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ABSTRACT

Superpixel decomposition methods are widely used in computer vision and image processing applica-
tions. By grouping homogeneous pixels, the accuracy can be increased and the decrease of the number
of elements to process can drastically reduce the computational burden. For most superpixel methods,
a trade-off is computed between 1) color homogeneity, 2) adherence to the image contours and 3)
shape regularity of the decomposition. In this paper, we propose a framework that jointly enforces
all these aspects and provides accurate and regular Superpixels with Contour Adherence using Lin-
ear Path (SCALP). During the decomposition, we propose to consider color features along the linear
path between the pixel and the corresponding superpixel barycenter. A contour prior is also used to
prevent the crossing of image boundaries when associating a pixel to a superpixel. Finally, in order
to improve the decomposition accuracy and the robustness to noise, we propose to integrate the pixel
neighborhood information, while preserving the same computational complexity. SCALP is exten-
sively evaluated on standard segmentation dataset, and the obtained results outperform the ones of the
state-of-the-art methods. SCALP is also extended for supervoxel decomposition on MRI images.

c 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The use of superpixels has become a very popular technique

for many computer vision and image processing applications

such as: object localization (Fulkerson et al., 2009), contour de-

tection (Arbelaez et al., 2011), face labeling (Kae et al., 2013),

data associations across views (Sawhney et al., 2014), or multi-

class object segmentation (Giraud et al., 2017b; Gould et al.,

2008, 2014; Tighe and Lazebnik, 2010; Yang et al., 2010).

Superpixel decomposition methods group pixels into homoge-

neous regions, providing a low-level representation that tries

to respect the image contours. For image segmentation, where

�� Corresponding author: Tel.: +33(0)540006937; fax: +33(0)50006669;
e-mail: remi.giraud@labri.fr (Rémi Giraud)

the goal is to split the image into similar regions according to

object, color or texture priors, the decomposition into superpix-

els may improve the segmentation accuracy and decrease the

computational burden. (Gould et al., 2014). Contrary to multi-

resolution approaches, that decrease the image size, superpixels

preserve the image geometry, since their boundaries follow the

image contours. Hence, the results obtained at the superpixel

level may be closer to the ground truth result at the pixel level.

Many superpixel methods have been proposed using various

techniques. Although the de�nition of an optimal decomposi-

tion depends on the tackled application, most methods tend to

achieve the following properties. First, the boundaries of the

decomposition should adhere to the image contours, and super-

pixels should not overlap with multiple objects. Second, the
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superpixel clustering must group pixels with homogeneous col-

ors. Third, the superpixels should have compact shapes and

consistent sizes. The shape regularity helps to visually analyze

the image decomposition and has been proven to impact ap-

plication performances (Reso et al., 2013; Veksler et al., 2010;

Strassburg et al., 2015). Finally, since superpixels are usually

used as a pre-processing step, the decomposition should be ob-

tained in limited computational time and allow the control of

the number of produced elements.

To achieve the aforementioned properties, most state-of-the-

art methods compute a trade-off between color homogeneity

and shape regularity of the superpixels. Nevertheless, some

approaches less consider the regularity property and can pro-

duce superpixels of highly irregular shapes and sizes. In the

following, we present an overview of the most popular super-

pixel methods, de�ned as either irregular or regular ones. Note

that although some methods can include terms into their mod-

els to generate for instance more regular results,e.g., Van den

Bergh et al. (2012), we here consider methods in their default

settings, as described by the authors.

The regularity criteria can be seen as the behavior to fre-

quently produce irregular regions, in terms of both shapes and

sizes (Giraud et al., 2017c). Methods such as Felzenszwalb and

Huttenlocher (2004); Vedaldi and Soatto (2008) generate very

irregular regions in terms of both size and shape while SLIC can

generate a few irregular shapes but their sizes are constrained

into a �xed size window.

Irregular Superpixel Methods

With irregular methods, superpixels can have very different

sizes and stretched shapes. For instance, small superpixels can

be produced, without enough pixels to compute a signi�cant

descriptor. Too large superpixels may also overlap with sev-

eral objects contained in the image. First segmentation meth-

ods, such as the watershed approach,e.g., Vincent and Soille

(1991), compute decompositions of highly irregular size and

shape. Methods such as Mean shift (Comaniciu and Meer,

2002) or Quick shift (Vedaldi and Soatto, 2008) consider an

initial decomposition and perform a histogram-based segmenta-

tion. However, they are very sensitive to parameters and are ob-

tained with high computational cost (Vedaldi and Soatto, 2008).

Another approach considers pixels as nodes of a graph to per-

form a faster agglomerative clustering (Felzenszwalb and Hut-

tenlocher, 2004). These methods present an important draw-

back: they do not allow to directly control the number of super-

pixels. This is particularly an issue when superpixels are used

as a low-level representation to reduce the computational time.

The SEEDS method (Van den Bergh et al., 2012) proposes a

coarse-to-�ne approach starting from a regular grid. However,

this method may provide superpixels with irregular shapes. Al-

though a compactness constraint can be set to compute regular

superpixels, the authors report degraded results of decomposi-

tion accuracy with such approach.

Regular Superpixel Methods

For superpixel-based object recognition methods,e.g., Gould

et al. (2008, 2014), or video tracking,e.g., Reso et al. (2013);

Wang et al. (2011), the use of regular decompositions is manda-

tory, i.e., decompositions with superpixels having approxi-

mately the same size and compact shapes. For instance, for

superpixel-based video tracking applications, the tracking of

object trajectories within a scene is improved with consistent

decompositions over time (Chang et al., 2013; Reso et al.,

2013).

Most of the regular methods consider an initial regular grid,

allowing to set the number of superpixels, and update super-

pixels boundaries while applying spatial constraints. Classi-

cal methods are based on region growing, such as Turbopixels

(Levinshtein et al., 2009) using geometric �ows, or eikonal-

based methods,e.g., ERGC (Buyssens et al., 2014), while other

approaches use graph-based energy models (Liu et al., 2011;

Veksler et al., 2010). In Machairas et al. (2015), a watershed

algorithm is adapted to produce regular decompositions using a

spatially regularized image gradient. Similarly to SEEDS (Van

den Bergh et al., 2012), a coarse-to-�ne approach has recently

been proposed in Yao et al. (2015), producing highly regular

superpixels.

The SLIC method (Achanta et al., 2012) performs an iterative
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accurate clustering, while providing regular superpixels, in or-

der of magnitude faster than graph-based approaches (Liu et al.,

2011; Veksler et al., 2010). The SLIC method has been ex-

tended in several recent works,e.g., Chen et al. (2017); Huang

et al. (2016); Rubio et al. (2016); Zhang et al. (2016); Zhang

and Zhang (2017). However, it can fail to adhere to image

contours, as for other regular methods,e.g., Levinshtein et al.

(2009); Yao et al. (2015), since it is based on simple local color

features and globally enforces the decomposition regularity us-

ing a �xed trade-off between color and spatial distances.

