2017). SCALP obtains the most

visually satisfying result with superpixels that adhere well to the image contours. A Gaussian noise has been added to the bottom-right part of the image

to demonstrate that SCALP is robust to noise, contrary to most of the compared methods.

Contributions

In this paper, we propose a method that produces accurate,
regular and robust Superpixels with Contour Adherence using
Linear Path (SCALP) Our decomposition approach aims to
jointly improve all superpixel properties: color homogeneity,
respect of image objects and shape regularity. In Figure 1, we
compare the proposed approach to state-of-the-art methods on
an example result. SCALP provides a more satisfying result
that respects the image contours. Moreover, contrary to most
state-of-the-art methods, SCALP is robust to noise, since it pro-
vides accurate and regular decompositions on the noisy part of

the image.

Most state-of-the-art methods have very degraded perfor-
mances when applied to even slightly noised images (see
Figure 1). We propose to consider the neighboring pixels
information during the decomposition process. We show
that these features can be integrated at the same computa-
tional complexity, while they improve the decomposition

accuracy and the robustness to noise.

To further enforce the color homogeneity within a regu-

A contour prior can also be used to enforce the respect of
image objects and prevent the crossing of image contours

when associating a pixel to a superpixel.

We propose a framework to generate superpixels within an
initial segmentation computed from a contour prior com-

pletion. The produced superpixels are regular in terms
of size and shape although they are constrained by the
segmentation to obtain higher contour adherence perfor-

mances.

We provide an extensive evaluation of SCALP on the

Berkeley segmentation dataset (BSD). Our results outper-
form recent state-of-the-art methods, on initial and noisy
images, in terms of superpixel and contour detection met-

rics.

Finally, we naturally extend SCALP to supervoxel decom-
position and provide results on magnetic resonance imag-

ing (MRI) segmentation.

This paper is an extension of the work proposed in Giraud

lar shape, we de ne the linear path between the pixel anc?t al. (2016), with substantial new improvements such as the use

the superpixel barycenter, and we consider color feature
along the path. Contrary to geodesic distances that can
low irregular paths leading to non convex shapes, our lin-

ear path naturally enforces the decomposition regularity.

iSn constant time of the neighboring pixels information, the use
a?-f contour prior by considering the maximum intensity on the
linear path, or the extension to supervoxels. We show that these

new contributions improve the decomposition performances,

and by performing the clustering in a high dimensional feature

1An implementation of the proposed SCALP method is availablevaiw.

labri.fr/ ~ rgiraud/research/scalp.php

space (Chenetal., 2017), SCALP substantially outperforms Gi-

raud et al. (2016) and the recent state-of-the-art methods.



a spatial distancds, and a color distance;.:
ds(p;C) = (X %)°+ (Ve V)% (1)
de(PC)=(p WP+ (@ @)+, b)% (2

m?
D(p; Ck) = de(p; Ck) + ds(p; Ck)r_z; ©))

with m the regularity parameter that sets the trade-off between

spatial and color distances. High valuesmofproduce more
Fig. 2. The SCALP framework. A prior can be used (dotted arrows) to

) ) _regular superpixels, while small values allow better adherence
enforce the respect of image contours, leading to an accurate decomposi-

tion. When trying to associate a pixel to a superpixel, SCALP considersthe {0 image boundaries, producing superpixels of more variable

color information from neighboring pixels, and color and contour features sizes and shapes. The pi)p’,'is associated to the superpb&J

on the linear path to the superpixel barycenter. minimizing (3)

Nevertheless, since a parameters set to enforce the reg-

2. SCALP Framework o ) i
ularity in (3), SLIC can fail to both produce regular superpix-

The SCALP framework is based on the simple linear itera-€ls and to adhere to the image contours. In the following, we
tive clustering framework (SLIC) (Achanta et al., 2012), and isshow how the decomposition accuracy can be improved with a
summarized in Figure 2. In this section, we rst present SLICmore robust distance, by considering neighboring color features
and then propose several improvements: a robust distance @md information of pixels along the linear path to the superpixel
pixel neighborhood, the use of features along the linear patharycenter.
to the superpixel barycenter and a framework considering an

- . : . . 2.2. Robust Distance on Pixel Neighborhood
initial segmentation as constraint while producing regular su-

perpixels. Natural images may present high local image gradients or
noise, that can highly degrade the decomposition into superpix-

2.1. lterative Clustering Framework els. In this section, we propose to consider the pixel neighbor-

The iterative clustering framework introduced in Achantahood to improve both accuracy and robustness, and we give a
et al. (2012) proposes a fast iterative framework using simpléethod to integrate this information in the decomposition pro-
color features (average in CIELab colorspace). The decompos§ess at a constant complexity.

