Robust Shape Regularity Criteria for Superpixel Evaluation - Archive ouverte HAL Access content directly
Conference Papers Year :

Robust Shape Regularity Criteria for Superpixel Evaluation

Abstract

Regular decompositions are necessary for most superpixel-based object recognition or tracking applications. So far in the literature, the regularity or compactness of a superpixel shape is mainly measured by its circularity. In this work, we first demonstrate that such measure is not adapted for super-pixel evaluation, since it does not directly express regularity but circular appearance. Then, we propose a new metric that considers several shape regularity aspects: convexity, balanced repartition, and contour smoothness. Finally, we demonstrate that our measure is robust to scale and noise and enables to more relevantly compare superpixel methods.
Fichier principal
Vignette du fichier
Giraud_SRC_ICIP17.pdf (2.47 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01510062 , version 2 (20-05-2017)

Licence

Attribution - NonCommercial

Identifiers

  • HAL Id : hal-01510062 , version 2

Cite

Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis. Robust Shape Regularity Criteria for Superpixel Evaluation. IEEE International Conference on Image Processing (ICIP'17), Sep 2017, Beijing, China. pp.3455-3459. ⟨hal-01510062⟩

Collections

CNRS ANR
436 View
327 Download

Share

Gmail Facebook Twitter LinkedIn More