Contour Constraint

In the literature, several works have attempted to improve

the decomposition performances in terms of contour adherence

by using gradient or contour prior information. In Mori et al.

(2004), a contour detection algorithm is used to compute a pre-

segmentation using the normalized cuts algorithm (Shi and Ma-

lik, 2000). The segmentation may accurately guide the super-

pixel decomposition, but such approaches based on normalized

cuts are computationally expensive (Mori et al., 2004). More-

over, the contour adherence of the produced decompositions are

far from state-of-the-art results (Achanta et al., 2012). In Moore

et al. (2008), the superpixel decomposition is constrained to �t

to a grid, also called superpixel lattice. The decomposition is

then re�ned using graph cuts. However, this method is very

dependent on the used contour prior. Moreover, although the

superpixels have approximately the same sizes, they have quite

irregular shapes and may appear visually unsatisfactory.

In Machairas et al. (2015), the image gradient information is

used to constrain the superpixel boundaries, but the results on

superpixel evaluation metrics are lower than the ones of SLIC

(Achanta et al., 2012). In Zhang et al. (2016), the local gradient

information is considered to improve the superpixel boundaries

evolution. However, the computational cost of the method is

increased by a10� order of magnitude compared to SLIC.

Segmentation from Contour Detection

Contour detection methods generally do not enforce the con-

tour closure. To produce an image segmentation, a contour

completion step is hence necessary. Many contour completion

methods have been proposed (see for instance Arbelaez et al.

(2011) and references therein). This step may improve the ac-

curacy of the contour detection, since objects are generally seg-

mented by closed curves.

Methods such as Arbelaez and Cohen (2008); Arbelaez et al.

(2009), propose a hierarchical image segmentation based on

contour detection. This can be considered as a probability con-

tour map, that produces a set of closed curves for any thresh-

old. Although such methods enable to segment an image from

a contour map, they do not allow to control the size, the shape

and the number of the produced regions, while most superpixel

methods enable to set the number of superpixels which approx-

imately have the same size. Moreover, the performances of the

contour detection is extremely dependent on the �xed thresh-

old parameter, which depends on the image content (Arbelaez

et al., 2009). Hence, they are mainly considered as segmenta-

tion methods and cannot be considered as relevant frameworks

to compute superpixel decompositions.

Robustness to Noise

Superpixel decompositions are usually used as a pre-

processing step in many computer vision applications. There-

fore, they tend to be applied to heterogeneous images that

can suffer from noise. Moreover, image textures and high lo-

cal gradients may also mislead the superpixel decomposition.

Most of the state-of-the-art superpixel methods are not robust

to noise, and provide degraded decompositions when applied

to slightly noised images or images with low resolution. With

such approaches, a denoising step is necessary to compute a

relevant decomposition. For instance, the watershed approach

of Machairas et al. (2015) uses a pre-�ltering step to smooth

local gradients according to the given size of superpixels. Nev-

ertheless, this step is only designed to smooth local gradients

of initial images and the impact of this �ltering is not reported

(Machairas et al., 2015).
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Initial/noisy image ERS SLIC SEEDS ERGC ETPS LSC SCALP

Fig. 1. Comparison of the proposed SCALP approach to the following state-of-the-art superpixel methods: ERS (Liu et al., 2011), SLIC (Achanta et al.,

2012), SEEDS (Van den Bergh et al., 2012), ERGC (Buyssens et al., 2014), ETPS (Yao et al., 2015) and LSC (Chen et al., 2017). SCALP obtains the most

visually satisfying result with superpixels that adhere well to the image contours. A Gaussian noise has been added to the bottom-right part of the image

to demonstrate that SCALP is robust to noise, contrary to most of the compared methods.

Contributions

In this paper, we propose a method that produces accurate,

regular and robust Superpixels with Contour Adherence using

Linear Path (SCALP)1. Our decomposition approach aims to

jointly improve all superpixel properties: color homogeneity,

respect of image objects and shape regularity. In Figure 1, we

compare the proposed approach to state-of-the-art methods on

an example result. SCALP provides a more satisfying result

that respects the image contours. Moreover, contrary to most

state-of-the-art methods, SCALP is robust to noise, since it pro-

vides accurate and regular decompositions on the noisy part of

the image.

� Most state-of-the-art methods have very degraded perfor-

mances when applied to even slightly noised images (see

Figure 1). We propose to consider the neighboring pixels

information during the decomposition process. We show

that these features can be integrated at the same computa-

tional complexity, while they improve the decomposition

accuracy and the robustness to noise.

� To further enforce the color homogeneity within a regu-

lar shape, we de�ne the linear path between the pixel and

the superpixel barycenter, and we consider color features

along the path. Contrary to geodesic distances that can al-

low irregular paths leading to non convex shapes, our lin-

ear path naturally enforces the decomposition regularity.

1An implementation of the proposed SCALP method is available at:www.

labri.fr/ ˜ rgiraud/research/scalp.php

A contour prior can also be used to enforce the respect of

image objects and prevent the crossing of image contours

when associating a pixel to a superpixel.

� We propose a framework to generate superpixels within an

initial segmentation computed from a contour prior com-

pletion. The produced superpixels are regular in terms

of size and shape although they are constrained by the

segmentation to obtain higher contour adherence perfor-

mances.

� We provide an extensive evaluation of SCALP on the

Berkeley segmentation dataset (BSD). Our results outper-

form recent state-of-the-art methods, on initial and noisy

images, in terms of superpixel and contour detection met-

rics.

� Finally, we naturally extend SCALP to supervoxel decom-

position and provide results on magnetic resonance imag-

ing (MRI) segmentation.

This paper is an extension of the work proposed in Giraud

et al. (2016), with substantial new improvements such as the use

in constant time of the neighboring pixels information, the use

of contour prior by considering the maximum intensity on the

linear path, or the extension to supervoxels. We show that these

new contributions improve the decomposition performances,

and by performing the clustering in a high dimensional feature

space (Chen et al., 2017), SCALP substantially outperforms Gi-

raud et al. (2016) and the recent state-of-the-art methods.
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Fig. 2. The SCALP framework. A prior can be used (dotted arrows) to

enforce the respect of image contours, leading to an accurate decomposi-

tion. When trying to associate a pixel to a superpixel, SCALP considers the

color information from neighboring pixels, and color and contour features

on the linear path to the superpixel barycenter.

2. SCALP Framework

The SCALP framework is based on the simple linear itera-

tive clustering framework (SLIC) (Achanta et al., 2012), and is

summarized in Figure 2. In this section, we �rst present SLIC

and then propose several improvements: a robust distance on

pixel neighborhood, the use of features along the linear path

to the superpixel barycenter and a framework considering an

initial segmentation as constraint while producing regular su-

perpixels.

2.1. Iterative Clustering Framework

The iterative clustering framework introduced in Achanta

et al. (2012) proposes a fast iterative framework using simple

color features (average in CIELab colorspace). The decomposi-

tion is initialized by a regular grid with blocks of sizer� r. This

size is computed by the ratio between the number of pixelsN

and the number of desired superpixelsK, such thatr =
p

N=K.