tion is initialized by a regular grid with blocks of sizer. This

2.2.1. Distance on Neighborhood
size is computed by the ratio between the number of piXels g

PW We propose to integrate the neighboring pixels information

and the number of desired superpixlssuch that =

A color clustering is then iteratively performed into xed win- in our framework when computing the clustering distance be-

dows of size(2r + 1) (2r + 1) pixels centered on the superpixel tween a pixelp and a cluste€y. Similarly to patch-based ap-

barycenter. The superpixel is thus constrained into this windovxf,)roaCheS’ the pixels in a square aita) centered orp,
jP(p)j = (2n+1) (2n+1) pixels, are considered in the proposed

of size

which limits its size. Each superpix8| is described by a clus-

: . lor distan :
ter Cy, that contains the average CIELab color feature on plxelé:0 or distancde

A v - X
p 2 Sk, Fx = [lk; a; bk], andXy = [X«; Y], the spatial barycenter De(p; Ci) = (Fq FCk)ZWp;q: ()

of Sk such thaCy = [F; X¢]. The iterative clustering consists, G2P(p)
for each clusteCy, in testing all pixelsp = [Fp; Xp] withina  To be robust to high local gradients while preserving

(2r + 1) (2r + 1) pixels window centered oKy, by computing the image contours, we de nevpq such thatwpq =



exp (Fp Fg)?=2 ?)=Z, with Z the normalization fac-

P
gar such thatz = = gppexp (Fp Fg)’=2 ?), and
a2P(p) Wpia = 1.

2.2.2. Fast Distance Computation

The complexity of the proposed distance (4)d€N), with
Fig. 3. lllustration of the linear path P'; between a pixelp and a superpixel

_ 9 _ . . . . y
N = (2n+ 1)* = jP(p)j, the number of pixels in the neighbor S, of barycenter X,.

hood. We propose a method that drastically reduces the compu-

tational burden of (4). Since the distance is computed between
a set of pixels and a cluster, it can be decomposed and partiaIFy'3'l' Linear Path between Pixel and Superpixel Barycenter
pre-computed. The considered linear paﬂh‘; between a pixelp and the

barycenter of a superpix&y is illustrated in Figure 3. The

Proposition 1. Eq. (4) can be computed at complex@y1). pixelsq 2 P‘; (red) are those that intersect with the segment

: : betweerX,, th iti f pi black), andXy, th
Proof. The distance between featuresn (4) reads: (arrow) betweerXs, the position of pixep (black), andX, the

barycenter of the superpix& (green). Pixelsy are selected

X
(Fq FCk)ZWp;q such that each one only haseighbors belonging to the path

a2P(p) X within a3 3 pixels neighborhood.

= FG+F&  2FqFc, W _ o
Other works consider a geodesic distance to enforce the color

a2P(p)
X X X . .

- Fc21Wp:q + Fékwp;q 2 FoFoWoq; homogeneity (Rubio et al., 2016; Wang et al., 2013) or the re-
92P(p) 42P(p) qup(P) spect of object contours (Zhang and Zhang, 2017). The colors
=Fp@+ FE, Wpq  2Fc, FqWpg; along the geodesic distance must be close to the average su-
a2P(p) a2P(p) . i .

perpixel color to enable the association of the pixel to the su-
=F,@+F2 2FcF,®: (5) , . o . _
k perpixel, leading to potential irregular shapes. We illustrate this

p - -
In Eq. (5), the terms,@ = ' o) F2Wp, andF,® = aspectin Figure 4. We compare a geodesic distance and average

«2p(e) FaWeq, Which only depend on the initial image, can be color distance on the linear path. While the geodesic can nd a

pre-computed at the beginning of the algorithm. The ComloleX_smuous path to connect distant pixels, our linear path penalizes

ity of the proposed distand®; is hence reduced ©(1) instead the crossing of regions with different colors.
of O(N). O A decomposition example for SCALP and a method based on
a geodesic color distance (Rubio et al., 2016) is given in Figure
23 Color and Contour Eeatures on Linear Path 5. By considering the proposed linear path, we limit the com-
putational cost, that can be substantial for geodesic distances,
A superpixel decomposition is considered as satisfying acand we enforce the decomposition compactness, since features
cording to the homogeneity of the color clustering and the reare considered on the direct path to the superpixel barycenter.
spect of image contours. To enforce these aspects, we propostre precisely, our linear path encourages the star-convexity
to consider color and contour features on the linear path beproperty (Gulshan et al., 2010)g., for a given shape, it ex-
tween the pixel and the superpixel barycenter. We de ne thésts a speci ¢ point, in our case, the superpixel barycenter, from
linear pathPX, that contains the pixels starting froxy, the po-  which each point of the shape can be reached by a linear path

sition of a pixelp, to X, the barycenter of a superpix®}. that does not escape from the shape.