A color clustering is then iteratively performed into �xed win-

dows of size(2r + 1)� (2r + 1) pixels centered on the superpixel

barycenter. The superpixel is thus constrained into this window,

which limits its size. Each superpixelSk is described by a clus-

terCk, that contains the average CIELab color feature on pixels

p 2 Sk, Fk = [lk; ak; bk], andXk = [xk; yk], the spatial barycenter

of Sk such thatCk = [Fk; Xk]. The iterative clustering consists,

for each clusterCk, in testing all pixelsp = [Fp; Xp] within a

(2r + 1)� (2r + 1) pixels window centered onXk, by computing

a spatial distanceds, and a color distancedc:

ds(p;Ck) = (xp � xk)2 + (yp � yk)2; (1)

dc(p;Ck) = (lp � lk)2 + (ap � ak)2 + (bp � bk)2; (2)

D(p;Ck) = dc(p;Ck) + ds(p;Ck)
m2

r2
; (3)

with m the regularity parameter that sets the trade-off between

spatial and color distances. High values ofm produce more

regular superpixels, while small values allow better adherence

to image boundaries, producing superpixels of more variable

sizes and shapes. The pixelp is associated to the superpixelSk

minimizing (3).

Nevertheless, since a parameterm is set to enforce the reg-

ularity in (3), SLIC can fail to both produce regular superpix-

els and to adhere to the image contours. In the following, we

show how the decomposition accuracy can be improved with a

more robust distance, by considering neighboring color features

and information of pixels along the linear path to the superpixel

barycenter.

2.2. Robust Distance on Pixel Neighborhood

Natural images may present high local image gradients or

noise, that can highly degrade the decomposition into superpix-

els. In this section, we propose to consider the pixel neighbor-

hood to improve both accuracy and robustness, and we give a

method to integrate this information in the decomposition pro-

cess at a constant complexity.

2.2.1. Distance on Neighborhood

We propose to integrate the neighboring pixels information

in our framework when computing the clustering distance be-

tween a pixelp and a clusterCk. Similarly to patch-based ap-

proaches, the pixels in a square areaP(p) centered onp, of size

jP(p)j = (2n+1)� (2n+1) pixels, are considered in the proposed

color distanceDc:

Dc(p;Ck) =
X

q2P(p)

(Fq � FCk)
2wp;q: (4)

To be robust to high local gradients while preserving

the image contours, we de�newp;q such that wp;q =
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exp
�
� (Fp � Fq)2=(2� 2)

�
=Z, with Z the normalization fac-

tor such that Z =
P

q2P(p) exp
�
� (Fp � Fq)2=(2� 2)

�
, and

P
q2P(p) wp;q = 1.

2.2.2. Fast Distance Computation

The complexity of the proposed distance (4) isO(N), with

N = (2n + 1)2 = jP(p)j, the number of pixels in the neighbor-

hood. We propose a method that drastically reduces the compu-

tational burden of (4). Since the distance is computed between

a set of pixels and a cluster, it can be decomposed and partially

pre-computed.

Proposition 1. Eq. (4) can be computed at complexityO(1).

Proof. The distance between featuresF in (4) reads:

X

q2P(p)

(Fq � FCk)
2wp;q

=
X

q2P(p)

�
F2

q + F2
Ck

� 2FqFCk

�
wp;q;

=
X

q2P(p)

F2
qwp;q +

X

q2P(p)

F2
Ck

wp;q � 2
X

q2P(p)

FqFCkwp;q;

= Fp
(2) + F2

Ck

X

q2P(p)

wp;q � 2FCk

X

q2P(p)

Fqwp;q;

= Fp
(2) + F2

Ck
� 2FCkFp

(1): (5)

In Eq. (5), the termsFp
(2) =

P
q2P(p) F2

qwp;q, and Fp
(1) =

P
q2P(p) Fqwp;q, which only depend on the initial image, can be

pre-computed at the beginning of the algorithm. The complex-

ity of the proposed distanceDc is hence reduced toO(1) instead

of O(N).

2.3. Color and Contour Features on Linear Path

A superpixel decomposition is considered as satisfying ac-

cording to the homogeneity of the color clustering and the re-

spect of image contours. To enforce these aspects, we propose

to consider color and contour features on the linear path be-

tween the pixel and the superpixel barycenter. We de�ne the

linear pathPk
p, that contains the pixels starting fromXp, the po-

sition of a pixelp, to Xk, the barycenter of a superpixelSk.

Fig. 3. Illustration of the linear path Pk
p between a pixelp and a superpixel

Sk of barycenter Xk.

2.3.1. Linear Path between Pixel and Superpixel Barycenter

The considered linear pathPk
p between a pixelp and the

barycenter of a superpixelSk is illustrated in Figure 3. The

pixels q 2 Pk
p (red) are those that intersect with the segment

(arrow) betweenXp, the position of pixelp (black), andXk, the

barycenter of the superpixelSk (green). Pixelsq are selected

such that each one only has2 neighbors belonging to the path

within a3� 3 pixels neighborhood.

Other works consider a geodesic distance to enforce the color

homogeneity (Rubio et al., 2016; Wang et al., 2013) or the re-

spect of object contours (Zhang and Zhang, 2017). The colors

along the geodesic distance must be close to the average su-

perpixel color to enable the association of the pixel to the su-

perpixel, leading to potential irregular shapes. We illustrate this

aspect in Figure 4. We compare a geodesic distance and average

color distance on the linear path. While the geodesic can �nd a

sinuous path to connect distant pixels, our linear path penalizes

the crossing of regions with different colors.

A decomposition example for SCALP and a method based on

a geodesic color distance (Rubio et al., 2016) is given in Figure

5. By considering the proposed linear path, we limit the com-

putational cost, that can be substantial for geodesic distances,

and we enforce the decomposition compactness, since features

are considered on the direct path to the superpixel barycenter.

More precisely, our linear path encourages the star-convexity

property (Gulshan et al., 2010),i.e., for a given shape, it ex-

ists a speci�c point, in our case, the superpixel barycenter, from

which each point of the shape can be reached by a linear path

that does not escape from the shape.
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(a) Image (b) Geodesic distance (c) Linear path distance

Fig. 4. Comparison of geodesic path (red) and linear path (green) between

an initial (star) and �nal (cross) pixel position in (a). In (b) and (c), lighter

colors indicate a lower distance from the initial point (star). When try-

ing to associate this point to a superpixel, the distance at the superpixel

barycenter position is considered. Contrary to the linear path, de�ned in

the spatial space, the geodesic path, de�ned in the color space, may lead to

irregular superpixel shapes.

(a) Image (b) Rubio et al. (2016) (c) SCALP

(geodesic) (linear path)

Fig. 5. Comparison on an image (a) of decomposition approaches using a

geodesic color distance (Rubio et al., 2016) (b), and the proposed method

SCALP, computing a color distance on the linear path to the superpixel

barycenter (c). SCALP generates regular shapes while the geodesic-based

method can create irregular superpixels.