We de ne the new color distance as:

X

1

(P CiPp)= De(PCY+ (1 )5z De(aCi (6)
Plg2pk

(a) Image (b) Geodesic distance  (c) Linear path distance
where 2 [0;1] weights the in uence of the color distance

Fig. 4. Comparison of geodesic path (red) and linear path (green) between ) .
. _ o _ along the path. With the proposed distance (6), colors on the
an initial (star) and nal (cross) pixel position in (a). In (b) and (c), lighter
colors indicate a lower distance from the initial point (star). When try-  Path to the barycenter should be close to the superpixel average
ing to associate this point to a superpixel, the distance at the superpixel color.
barycenter position is considered. Contrary to the linear path, de ned in

The distance (6) naturally enforces the regularity and also
the spatial space, the geodesic path, de ned in the color space, may lead to
irregular superpixel shapes. prevents irregular shapes to appear. Figure 6 shows two ex-

amples of irregular shapes that can be computed with SLIC
(Achanta et al., 2012), for instance in areas of color grada-
tion. The barycenterXy of these irregular superpixef are
not contained within the shapes. The linear p@grhence cap-
(a) Image (b) Rubio et al. (2016) (c) SCALP ture pixels with colors that are far from the average on8&of
(geodesic) (linear path) Therefore, (6) penalizes the clustering of all pixpl® Sy to
this superpixel during the current iteration, so they are associ-

Fig. 5. Comparison on an image (a) of decomposition approaches using a . . .
ated to neighboring superpixels.

geodesic color distance (Rubio et al., 2016) (b), and the proposed method
SCALP, computing a color distance on the linear path to the superpixel
barycenter (c). SCALP generates regular shapes while the geodesic-based

method can create irregular superpixels.

Finally, note that despite the large number of pixel informa-
tion considered during the decomposition process, the compu-
tational cost can be very limited. In practice, at a given iteration, (2) SLIC irregular shapes (b) SCALP regular shapes
for a given superpixel, the distance between a pixel and the surg. 6. Examples of irregular shapes obtained with SLIC (Achanta et al.,

perpixel has only to be computed once. The color distance Ca%PlZ) (a) and regular shapes obtained with SCALP using the color distance

indeed b g h oixel 4 di | 4 h on the linear path (6) (b). With non regular shapes, the barycenter may
indee e stored for each pixel an irectly used for anot efE\II outside the superpixel, and the linear path cross regions with different
linear path containing this pixel. Moreover, a very slight ap-colors, penalizing the clustering distance.

proximation can be made by directly storing for each pixel the

average distance on the linear path to the superpixel barycenter,

and using it when crossing an already processed pixel on aneys 3 agherence to Contour Prior

linear path. . . . - .
P Since the optimal color homogeneity may be not in line with
the respect of image objects, or fail to catch thin edges, we pro-
2.3.2. Color Distance to Cluster pose to consider the information of a contour prior n@&pn

The distance to minimize during the decomposition is com-+the linear path. Such map s&p) to 1 if a contour is detected
posed of a color and a spatial term. Nevertheless, the colat pixel p, and to0 otherwise. We propose a fast and ef cient
distance is now also computed 9}3 i.e, between the cluster way to integrate a contour prior by weighting the distance be-

and the pixels on the linear path to the superpixel barycentetween a pixel and a superpixel clusterdb(P‘;,), considering



Algorithm 1 SCALP(; K;C)

1: Initialization of cluster&x  [Fy; Xk] from a regular grid

2: Initialization of superpixel labelS 0
3: Pre-computation of featurég,® andF ,® (5)
4: for each iterationdo

(a) Initial grid decomposition (b) Contour prior 5: Distanced 1
6 for eachCy do
7 for eachpina(2r+1) (2r + 1) pixels window centered oxx do
8 Compute the linear paIP};, (Bresenham, 1965)
9 ComputeD(p; Ck) usingC and P‘; with (8)
10: if D(p;Cx) < d(p) then
11 d(p)  D(p;Ck)
(c) Linear pathP¥ (d) Maximum contour ofP¥ 12: S(p) K
Fig. 7. llustration of SCALP rst iteration starting from an initial grid (a) 13:  for eachCydo
and using a contour prior (b). The linear path P is de ned for a pixel p 14 Update] Fi; Xi]
15: return S

and a superpixelSy (c), and the maximum contour intensity (yellow pixel)

is considered to prevent the crossing of image structures (d).
2.4. Initialization Constraint from Contour Prior

the maximum of contour intensity d?f): In this section, we propose a framework to use an initial seg-

mentation computed from a contour prior completion to con-

de(PX) = 1+  maxC(a); 7 _ _ 3 _
2P strain the superpixel decomposition. To generate an image seg-
with 0. Figure 7 illustrates the selection of maximum mentation into regions from a contour map requires additional

contour intensity on the linear path. When a high contourStePs but may help to improve the decomposition accuracy. As

intensity is found on the path between a pixeland the stated in the introduction, although methods such as Arbelaez

barycenter oy, such term prevents this pixel to be associatec®nd €ohen (2008); Arbelaez et al. (2009) enable to segment an
to the superpixel, and all superpixel boundaries will follow Mage into partitions considering a contour map, they do not
more accurately the image contours. The proposed framewofXIOW t0 control the size, the shape and the number of the pro-
can consider either soft contour maps, maps having values duced regions. We here propose a framework that uses an initial
between0 and 1, or binary maps. It also adapts well to thick segmentation and produces a regular superpixel decomposition
contour prior since only the maximum intensity on the path igwithin pre-segmented regions, with control on the number of el-
considered. ements. This way, we take advantage of the initial segmentation
accuracy while providing an image decomposition into super-

Finally, we multiply this term to the color and spatial dis- pixels of regular sizes and shapes. By initializing the decompo-

. ition within the computed regions, the initial superpixels better
tances to ensure the respect of the images contours, and tﬁe P 9 Perp

. - . .. . ttotheimage content. For instance, small regions can be ini-
proposed distancB to minimize during the decomposition is g 9

iall men in ne or several rpixels, while they m
de ned as: tially segmented into one or several superpixels, e they may

| fall between two initial superpixel barycenters, and would not

e | it
D(p;Cy) = de(p: Ci: p'?)) + dy(p; Ck)r_z dc(p;); (8)  beaccurately segmented during the decomposition process.

with the spatial distancés computed as Eq. (1). The SCALP 2.4.1. Hierarchical Segmentation from Contour Detection
method is summarized in Algorithm 1. In order to adapt an initial segmentation to produce regular

superpixels, we propose to use a hierarchical segmentation, that



can be computed from a contour map with methods such ahe boundary with the lowest segmentation probability:
Arbelaez and Cohen (2008); Arbelaez et al. (2009).

if Rj<st R(R)= argmn U : 9
Let U be a hierarchical segmentation that de nes a con- Il (R) j;pzs(g)\B (Ry) (P) ®)

tour probability map. For any threshold, produces a set of ' Thegse steps are illustrated in Figure 9, where the thresholding
closed curves. Regions segmented with low probabilie),  removes areas segmented with low probability and the merging
with low intensity contours i can be deleted with a thresh- prevents the segmentation of small regions.
olding step. The thresholded closed contour map is denoted p partition step then adds initial superpixels in the remain-
U , for athreshold, and its corresponding decomposition into ing regions. If the resulting number of regions is lower than
regions is denoteR = fRig Figure 8, illustrates the result ob- e number of superpixel, superpixels are added according
tained from a hierarchical segmentation for several thresholdsy, {he region sizgRj. In a regionR, bRj=sc sub-regions are
initialized by a spatial K-means approach (Lloyd, 1982), re-
gardless of the color information.

The proposed approach thus adapts well to the superpixel
size, and is not sensitive to threshold settings. The framework
using the contour prior as a hard constraint is illustrated in Fig-

Image =0 ure 10, and will be denoted SCALP+HC in the following. Note
that although we here consider the segmentation as a hard con-
straint to enforce the respect of image objects, the image par-
tition can be used to only initialize the superpixel repartition,
instead of using a regular grid.

=02 =06

3. Results
Fig. 8. Example of hierarchical segmentation computed with Arbelaez et al.

(2009) from a contour map obtained with Dolr and Zitnick (2013). The 3.1. Validation Framework

hierarchical segmentation is illustrated for several values of the threshold

parameter . 3.1.1. Dataset

We use the standard Berkeley segmentation dataset (BSD)
(Martin et al., 2001) to evaluate our method and compare to

2.4.2. Regular Decomposition into Superpixels from a H'erar'state—of-the—art ones. This dataset contains 200 various test im-

chical Segmentation ages of size821 481 pixels. At least 5 human ground truth
Once the hierarchical segmentation is obtained and thresr&’ecompositions are provided per image to compute evaluation
olded, a merging step can be performed to remove the smallegfetrics in terms of consistency to the image objects, and con-

areas. Such small regions should be merged to an adjacent opg, adherence.

to respect the size regularity of the decomposition. WKitthe

number of superpixels antj the number of pixels of an im- 3.1.2. Metrics

agel, the superpixel average sizess= jlj=K. A threshold To evaluate our method and compare to other state-of-the-
t 2 [0; 1] is set to merge regions containing less pixels than  art frameworks, we use standard superpixel evaluation met-
The segmentation probability of a regiBnis pzrgi(g)u (p),i.e, rics. The achievable segmentation accuracy (ASA) measures
the lowest intensity among its boundary pixel2 B(R). The the consistency of the decomposition to the image objects.

regionR; is hence merged to its adjacent regRythat shares Boundary recall (BR) and contour density (CD) are used to
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(a) Image (b) Contour map (c) Hierarchical segmentation (d) Thresholding (e) Merging

Fig. 9. lllustration of the thresholding and merging steps of the hierarchical segmentation (c) computed from the contour map (b) of an image (a). The
thresholding step (d) enables to remove the areas segmented with low probabilitye., the small blue circles and the segmentation artifacts. Then, according

to the condition in Eqg. (9), smallest regions are removed (e),e., the red circles, although they have higher segmentation probability than the blue ones.