Finally, note that despite the large number of pixel informa-

tion considered during the decomposition process, the compu-

tational cost can be very limited. In practice, at a given iteration,

for a given superpixel, the distance between a pixel and the su-

perpixel has only to be computed once. The color distance can

indeed be stored for each pixel and directly used for another

linear path containing this pixel. Moreover, a very slight ap-

proximation can be made by directly storing for each pixel the

average distance on the linear path to the superpixel barycenter,

and using it when crossing an already processed pixel on a new

linear path.

2.3.2. Color Distance to Cluster

The distance to minimize during the decomposition is com-

posed of a color and a spatial term. Nevertheless, the color

distance is now also computed onPk
p, i.e, between the cluster

and the pixels on the linear path to the superpixel barycenter.

We de�ne the new color distance as:

dc(p;Ck;Pk
p)= � Dc(p;Ck) + (1� � )

1

jPk
pj

X

q2Pk
p

Dc(q;Ck); (6)

where� 2 [0;1] weights the in�uence of the color distance

along the path. With the proposed distance (6), colors on the

path to the barycenter should be close to the superpixel average

color.

The distance (6) naturally enforces the regularity and also

prevents irregular shapes to appear. Figure 6 shows two ex-

amples of irregular shapes that can be computed with SLIC

(Achanta et al., 2012), for instance in areas of color grada-

tion. The barycentersXk of these irregular superpixelsSk are

not contained within the shapes. The linear pathPk
p hence cap-

ture pixels with colors that are far from the average one ofSk.

Therefore, (6) penalizes the clustering of all pixelsp 2 Sk to

this superpixel during the current iteration, so they are associ-

ated to neighboring superpixels.

(a) SLIC irregular shapes (b) SCALP regular shapes

Fig. 6. Examples of irregular shapes obtained with SLIC (Achanta et al.,

2012) (a) and regular shapes obtained with SCALP using the color distance

on the linear path (6) (b). With non regular shapes, the barycenter may

fall outside the superpixel, and the linear path cross regions with different

colors, penalizing the clustering distance.

2.3.3. Adherence to Contour Prior

Since the optimal color homogeneity may be not in line with

the respect of image objects, or fail to catch thin edges, we pro-

pose to consider the information of a contour prior mapC on

the linear path. Such map setsC(p) to 1 if a contour is detected

at pixel p, and to0 otherwise. We propose a fast and ef�cient

way to integrate a contour prior by weighting the distance be-

tween a pixel and a superpixel cluster bydC(Pk
p), considering
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(a) Initial grid decomposition (b) Contour prior

(c) Linear pathPk
p (d) Maximum contour onPk

p

Fig. 7. Illustration of SCALP �rst iteration starting from an initial grid (a)

and using a contour prior (b). The linear path Pk
p is de�ned for a pixel p

and a superpixelSk (c), and the maximum contour intensity (yellow pixel)

is considered to prevent the crossing of image structures (d).

the maximum of contour intensity onPk
p:

dC(Pk
p) = 1 +  max

q2Pk
p

C(q); (7)

with  � 0. Figure 7 illustrates the selection of maximum

contour intensity on the linear path. When a high contour

intensity is found on the path between a pixelp and the

barycenter ofSk, such term prevents this pixel to be associated

to the superpixel, and all superpixel boundaries will follow

more accurately the image contours. The proposed framework

can consider either soft contour maps,i.e., maps having values

between0 and1, or binary maps. It also adapts well to thick

contour prior since only the maximum intensity on the path is

considered.

Finally, we multiply this term to the color and spatial dis-

tances to ensure the respect of the images contours, and the

proposed distanceD to minimize during the decomposition is

de�ned as:

D(p;Ck) =
 
dc(p;Ck;Pk

p) + ds(p;Ck)
m2

r2

!
dC(Pk

p); (8)

with the spatial distanceds computed as Eq. (1). The SCALP

method is summarized in Algorithm 1.

Algorithm 1 SCALP(I ; K;C)
1: Initialization of clustersCk  [Fk; Xk] from a regular grid

2: Initialization of superpixel labelsS  0

3: Pre-computation of featuresFp
(2) andFp

(1) (5)

4: for each iterationdo

5: Distanced  1

6: for eachCk do

7: for eachp in a (2r + 1)� (2r + 1) pixels window centered onXk do

8: Compute the linear pathPk
p (Bresenham, 1965)

9: ComputeD(p;Ck) usingC andPk
p with (8)

10: if D(p;Ck) < d(p) then

11: d(p)  D(p;Ck)

12: S(p)  k

13: for eachCk do

14: Update[Fk; Xk]

15: return S

2.4. Initialization Constraint from Contour Prior

In this section, we propose a framework to use an initial seg-

mentation computed from a contour prior completion to con-

strain the superpixel decomposition. To generate an image seg-

mentation into regions from a contour map requires additional

steps but may help to improve the decomposition accuracy. As

stated in the introduction, although methods such as Arbelaez

and Cohen (2008); Arbelaez et al. (2009) enable to segment an

image into partitions considering a contour map, they do not

allow to control the size, the shape and the number of the pro-

duced regions. We here propose a framework that uses an initial

segmentation and produces a regular superpixel decomposition

within pre-segmented regions, with control on the number of el-

ements. This way, we take advantage of the initial segmentation

accuracy while providing an image decomposition into super-

pixels of regular sizes and shapes. By initializing the decompo-

sition within the computed regions, the initial superpixels better

�t to the image content. For instance, small regions can be ini-

tially segmented into one or several superpixels, while they may

fall between two initial superpixel barycenters, and would not

be accurately segmented during the decomposition process.

2.4.1. Hierarchical Segmentation from Contour Detection

In order to adapt an initial segmentation to produce regular

superpixels, we propose to use a hierarchical segmentation, that
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can be computed from a contour map with methods such as

Arbelaez and Cohen (2008); Arbelaez et al. (2009).

Let U be a hierarchical segmentation that de�nes a con-

tour probability map. For any threshold,U produces a set of

closed curves. Regions segmented with low probability,i.e.,

with low intensity contours inU can be deleted with a thresh-

olding step. The thresholded closed contour map is denoted

U � , for a threshold� , and its corresponding decomposition into

regions is denotedR� = fRig. Figure 8, illustrates the result ob-

tained from a hierarchical segmentation for several thresholds.

Image � = 0

� = 0:2 � = 0:6

Fig. 8. Example of hierarchical segmentation computed with Arbelaez et al.

(2009) from a contour map obtained with Dolĺar and Zitnick (2013). The

hierarchical segmentation is illustrated for several values of the threshold

parameter � .

2.4.2. Regular Decomposition into Superpixels from a Hierar-

chical Segmentation

Once the hierarchical segmentation is obtained and thresh-

olded, a merging step can be performed to remove the smallest

areas. Such small regions should be merged to an adjacent one

to respect the size regularity of the decomposition. WithK the

number of superpixels andjI j the number of pixels of an im-

ageI , the superpixel average size iss = jI j=K. A threshold

t 2 [0;1] is set to merge regions containing less pixels thans� t.