Fig. 10. SCALP+HC framework using the contour prior as a hard constraint to provide an initial segmentation. A completion step produces a hierarchical
segmentation from the contour map. Regions segmented with low probability are removed by a thresholding step, and too small regions compared to the
given superpixel size are merged to adjacent regions. These regions can then be partitioned to provide a superpixel initialization. SCALP is independently

performed in each region, taking advantage of the contour map accuracy while producing a regular decomposition that adapts well to local image content.

measure the detection accuracy according to the ground truttentage for all superpixels:
image contours. We also propose to evaluate the contour detec- X

] ) ] ASA(S;T) = i maxjSk\ Tij: (10)
tion performance of the superpixel methods by computing the I

precision-recall (PR) curves (Martin et al., 2004). Finally, we Note that recent worke,g, Giraud et al. (2017c); Stutz et al.

report the shape regularity criteria (SRC) (Giraud et al., 2017a@2017) show the high correlation between the undersegmenta-

that measures the regularity of the produced superpixels.  tjon error (Neubert and Protzel, 2012) and the ASA metric (10).
For each imagd of the dataset, human ground truth seg-Therefore, the ASA measure is suf cient to evaluate the respect

mentations are provided. The reported results are averaged ofiimage objects.

all segmentations. A ground truth decomposition is denoted

T = fTigos;:Tje With T; a segmented region, and we considerCOntour Detection

a superpixel segmentati®h= fSygerr: -isig The BR metric measures the detection of ground truth con-

toursB(T ) by the computed superpixel boundar®(S). If a
ground truth contour pixel has a decomposition contour pixel
Respect of image objects at an -pixel distance, it is considered as detected, and BR is
For each superpixeBy of the decomposition result, the de ned as the percentage of detected ground truth contours:
largest possible overlap with a ground truth regigncan be 1 X

BR(S;T) = ——— [min kp gk< ; (11)
computed with ASA, which computes the average overlap per- BT opry B
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with [a] = 1 whena is true and0 otherwise, and set to2  of standard deviations of pixel positiomsandy in Si, Hs, is
asin,e.g, Van den Bergh et al. (2012). However, this measurehe convex hull containingy, and CC measures the ratio be-
only considers true positive detection, and does not consider thteveen the perimeter and the area of the considered shape. The
number of produced superpixel contours. Therefore, methodSRC measure has been proven to be more robust and accurate
that produce very irregular superpixels are likely to have higtthan the circularity metric (Schick et al., 2012) used in several
BR results. To overcome this limitation, as in Machairas et alsuperpixel works.

(2015); Zhang et al. (2016), the contour density (CD) can be

considered to penalize a large number of superpixel boundaries1-3- Parameter Settings

B(S). In the following, we report CD over BR results, with CD ~ SCALP was implemented with MATLAB using single-
de ned as: threaded C-MEX code, on a standard Linux computer. We con-

CD(S) = JBI(I—JS)J (12) sider ind; andds more advanced spectral features introduced
When considering decompositions with the same 0, the in Chen et al. (2017). They are designed in a high dimensional

. . space 6 for color, and4 for spatial features). The linear path
same number of superpixel boundaries, BR results can be relep € P ) P

. . L etween a pixel and the barycenter of a superpixel is computed
vantly compared. Higher BR with the same CD indicates tha{0 P y Perp P

the produced superpixels better detect image contours. with Bresenham (1965). In (4), the parameteiis empiri-

The PR framework (Martin et al., 2004) enables to mea—caIIy setto40andP(p) is de ned as & 7 pixel neighborhood

. . .around a pixep, son = 3. In the proposed color distance (6),
sure the contour detection performances. PR curves consider pixep prop ©)

. . . is set to0:5, and to50in (7). The compactness parameter
both boundary recall (BR) (11),e. true positive detection, 1SS in (7) P P

P is set t00:0752 in the nal distance (8), as in Chen et al.
or percentage of detected ground truth contours, and precision (®)

P = jB(S)\ B (T)j5B(S)] i.e. percentage of accurate detec- (2017). This parameter offers a good trade-off between adher-

. . . nce to contour prior and compactness. The number of clus-
tion on produced superpixel boundaries. They are compute%i P P

. . N . tering iterations is set t6, contrary to Chen et al. (2017) that
from an input map, where the intensity in each pixel repre-

. . . uses20 iterations, since SCALP converges faster. Unless men-
sents the con dence of being on an image boundary. As in Van g

den Bergh et al. (2012), we consider the average of superpingnEd’ when used, the contour prior is computed with &oll

boundaries obtained at different scales, ranging from 25 to 1008nd Zitnick (2013). Finally, when using the contour prior as a

. . . . hard constraint (SCALP+HC), we respectively set parameters
superpixels, to provide a contour detection. In the following, to ( ) P y P

. . n ring the region fusion :15and0:4, an m-
summarize the contour detection performances, we report thtea d during the region fusion (9) t0:15 and0:4, and co

. pute a hierarchical segmentation with Arbelaez et al. (2009). In
maximum F-measure de ned as:

_ 2PBR.
" P+BR’

the following, when reporting results on noisy images, we use

(13) a white additive Gaussian noise of variance 20.

Shape Regularity
. o 3.2. In uence of Parameters
To evaluate the regularity of a decomposition in terms of su-

perpixel shape, we use the shape regularity criteria (SRC) ierB_.Z.l. Distance Parameters

duced in Giraud et al. (2017a), and de ned for a decomposition Ve rst measure the in uence of the distance parameters in

S as follows: (8) on SCALP performances. In Figure 11, we report results on
X i CC(H PR, ASA, CD over BR and SRC curves for different distance

sras)=" BIEISy sy ey - o |
L CC(Sk) settings, on both initial and noisy BSD images. First, we note

where Vy(Sy) = min( x; y)=max( x; y), evaluates the bal- thatthe neighboring pixelsi(= 3in (4)) increase the decompo-

anced repartition of the shafg with yand ythe square root sition accuracy. The color features£ 0:5in (6)) also improve
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Fig. 11. Evaluation of the SCALP distance parameters on PR, ASA, CD over BR and SRC metrics on initial (top) and noisy images (bottom). Each

contribution increases the decomposition accuracy for both initial and noisy images. The parametar in (4) sets the use of the neighborhood in the

clustering distance, and in (6) and in (7) respectively set the in uence of the color distance and contour prior along the linear path. Witm = 0in (4),
=1in (6)and = 0in (7), the framework is reduced to the method of Chen et al. (2017).

Initial image n=0, =1, =0 =3, =1, =0 tance parameters on a BSD image. With only the features used
in Chen et al. (2017)i,e., withn =0, =1, = 0, the de-
composition boundaries are very irregular. The neighborhood
information greatly reduces the noise at the superpixel bound-
3 =05 =0 he3, 05, =50 aries. The color distance on the linear path improves the super-
pixel regularity and provides more compact shapes. Finally, the
contour information enables to more ef ciently catch the object

structures and to respect the image contours.

Fig. 12. Visual impact of the distance parameters. Each contribution pro-  3.2.2. Contour Prior
gressively increases the decomposition accuracy by adding more relevant

We also investigate the in uence of the contour prior. The
features.

computation of the contour information should not be sensitive

to textures and high local image gradients, and many ef cient

the results, in terms of respect of image objects and regular"qfnethods have been proposed in the literature (see for instance

Finally, the contour prior (= 50in (7)) along the linear path references in Arbelaez et al. (2011)). The performances of our

enables to reach high contour detection (PR) and also increasrﬁ%thod are correlated to the contour detection accuracy, but we

the performances on superpixel metrics. On noisy images, th(ﬁ}emonstrate that improvements are obtained even with basic

accuracy of the contour prior is degraded, but it still providesContour detections

higher ASA performances on respect of image objects. Note
thatifn=0in (4), =1in(6)and = 0in (7), the method is

A fast way to obtain such basic contour detection, which
would be robust to textures and high gradients, is to average the
reduced to the framework of Chen et al. (2017). boundaries of superpixel decompositions obtained at multiple

Figure 12 illustrates the decomposition result for these disscales. We propose to consider the same set of skalke$Kg
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Initial image Boundary averag§ Contour mapC

Fig. 13. lllustration of contour detection from superpixel boundaries com-
puted with Achanta et al. (2012) at multiple scales. Boundaries are aver-
aged and thresholded to provide, in a fast and simple manner, an accurate

contour prior. The threshold of the boundary map (15)is set to0'5. Fig. 14. Evaluation of different contour priors. Even a simple contour de-

tection from averaged superpixel boundaries at multiple scales improves
used for computing the PR curves. All resulting superpixelSyq adgnerence to image contours.

boundariesB(SK) of a decompositior§X, computed at scale

K 2 K are averaged:
1 X In Figure 15, we provide PR curves with the maximum F-
> — Ky.
B= ]?J B(S™): (15) measure, and report the standard ASA (10), CD (12) over BR

K2K
— 11) and SRC (14) metrics on both initial (top) and noisy (bot-
The average8 can then be thresholded to remove low con - (11) (14) (top) y(

tom) images. SCALP outperforms the compared methods on
dence boundaries and provide an accurate contour @ribig- ) g P P

. . the respect of image objects and contour detection metrics, pro-
ure 13 illustrates the computation of the contour pfoirom P g ) P

. . » viding for instance higher F-measure €-0:680), while pro-
superpixel boundaries. Note that the decompositions at multi- 9 9 & 0 P

. . ducing regular superpixels. The regularity is indeed increased
ple scaleX are independent and can be computed in parallel. greg perp g y

d to SLIC and LSC, and i the highest of state-
In Figure 14, we provide results obtained by using dif“ferentCornpare ° an and|s among e hignhest of state