The segmentation probability of a regionRi is min
p2B(Ri )

U � (p), i.e.,

the lowest intensity among its boundary pixelsp 2 B(Ri). The

regionRi is hence merged to its adjacent regionRj that shares

the boundary with the lowest segmentation probability:

if jRi j < s� t; R� (Ri) = argmin
j;p2B(Ri )\B (Rj )

U � (p): (9)

These steps are illustrated in Figure 9, where the thresholding

removes areas segmented with low probability and the merging

prevents the segmentation of small regions.

A partition step then adds initial superpixels in the remain-

ing regions. If the resulting number of regions is lower than

the number of superpixelsK, superpixels are added according

to the region sizejRi j. In a regionRi , bjRi j=sc sub-regions are

initialized by a spatial K-means approach (Lloyd, 1982), re-

gardless of the color information.

The proposed approach thus adapts well to the superpixel

size, and is not sensitive to threshold settings. The framework

using the contour prior as a hard constraint is illustrated in Fig-

ure 10, and will be denoted SCALP+HC in the following. Note

that although we here consider the segmentation as a hard con-

straint to enforce the respect of image objects, the image par-

tition can be used to only initialize the superpixel repartition,

instead of using a regular grid.

3. Results

3.1. Validation Framework

3.1.1. Dataset

We use the standard Berkeley segmentation dataset (BSD)

(Martin et al., 2001) to evaluate our method and compare to

state-of-the-art ones. This dataset contains 200 various test im-

ages of size321� 481 pixels. At least 5 human ground truth

decompositions are provided per image to compute evaluation

metrics in terms of consistency to the image objects, and con-

tour adherence.

3.1.2. Metrics

To evaluate our method and compare to other state-of-the-

art frameworks, we use standard superpixel evaluation met-

rics. The achievable segmentation accuracy (ASA) measures

the consistency of the decomposition to the image objects.

Boundary recall (BR) and contour density (CD) are used to
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(a) Image (b) Contour map (c) Hierarchical segmentation (d) Thresholding (e) Merging

Fig. 9. Illustration of the thresholding and merging steps of the hierarchical segmentation (c) computed from the contour map (b) of an image (a). The

thresholding step (d) enables to remove the areas segmented with low probability,i.e., the small blue circles and the segmentation artifacts. Then, according

to the condition in Eq. (9), smallest regions are removed (e),i.e., the red circles, although they have higher segmentation probability than the blue ones.

Fig. 10. SCALP+HC framework using the contour prior as a hard constraint to provide an initial segmentation. A completion step produces a hierarchical

segmentation from the contour map. Regions segmented with low probability are removed by a thresholding step, and too small regions compared to the

given superpixel size are merged to adjacent regions. These regions can then be partitioned to provide a superpixel initialization. SCALP is independently

performed in each region, taking advantage of the contour map accuracy while producing a regular decomposition that adapts well to local image content.

measure the detection accuracy according to the ground truth

image contours. We also propose to evaluate the contour detec-

tion performance of the superpixel methods by computing the

precision-recall (PR) curves (Martin et al., 2004). Finally, we

report the shape regularity criteria (SRC) (Giraud et al., 2017a)

that measures the regularity of the produced superpixels.

For each imageI of the dataset, human ground truth seg-

mentations are provided. The reported results are averaged on

all segmentations. A ground truth decomposition is denoted

T = fTigi2f1;:::;jT jg, with Ti a segmented region, and we consider

a superpixel segmentationS = fSkgk2f1;:::;jSjg.

Respect of image objects

For each superpixelSk of the decomposition result, the

largest possible overlap with a ground truth regionTi can be

computed with ASA, which computes the average overlap per-

centage for all superpixels:

ASA(S;T ) =
1
jI j

X

k

max
i

jSk \ Ti j: (10)

Note that recent works,e.g., Giraud et al. (2017c); Stutz et al.

(2017) show the high correlation between the undersegmenta-

tion error (Neubert and Protzel, 2012) and the ASA metric (10).

Therefore, the ASA measure is suf�cient to evaluate the respect

of image objects.

Contour Detection

The BR metric measures the detection of ground truth con-

toursB(T ) by the computed superpixel boundariesB(S). If a

ground truth contour pixel has a decomposition contour pixel

at an� -pixel distance, it is considered as detected, and BR is

de�ned as the percentage of detected ground truth contours:

BR(S;T ) =
1

jB(T )j

X

p2B(T )

� [ min
q2B(S)

kp � qk < � ]; (11)
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with � [a] = 1 whena is true and0 otherwise, and� set to2

as in,e.g., Van den Bergh et al. (2012). However, this measure

only considers true positive detection, and does not consider the

number of produced superpixel contours. Therefore, methods

that produce very irregular superpixels are likely to have high

BR results. To overcome this limitation, as in Machairas et al.

(2015); Zhang et al. (2016), the contour density (CD) can be

considered to penalize a large number of superpixel boundaries

B(S). In the following, we report CD over BR results, with CD

de�ned as:

CD(S) =
jB(S)j

jI j
: (12)

When considering decompositions with the same CD,i.e., the

same number of superpixel boundaries, BR results can be rele-

vantly compared. Higher BR with the same CD indicates that

the produced superpixels better detect image contours.

The PR framework (Martin et al., 2004) enables to mea-

sure the contour detection performances. PR curves consider

both boundary recall (BR) (11),i.e., true positive detection,

or percentage of detected ground truth contours, and precision

P = jB(S) \ B (T )j=jB(S)j, i.e., percentage of accurate detec-

tion on produced superpixel boundaries. They are computed

from an input map, where the intensity in each pixel repre-

sents the con�dence of being on an image boundary. As in Van

den Bergh et al. (2012), we consider the average of superpixel

boundaries obtained at different scales, ranging from 25 to 1000

superpixels, to provide a contour detection. In the following, to

summarize the contour detection performances, we report the

maximum F-measure de�ned as:

F =
2:P:BR
P+ BR

: (13)

Shape Regularity

To evaluate the regularity of a decomposition in terms of su-

perpixel shape, we use the shape regularity criteria (SRC) intro-

duced in Giraud et al. (2017a), and de�ned for a decomposition

S as follows:

SRC(S) =
X

k

jSkj
jI j

:
CC(HSk)
CC(Sk)

Vxy(Sk); (14)

where Vxy(Sk) = min(� x; � y)=max(� x; � y), evaluates the bal-

anced repartition of the shapeSk with � x and� y the square root

of standard deviations of pixel positionsx andy in Sk, HSk is

the convex hull containingSk, and CC measures the ratio be-

tween the perimeter and the area of the considered shape. The

SRC measure has been proven to be more robust and accurate

than the circularity metric (Schick et al., 2012) used in several

superpixel works.