. . . of-the-art methods. The ASA evaluates the consistency of a
contour prior: the contour detection from multiple scale decom-

- . . superpixel decomposition with respect to the image objects, en-
positions, using Achanta et al. (2012) with a threshold of the perp P P 9 )

hancing the largest possible overlap. Therefore, best ASA re-
boundary map (15) set 5, from the globalized probability of "9 gest possi veriap

. . . ults obtained with SCALP indicate that the superpixels are bet-
boundary algorithm (Maire et al., 2008), a method using Iearneg perp

. . ter contained in the image objects. Using the contour prior as a
sparse codes of patch gradients (Xiaofeng and Bo, 2012), ang g ) g P

hard constraint (SCALP+HC), our method even reaches higher
from a structured forests approach (Boland Zitnick, 2013). ( ) g

. . . Performances, for instance with=0:709 Moreover, SCALP
The results on all metrics are improved with the accuracy o

) ) results obtained without using a contour pricg, setting to0
the provided contour detection. Nevertheless, we note that even g P g

. . . . in (7), still outperform the ones of the most accurate compared
simple contour priors enable to improve the superpixel decom-

. . . (Enethods LSC and ERS. Finally, we can underline the fact that
position adherence to boundaries. In the following, reporte

results are computed using Dirland Zitnick (2013). SCALP results outperform the ones of all the compared state-
of-the-art methods on contour detection and respect of image
3.3. Comparison with State-of-the-Art Methods objects metrics while producing regular superpixels. The gain
We compare the proposed SCALP approach to the followingf performances is further assessed by the result of a paired Stu-
state-of-the-art methods: ERS (Liu etal., 2011), SLIC (Achantalent test on the ASA result sets. A very lgavalue & 0:002
et al.,, 2012), SEEDS (Van den Bergh et al., 2012), ERGGs obtained by comparing the result set of SCALP to the one of
(Buyssens et al., 2014), Waterpixels (WP) (Machairas et alERS (Liu et al., 2011), the best compared method in terms of
2015), ETPS (Yao et al., 2015) and LSC (Chen et al., 2017)accuracy, which demonstrates the signi cant increase of perfor-
Reported results are computed with codes provided by the aumances obtained with SCALP. Generally, to enforce the regu-

thors, in their default settings. larity may reduce the contour adherence (Van den Bergh et al.,
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Fig. 15. Comparison between the proposed SCALP framework and the state-of-the-art methods on contour detection (PR) and superpixel metrics (ASA,
CD over BR and SRC) on the BSD test set. SCALP outperforms the other methods on both initial images (top) and noisy images (bottom). Moreover the
results obtained with SCALP without using a contour prior (SCALP = 0), still outperform the most accurate compared methods (Chen et al., 2017; Liu
etal., 2011).

as Buyssens et al. (2014); Chen et al. (2017); Liu et al. (2011)

Table 1. Comparison to state-of-the-art methods on initighoisy images.
The maximum F-measure(13) is computed as described in Section 3.1. 0btain very degraded performances when applied to slightly

ASA (10)and SRC(14)results are given forK = 250superpixels, and CD  noised images, while Van den Bergh et al. (2012) is the only
(12)results for BR = 0:8 (11). Blue (bold) and red (underlined) respectively
indicate best and second results

method that is robust to noise on all evaluated aspects. The

state-of-the-art methods can indeed have very different behav-

Method F (13) ASA (10) CD/BR(12) SRC (14) . . .
ior when applied to noisy images. They generally produce very

ERS 0:5930:424 Q9510:872 Q0990:227 (03950:213 ' _ _ _ ' '
SLIC 0:6330:506 09440867 01060:156 05370:417 noisy superpixel boundaries (see Figure 1). This aspect is ex-
SEEDS 0:5770:598 09430:939 Q1090:118 04140:435 pressed by the lower performances of CD over BR in the bot-
ERGC 0:5030:487 094§0:924 01040:192 Q4570:586 tom part of Figure 15. The regularity is also degraded for all
WP 0:58§0:460 09370:907 01240:162 (05570:508

9 4 4 L methods, except Buyssens et al. (2014), that tends to gener-
ETPS 0:6330:509 09430:939 01100:199 0:6630:386 ' B '
LsC 0:6070:611 095G0:929 Q1150:300 04200:234 ate more regular superpixels, failing at grouping homogeneous
SCALP 0:6800:636 0:9540:949 0:0840:107 0:6140:509 pixels. Finally, on the ASA metric, SCALP provides slightly
SCALP+HC  0:7090:640 09550:947 0:.0760:101 0:6430:545 higher results than SCALP+HC for these images. The presence

of noise may mislead the contour detection that should not be
2012), but SCALP succeeds in providing regular but accurat(e:onsmered as a hard constraint to ensure the respect of object

. . . . ?egmentation. These results are summarized in Table 1, where
superpixels. This regularity property has been proven crucial

for object recognition (Gould et al., 2014), tracking (Reso et al.,We report the performances of all compared methods on both