3.1.3. Parameter Settings

SCALP was implemented with MATLAB using single-

threaded C-MEX code, on a standard Linux computer. We con-

sider indc andds more advanced spectral features introduced

in Chen et al. (2017). They are designed in a high dimensional

space (6 for color, and4 for spatial features). The linear path

between a pixel and the barycenter of a superpixel is computed

with Bresenham (1965). In (4), the parameter� is empiri-

cally set to40andP(p) is de�ned as a7� 7 pixel neighborhood

around a pixelp, son = 3. In the proposed color distance (6),

� is set to0:5, and to 50 in (7). The compactness parameter

m2 is set to0:075r2 in the �nal distance (8), as in Chen et al.

(2017). This parameter offers a good trade-off between adher-

ence to contour prior and compactness. The number of clus-

tering iterations is set to5, contrary to Chen et al. (2017) that

uses20 iterations, since SCALP converges faster. Unless men-

tioned, when used, the contour prior is computed with Dollár

and Zitnick (2013). Finally, when using the contour prior as a

hard constraint (SCALP+HC), we respectively set parameters

t and� during the region fusion (9) to0:15 and0:4, and com-

pute a hierarchical segmentation with Arbelaez et al. (2009). In

the following, when reporting results on noisy images, we use

a white additive Gaussian noise of variance 20.

3.2. In�uence of Parameters

3.2.1. Distance Parameters

We �rst measure the in�uence of the distance parameters in

(8) on SCALP performances. In Figure 11, we report results on

PR, ASA, CD over BR and SRC curves for different distance

settings, on both initial and noisy BSD images. First, we note

that the neighboring pixels (n = 3 in (4)) increase the decompo-

sition accuracy. The color features (� = 0:5 in (6)) also improve
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Fig. 11. Evaluation of the SCALP distance parameters on PR, ASA, CD over BR and SRC metrics on initial (top) and noisy images (bottom). Each

contribution increases the decomposition accuracy for both initial and noisy images. The parametern in (4) sets the use of the neighborhood in the

clustering distance, and� in (6) and  in (7) respectively set the in�uence of the color distance and contour prior along the linear path. Withn = 0 in (4),

� = 1 in (6) and  = 0 in (7), the framework is reduced to the method of Chen et al. (2017).

Initial image n=0, � =1,  =0 n=3, � =1,  =0

n=3, � =0:5,  =0 n=3, � =0:5,  =50

Fig. 12. Visual impact of the distance parameters. Each contribution pro-

gressively increases the decomposition accuracy by adding more relevant

features.

the results, in terms of respect of image objects and regularity.

Finally, the contour prior ( = 50 in (7)) along the linear path

enables to reach high contour detection (PR) and also increases

the performances on superpixel metrics. On noisy images, the

accuracy of the contour prior is degraded, but it still provides

higher ASA performances on respect of image objects. Note

that if n = 0 in (4), � = 1 in (6) and = 0 in (7), the method is

reduced to the framework of Chen et al. (2017).

Figure 12 illustrates the decomposition result for these dis-

tance parameters on a BSD image. With only the features used

in Chen et al. (2017),i.e., with n = 0, � = 1,  = 0, the de-

composition boundaries are very irregular. The neighborhood

information greatly reduces the noise at the superpixel bound-

aries. The color distance on the linear path improves the super-

pixel regularity and provides more compact shapes. Finally, the

contour information enables to more ef�ciently catch the object

structures and to respect the image contours.

3.2.2. Contour Prior

We also investigate the in�uence of the contour prior. The

computation of the contour information should not be sensitive

to textures and high local image gradients, and many ef�cient

methods have been proposed in the literature (see for instance

references in Arbelaez et al. (2011)). The performances of our

method are correlated to the contour detection accuracy, but we

demonstrate that improvements are obtained even with basic

contour detections.

A fast way to obtain such basic contour detection, which

would be robust to textures and high gradients, is to average the

boundaries of superpixel decompositions obtained at multiple

scales. We propose to consider the same set of scalesK = fKg
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Initial image Boundary averagēB Contour mapC

Fig. 13. Illustration of contour detection from superpixel boundaries com-

puted with Achanta et al. (2012) at multiple scales. Boundaries are aver-

aged and thresholded to provide, in a fast and simple manner, an accurate

contour prior. The threshold of the boundary map (15) is set to0:5.

used for computing the PR curves. All resulting superpixels

boundariesB(SK) of a decompositionSK , computed at scale

K 2 K are averaged:

B̄ =
1

jKj

X

K2K

B(SK): (15)

The averageB̄ can then be thresholded to remove low con�-

dence boundaries and provide an accurate contour priorC. Fig-

ure 13 illustrates the computation of the contour priorC from

superpixel boundaries. Note that the decompositions at multi-

ple scalesK are independent and can be computed in parallel.

In Figure 14, we provide results obtained by using different

contour prior: the contour detection from multiple scale decom-

positions, using Achanta et al. (2012) with a threshold of the

boundary map (15) set to0:5, from the globalized probability of

boundary algorithm (Maire et al., 2008), a method using learned

sparse codes of patch gradients (Xiaofeng and Bo, 2012), and

from a structured forests approach (Dollár and Zitnick, 2013).

The results on all metrics are improved with the accuracy of

the provided contour detection. Nevertheless, we note that even

simple contour priors enable to improve the superpixel decom-

position adherence to boundaries. In the following, reported

results are computed using Dollár and Zitnick (2013).

3.3. Comparison with State-of-the-Art Methods

We compare the proposed SCALP approach to the following

state-of-the-art methods: ERS (Liu et al., 2011), SLIC (Achanta

et al., 2012), SEEDS (Van den Bergh et al., 2012), ERGC

(Buyssens et al., 2014), Waterpixels (WP) (Machairas et al.,

2015), ETPS (Yao et al., 2015) and LSC (Chen et al., 2017).

Reported results are computed with codes provided by the au-

thors, in their default settings.

Fig. 14. Evaluation of different contour priors. Even a simple contour de-

tection from averaged superpixel boundaries at multiple scales improves

the adherence to image contours.

In Figure 15, we provide PR curves with the maximum F-

measure, and report the standard ASA (10), CD (12) over BR

(11) and SRC (14) metrics on both initial (top) and noisy (bot-

tom) images. SCALP outperforms the compared methods on

the respect of image objects and contour detection metrics, pro-

viding for instance higher F-measure (F= 0:680), while pro-

ducing regular superpixels. The regularity is indeed increased

compared to SLIC and LSC, and is among the highest of state-

of-the-art methods. The ASA evaluates the consistency of a

superpixel decomposition with respect to the image objects, en-

hancing the largest possible overlap. Therefore, best ASA re-

sults obtained with SCALP indicate that the superpixels are bet-

ter contained in the image objects. Using the contour prior as a

hard constraint (SCALP+HC), our method even reaches higher

performances, for instance with F= 0:709. Moreover, SCALP

results obtained without using a contour prior,i.e., setting to 0

in (7), still outperform the ones of the most accurate compared

methods LSC and ERS. Finally, we can underline the fact that

SCALP results outperform the ones of all the compared state-

of-the-art methods on contour detection and respect of image

objects metrics while producing regular superpixels. The gain

of performances is further assessed by the result of a paired Stu-

dent test on the ASA result sets. A very lowp-value (< 0:002)

is obtained by comparing the result set of SCALP to the one of

ERS (Liu et al., 2011), the best compared method in terms of

accuracy, which demonstrates the signi�cant increase of perfor-

mances obtained with SCALP. Generally, to enforce the regu-

larity may reduce the contour adherence (Van den Bergh et al.,
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Fig. 15. Comparison between the proposed SCALP framework and the state-of-the-art methods on contour detection (PR) and superpixel metrics (ASA,

CD over BR and SRC) on the BSD test set. SCALP outperforms the other methods on both initial images (top) and noisy images (bottom). Moreover the

results obtained with SCALP without using a contour prior (SCALP  = 0), still outperform the most accurate compared methods (Chen et al., 2017; Liu

et al., 2011).

Table 1. Comparison to state-of-the-art methods on initialjnoisy images.

The maximum F-measure(13) is computed as described in Section 3.1.

ASA (10) and SRC(14) results are given forK = 250superpixels, and CD

(12)results for BR = 0:8 (11). Blue (bold) and red (underlined) respectively

indicate best and second results

Method F (13) ASA (10) CD/BR (12) SRC (14)

ERS 0:593j0:424 0:951j0:872 0:099j0:227 0:395j0:213

SLIC 0:633j0:506 0:944j0:867 0:106j0:156 0:537j0:417

SEEDS 0:577j0:598 0:943j0:939 0:109j0:118 0:414j0:435

ERGC 0:593j0:487 0:948j0:924 0:104j0:192 0:457j0:586

WP 0:588j0:460 0:932j0:907 0:124j0:162 0:557j0:508

ETPS 0:631j0:509 0:943j0:939 0:110j0:199 0:663j0:386

LSC 0:607j0:611 0:950j0:929 0:115j0:300 0:420j0:234

SCALP 0:680j0:636 0:954j0:949 0:084j0:107 0:614j0:509

SCALP+HC 0:709j0:640 0:955j0:947 0:076j0:101 0:641j0:545

2012), but SCALP succeeds in providing regular but accurate

superpixels. This regularity property has been proven crucial

for object recognition (Gould et al., 2014), tracking (Reso et al.,

2013) and segmentation and labeling applications (Strassburg

et al., 2015). Therefore, the use of SCALP may increase the

accuracy of such superpixel-based methods.

The gain over state-of-the-art methods is largely increased

when computing superpixels on noisy images. Methods such

as Buyssens et al. (2014); Chen et al. (2017); Liu et al. (2011)

obtain very degraded performances when applied to slightly

noised images, while Van den Bergh et al. (2012) is the only

method that is robust to noise on all evaluated aspects. The

state-of-the-art methods can indeed have very different behav-

ior when applied to noisy images. They generally produce very

noisy superpixel boundaries (see Figure 1). This aspect is ex-

pressed by the lower performances of CD over BR in the bot-

tom part of Figure 15. The regularity is also degraded for all

methods, except Buyssens et al. (2014), that tends to gener-

ate more regular superpixels, failing at grouping homogeneous

pixels. Finally, on the ASA metric, SCALP provides slightly

higher results than SCALP+HC for these images. The presence

of noise may mislead the contour detection that should not be

considered as a hard constraint to ensure the respect of object

segmentation. These results are summarized in Table 1, where

we report the performances of all compared methods on both

initial and noisy images forK = 200superpixels.

Despite the large number of features used in SCALP, the

computational time remains reasonable,i.e., less than0:5s on

BSD images, on a single CPU, without any multi-threading

architecture, contrary to implementations of methods such as
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ETPS (Yao et al., 2015). This computational time corresponds

to standard ones of superpixel methods, and SCALP is even

faster than methods such as Levinshtein et al. (2009); Liu et al.

(2011), whose computational time can be up to5s.

In this work, we focus on the decomposition performances

and do not extensively compare the processing times, since this

measurement is highly dependent on the implementation and

optimization, and does not necessarily re�ect the computational

potential of each method (Stutz et al., 2017). Nevertheless, our

method is based on the iterative clustering framework (Achanta

et al., 2012), and recent works have demonstrated that such al-

gorithm could be implemented to perform in real-time (Ban

et al., 2016; Choi and Oh, 2016; Neubert and Protzel, 2014).

Therefore, since SCALP have the same complexity as SLIC,

our method can reach such computational time with optimized

implementation or multi-threading architectures.

Finally, Figures 16 and 17 respectively illustrate the super-

pixel decomposition results obtained with SCALP and the best

compared methods on initial and noisy images. SCALP pro-

vides more regular superpixels while tightly following the im-

age contours. SCALP+HC enables to more accurately guide the

decomposition by constraining superpixels to previously seg-

mented regions. While most of the compared methods produce

inaccurate and irregular results with slightly noised images (see

Figure 17), SCALP is robust to noise and produces regular su-

perpixels that adhere well to the image contours.

3.4. Extension to Supervoxels

Finally, we naturally extend the SCALP method to the com-

putation of supervoxels on 3D volumes, for the segmentation

of 3D objects or medical images. Many supervoxel methods

are dedicated to video segmentation, see for instance Xu and

Corso (2012), and references therein. These methods segment

the volume into temporal superpixel tubes and are therefore

only adapted to the context of video processing. Other meth-

ods propose to perform superpixel tracking,e.g., Chang et al.

(2013); Reso et al. (2013); Wang et al. (2011), which can result

in similar tubular supervoxel segmentation, and may require the

computation of optical �ow to be ef�cient (Chang et al., 2013).

Contrary to other methods that necessitate substantial adapta-

tions for 3D data, we naturally extend SCALP to compute 3D

volume decompositions. We start from a 3D regular grid and

perform the decomposition by adding one dimension to the pre-

vious equations presented in Section 2.

To validate our extension to supervoxels, we consider 3D

magnetic resonance imaging (MRI) data from the Brain Tu-

mor Segmentation (BRATS) dataset (Menze et al., 2015). This

dataset contains 80 brain MRI of patients suffering from tu-

mors. The images are segmented into three labels: background,

tumor and edema, surrounding the tumor. We illustrate exam-

ples of SCALP supervoxel segmentation with the ground truth

segmentation in Figure 18, where the tumor and edema are re-

spectively segmented in green and red color. This dataset is

particularly challenging since the resolution of images is very

low and the ground truth segmentation is not necessarily in line

with the image gradients. Finally, note that SCALP obtains an

average 3D ASA measure of0:9848, and outperforms state-of-

the-art methods with available implementations SLIC (Achanta

et al., 2012) and ERGC (Buyssens et al., 2014), that respec-

tively obtain a 3D ASA of0:9840and0:9652.