2013) and segmentation and labeling applications (Strassbuiraitial and noisy images fok = 200superpixels.

et al., 2015). Therefore, the use of SCALP may increase the Despite the large number of features used in SCALP, the

accuracy of such superpixel-based methods. computational time remains reasonable,, less tharD:5s on
The gain over state-of-the-art methods is largely increaseBSD images, on a single CPU, without any multi-threading

when computing superpixels on noisy images. Methods suchrchitecture, contrary to implementations of methods such as
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ETPS (Yao et al., 2015). This computational time correspond€ontrary to other methods that necessitate substantial adapta-
to standard ones of superpixel methods, and SCALP is evetions for 3D data, we naturally extend SCALP to compute 3D
faster than methods such as Levinshtein et al. (2009); Liu et alolume decompositions. We start from a 3D regular grid and
(2011), whose computational time can be upso perform the decomposition by adding one dimension to the pre-
In this work, we focus on the decomposition performances/ious equations presented in Section 2.
and do not extensively compare the processing times, since this To validate our extension to supervoxels, we consider 3D
measurement is highly dependent on the implementation anslagnetic resonance imaging (MRI) data from the Brain Tu-
optimization, and does not necessarily re ect the computationainor Segmentation (BRATS) dataset (Menze et al., 2015). This
potential of each method (Stutz et al., 2017). Nevertheless, outataset contains 80 brain MRI of patients suffering from tu-
method is based on the iterative clustering framework (Achantanors. The images are segmented into three labels: background,
et al., 2012), and recent works have demonstrated that such altmor and edema, surrounding the tumor. We illustrate exam-
gorithm could be implemented to perform in real-time (Banples of SCALP supervoxel segmentation with the ground truth
et al., 2016; Choi and Oh, 2016; Neubert and Protzel, 2014segmentation in Figure 18, where the tumor and edema are re-
Therefore, since SCALP have the same complexity as SLICspectively segmented in green and red color. This dataset is
our method can reach such computational time with optimizegbarticularly challenging since the resolution of images is very
implementation or multi-threading architectures. low and the ground truth segmentation is not necessarily in line
Finally, Figures 16 and 17 respectively illustrate the superwith the image gradients. Finally, note that SCALP obtains an
pixel decomposition results obtained with SCALP and the besaverage 3D ASA measure 09848 and outperforms state-of-
compared methods on initial and noisy images. SCALP prothe-art methods with available implementations SLIC (Achanta
vides more regular superpixels while tightly following the im- et al., 2012) and ERGC (Buyssens et al., 2014), that respec-
age contours. SCALP+HC enables to more accurately guide th#vely obtain a 3D ASA 0f0:9840and0:9652
decomposition by constraining superpixels to previously seg-
mented regions. While most of the compared methods producg cqnclusion
inaccurate and irregular results with slightly noised images (see
Figure 17), SCALP is robust to noise and produces regular su- In this work, we generalize the superpixel clustering frame-
perpixels that adhere well to the image contours. work proposed in Achanta et al. (2012); Giraud et al. (2016),
by considering color features and contour intensity on the linear
3.4. Extension to Supervoxels path from the pixel to the superpixel barycenter. Our method is
Finally, we naturally extend the SCALP method to the com-robust to noise and the use of features along such path improves
putation of supervoxels on 3D volumes, for the segmentatioithe respect of image objects and the shape regularity of the su-
of 3D objects or medical images. Many supervoxel methodperpixels. The considered linear path naturally enforces the su-
are dedicated to video segmentation, see for instance Xu argerpixel convexity while other geodesic distances would pro-
Corso (2012), and references therein. These methods segmende irregular superpixels. Our fast integration of these features
the volume into temporal superpixel tubes and are thereforeithin the framework enables to compute the decomposition in
only adapted to the context of video processing. Other metha limited computational time. SCALP obtains state-of-the-art
ods propose to perform superpixel trackimgg, Chang et al.  results, outperforming the most recent methods of the literature
(2013); Reso et al. (2013); Wang et al. (2011), which can resulbn superpixel and contour detection metrics. Image processing
in similar tubular supervoxel segmentation, and may require thand computer vision pipelines would bene t from using such

computation of optical ow to be ef cient (Chang et al., 2013). regular, yet accurate decompositions.
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ERS SLIC ERGC ETPS LSC SCALP SCALP+HC

Fig. 16. Qualitative comparison of decomposition results between SCALP and state-of-the-art superpixel methods on example images of the BSD. SCALP
provides the most visually satisfying results with superpixels that adhere well to the image contours while being equally sized and having compact shapes.

SCALP+HC enables to further enforce the respect of image contours.
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Fig. 17. Qualitative comparison of decomposition results between SCALP and state-of-the-art superpixel methods on noisy images of the BSD. The com-
pared methods generate inaccurate superpixels with noisy borders, while SCALP is robust to noise and produces regular superpixels with smooth bound-
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