4. Conclusion

In this work, we generalize the superpixel clustering frame-

work proposed in Achanta et al. (2012); Giraud et al. (2016),

by considering color features and contour intensity on the linear

path from the pixel to the superpixel barycenter. Our method is

robust to noise and the use of features along such path improves

the respect of image objects and the shape regularity of the su-

perpixels. The considered linear path naturally enforces the su-

perpixel convexity while other geodesic distances would pro-

vide irregular superpixels. Our fast integration of these features

within the framework enables to compute the decomposition in

a limited computational time. SCALP obtains state-of-the-art

results, outperforming the most recent methods of the literature

on superpixel and contour detection metrics. Image processing

and computer vision pipelines would bene�t from using such

regular, yet accurate decompositions.
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ERS SLIC ERGC ETPS LSC SCALP SCALP+HC

Fig. 16. Qualitative comparison of decomposition results between SCALP and state-of-the-art superpixel methods on example images of the BSD. SCALP

provides the most visually satisfying results with superpixels that adhere well to the image contours while being equally sized and having compact shapes.

SCALP+HC enables to further enforce the respect of image contours.

Acknowledgments

This study has been carried out with �nancial support from

the French State, managed by the French National Research

Agency (ANR) in the frame of the GOTMI project (ANR-

16-CE33-0010-01) and the Investments for the future Program

IdEx Bordeaux (ANR-10-IDEX-03-02) with the Cluster of ex-

cellence CPU.

References

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S., 2012.
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Machairas, V., Faessel, M., Cárdenas-Pẽna, D., Chabardes, T., Walter, T., De-

cenci�ere, E., 2015. Waterpixels. IEEE Trans. Image Process. 24, 3707–3716.

Maire, M., Arbelaez, P., Fowlkes, C., Malik, J., 2008. Using contours to de-

tect and localize junctions in natural images, in: Proc. of IEEE Conf. on

Computer Vision and Pattern Recognition, pp. 1–8.

Martin, D., Fowlkes, C., Tal, D., Malik, J., 2001. A database of human seg-

mented natural images and its application to evaluating segmentation algo-

rithms and measuring ecological statistics, in: Proc. of IEEE International

Conference on Computer Vision, pp. 416–423.

Martin, D., Fowlkes, C., Malik, J., 2004. Learning to detect natural image

boundaries using local brightness, color, and texture cues. IEEE Trans. Pat-

tern Anal. and Mach. Intell. 26, 530–549.

Menze, B., Jakab, A., Bauer, S., et al., 2015. The multimodal brain tumor

image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34,

1993–2024.

Moore, A.P., Prince, S.J.D., Warrell, J., Mohammed, U., Jones, G., 2008. Su-

perpixel lattices, in: Proc. of IEEE Conf. on Computer Vision and Pattern

Recognition, pp. 1–8.

Mori, G., Ren, X., Efros, A.A., Malik, J., 2004. Recovering human body con�g-

urations: combining segmentation and recognition, in: Proc. of IEEE Conf.

on Computer Vision and Pattern Recognition, pp. 326–333.

Neubert, P., Protzel, P., 2012. Superpixel benchmark and comparison, in: Fo-

rum Bildverarbeitung, pp. 1–12.

Neubert, P., Protzel, P., 2014. Compact watershed and preemptive SLIC: on

improving trade-offs of superpixel segmentation algorithms, in: Proc. of

International Conference on Pattern Recognition, pp. 996–1001.

Reso, M., Jachalsky, J., Rosenhahn, B., Ostermann, J., 2013. Temporally con-

sistent superpixels, in: Proc. of IEEE International Conference on Computer

Vision, pp. 385–392.

Rubio, A., Yu, L., Simo-Serra, E., Moreno-Noguer, F., 2016. BASS: Boundary-

aware superpixel segmentation, in: Proc. of International Conference on Pat-

tern Recognition.

Sawhney, R., Li, F., Christensen, H.I., 2014. GASP: Geometric association

with surface patches, in: Proc. of International Conference on 3D Vision.

Schick, A., Fischer, M., Stiefelhagen, R., 2012. Measuring and evaluating the

compactness of superpixels, in: Proc. of International Conference on Pattern

Recognition, pp. 930–934.

Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Trans.

Pattern Anal. and Mach. Intell. 22, 888–905.

Strassburg, J., Grzeszick, R., Rothacker, L., Fink, G.A., 2015. On the in�u-

ence of superpixel methods for image parsing, in: Proc. of the Inf. Conf. on

Computer Vision Theory and Applications (VISAPP), pp. 518–527.

Stutz, D., Hermans, A., Leibe, B., 2017. Superpixels: An evaluation of the

state-of-the-art. Comput. Vis. Image Underst. (in press).

Tighe, J., Lazebnik, S., 2010. SuperParsing: Scalable nonparametric image

parsing with superpixels, in: Proc. of European Conference on Computer

Vision, pp. 352–365.

Van den Bergh, M., Boix, X., Roig, G., de Capitani, B., Van Gool, L., 2012.

SEEDS: Superpixels extracted via energy-driven sampling, in: Proc. of Eu-

ropean Conference on Computer Vision, pp. 13–26.

Vedaldi, A., Soatto, S., 2008. Quick shift and kernel methods for mode seeking,

in: Proc. of European Conference on Computer Vision, pp. 705–718.

Veksler, O., Boykov, Y., Mehrani, P., 2010. Superpixels and supervoxels in

an energy optimization framework, in: Proc. of European Conference on



19

Computer Vision, pp. 211–224.

Vincent, L., Soille, P., 1991. Watersheds in digital spaces: an ef�cient algorithm

based on immersion simulations. IEEE Trans. Pattern Anal. and Mach. In-

tell. 13, 583–598.

Wang, P., Zeng, G., Gan, R., Wang, J., Zha, H., 2013. Structure-sensitive

superpixels via geodesic distance. Int. J. Comput. Vis. 103, 1–21.

Wang, S., Lu, H., Yang, F., Yang, M.H., 2011. Superpixel tracking, in: Proc. of

IEEE International Conference on Computer Vision, pp. 1323–1330.

Xiaofeng, R., Bo, L., 2012. Discriminatively trained sparse code gradients

for contour detection, in: Proc. of Conf. on Neural Information Processing

Systems, pp. 584–592.

Xu, C., Corso, J.J., 2012. Evaluation of super-voxel methods for early video

processing, in: Proc. of IEEE Conf. on Computer Vision and Pattern Recog-

nition, pp. 1202–1209.

Yang, Y., Hallman, S., Ramanan, D., Fowlkes, C., 2010. Layered object de-

tection for multi-class segmentation, in: Proc. of IEEE Conf. on Computer

Vision and Pattern Recognition, pp. 3113–3120.

Yao, J., Boben, M., Fidler, S., Urtasun, R., 2015. Real-time coarse-to-�ne topo-

logically preserving segmentation, in: Proc. of IEEE Conf. on Computer

Vision and Pattern Recognition, pp. 2947–2955.

Zhang, N., Zhang, L., 2017. SSGD: Superpixels using the shortest gradient dis-

tance, in: Proc. of the IEEE International Conference on Image Processing.

Zhang, Y., Li, X., Gao, X., Zhang, C., 2016. A simple algorithm of superpixel

segmentation with boundary constraint. IEEE Trans. Circuits and Syst. for

Video Technol. PP, 1–1.


